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Abstract: In performing their biological functions, molecular machines must process and 

transmit information with high fidelity. Information transmission requires dynamic 

coupling between the conformations of discrete structural components within the protein 

positioned far from one another on the molecular scale. This type of biomolecular “action 

at a distance” is termed allostery. Although allostery is ubiquitous in biological regulation 

and signal transduction, its treatment in theoretical models has mostly eschewed 

quantitative descriptions involving the system’s underlying structural components and their 

interactions. Here, we show how Ising models can be used to formulate an approach to 

allostery in a structural context of interactions between the constitutive components by 

building simple allosteric constructs we termed Allosteric Ising Models (AIMs). We 

introduce the use of AIMs in analytical and numerical calculations that relate 

thermodynamic descriptions of allostery to the structural context, and then show that many 

fundamental properties of allostery, such as the multiplicative property of parallel allosteric 

channels, are revealed from the analysis of such models. The power of exploring 

mechanistic structural models of allosteric function in more complex systems by using 

AIMs is demonstrated by building a model of allosteric signaling for an experimentally 

well-characterized asymmetric homodimer of the dopamine D2 receptor. 
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1. Introduction 

Complex molecular assemblies and networks of interacting biomolecules mediate many cellular 

processes, such as cell growth, metabolism, and signaling. Molecular components of such assemblies 

and networks have been visualized and structurally elucidated at atomic-level resolution with 

experimental techniques including x-ray crystallography [1], nuclear magnetic resonance (NMR) [2], 

and cryo-electron microscopy (cryo-EM) [3]. The combination of structure elucidation with the 

application of biophysical methods reporting on the dynamic properties of the molecules (e.g., single 

molecule Forster resonance energy transfer (smFRET) [4], electron paramagnetic resonance (EPR) [5], 

Molecular Dynamics (MD) simulations [6], and elastic network models [7]) has produced detailed 

information regarding functional mechanisms. The application of these powerful methods of molecular 

biophysics has illuminated, especially in proteins, the large ensemble of conformations involved in the 

functional mechanisms of biomolecules, and hence the importance of conformational entropy. This 

conformational entropy is much higher than expected from crystal structures alone, and the relatively 

discrete structural elements comprising these systems (i.e., loops, α-helices, β-strands, and a large 

number of tertiary structures in proteins) often exhibit coupled conformational dynamics. These 

coupled dynamics are especially crucial in receptor proteins, which are used to process and transmit 

information in their signaling function. For example, transmembrane receptor proteins, such as the G 

protein coupled receptors (GPCRs), bind extracellular ligands that trigger receptor “activation”, which 

is reflected by a change in conformation on the intracellular side of the protein where the transduction 

of the signal into the cell is accomplished [8]. This type of “action-at-a-distance” in the modulation of 

a specific function is referred to as allostery [9]. While allostery has been documented in many systems 

and has been suggested to be present in nearly all proteins [10], it is still unclear how most allosteric 

mechanisms work at the molecular level. A strong theoretical basis for allostery is needed, however, 

because such mechanisms are ubiquitous and essential for the transduction of signals and transmitting 

information both within proteins and throughout cellular systems. In addition, while there has been 

some success in engineering allosteric proteins from pre-existing components and scaffolds, a lack of 

detailed understanding has placed de novo design out of reach [11]. 

Considerations of theoretical models of allostery have generally followed a thermodynamic 

approach [9,12,13]. When biochemical measurements of the functional output of proteins can be made, 

the allosteric efficacy [14], which has also been called the allosteric coupling constant [15], can be 

used as a good measure of a ligand’s allosteric influence on the protein’s functional state. For the case 

of receptors, this downstream signal transduction can be measured experimentally. Assuming that the 

receptor has two states, on and off, an allosteric efficacy, α, can be defined as: 

α =
Kbound

Kunbound

 (1)
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where Kbound and Kunbound are the equilibrium constants for the activation reactions of the receptor when 

bound or unbound to the allosteric ligand, respectively. An equilibrium constant can be defined in 

terms of concentrations or rate constants: 

K =
R

on
 
R

off
 

=
k

on

k
off  

 (2) 

where [Ron] and [Roff] are the steady state concentrations of the receptor in the on and off state, 

respectively, and kon and koff are the corresponding rate constants for the transition to the on and off 

states (see Figure 1). The concentrations of the two receptor populations can be inferred from 

biochemical measurements of function, and the allosteric efficacy of the ligand of interest can be 

calculated from (1) and (2). When α > 1, the on state of the receptor is preferred in the presence of 

ligand and the ligand is considered an agonist (activator of function), and when α < 1, the off state of 

the receptor is preferred in the presence of ligand and the ligand is considered an inverse agonist 

(inhibitor of function). When α is 1, the ligand has no effect on the functional state of the receptor and 

the ligand is considered a neutral antagonist (inhibitor of activation by another ligand). This type of 

allostery, in which the equilibrium constant is modified by the ligand, is often described as “K-type”, 

as opposed to those that change enzyme catalysis in terms of kcat or Vmax, which are described as  

“V-type” [15].  

 

Figure 1. Thermodynamic cycle of a two-state ligand/receptor activation reaction. The 

receptor (blue circle) has an on and an off state (square and triangle indentations, 

respectively), both of which can bind a ligand (red triangle). The kinetic parameters are 

shown for the two equilibria of interest. 

It is possible to conceptualize the allosteric efficacy of a ligand as a steady state signal-to-noise 

ratio, where the signal for the presence of a ligand in the binding site is encoded in the receptor on/off 

equilibrium constant that is sensed by the intracellular proteins that detect the signal by interacting with 

K = kon

koff

kon,boundkoff ,boundkoff ,unbound kon,unbound
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the receptor population. In the absence of ligand the equilibrium constant is non-zero (i.e., the probability 

of the receptor being active is non-zero), creating noise. 

To obtain a formal definition of the allosteric efficacy in this context, it is possible to write the 

signal-to-noise ratio, SNR, as: 

SNR =
P

signal

Pnoise  
 (3) 

where Px is the power of x defined as: 

P
x

= 1

T
x

0

T

 t( )2
dt

 
 (4)

Therefore, the power of the equilibrium constant signal can be written as: 

P
K

= 1

T
K t( )2

dt
0

T


 
 (5)

and because at steady state the equilibrium constant is invariant with time by definition: 

P
K

= K2

  (6)

then: 

α =
P

Kbound

PKunbound  

 (7) 

Accordingly, the allosteric efficacy of an agonist is a measure of the signal-to-noise ratio of 

signaling through the receptor with that agonist. If the ligand is an inverse agonist, the pertinent 

measure is the equilibrium constant for the inactivation reaction, so that the signal-to-noise ratio is 

simply α -1. When both the signal and noise are Gaussian, the Shannon-Hartley theorem [16,17] relates 

the signal-to-noise ratio to the information theoretical channel capacity C (which is the upper limit on 

the information rate or mutual information), by: 

C = Blog 1+ SNR( )   (8)

where B is the bandwidth of the channel. While Equation (8) is not directly applicable to the allosteric 

efficacy, as the signal and noise are not Gaussian, the treatment of allostery as an information 

transmission process has had much success recently [18–20], and we will confirm a strong relationship 

between the mutual information and allosteric efficacy later in the manuscript.  

An energy-based expression of the allosteric efficacy can be written as the difference in free 

energies, G, of the four respective states: 

−RTlog α( ) = G
on,bound

− G
on,unbound( ) + G

off ,unbound
− G

off ,bound( )
 
 (9)

where R is the gas constant and T is the temperature. This model can be extended to systems with 

multiple ligand binding sites and/or allosterically regulated sites (for a detailed review, see [13]), but it 

clearly provides only a phenomenological explanation of allostery. According to this description, often 

considered “the thermodynamic” perspective, allostery occurs because of the differences in free energy 
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of the respective states. However, this conclusion appears to be a definition, i.e., that allostery is the 

phenomenon in which the stability of the on state relative to the off state is greater when the ligand is 

bound, and lesser when the ligand is unbound. From a “structural” perspective, one needs to consider 

the differences in free energy as emerging from some feature of the underlying network of interacting 

structural components, and it is this feature that makes the system allosteric.  

To understand allostery at a level that explains the structural context for how allosteric biomolecular 

systems work requires a quantitative theoretical description that bridges the features of the structural 

components and their interactions, to the thermodynamic allosteric parameters. We address this 

problem in the next section. 

2. Results and Discussion 

2.1. The Thermodynamic Allosteric Efficacy as a Function of Local Interactions  

We approach the problem of “how allostery works” by studying the statistical mechanics of 

interacting structural components. These structural components may be any subset of a biomolecular 

system that can be treated as a unit when described at some level of coarse-graining (i.e., a helix, a β 

strand, a helical bundle, a binding site, etc). The approach we will pursue is conceptually similar to the 

ensemble allosteric model (EAM) [12], but with the goal of introducing a structural context that can be 

analyzed analytically. Defining an n-component system X where for a single configuration each 

component can be in one of an arbitrary number of discrete states, we write the potential energy 

function of a given configuration of X, U(X), as: 

 
U X( ) = Uconf X

i( )
i=1

n

 +
Uint X

i
,X

j( )
2j=1

n


i=1

n


 
 (10)

The first term in (10) represents the conformational energy of each state of each component 

independent of other components, and the second term represents the pairwise interaction energy 

between components; all interaction terms when i = j are 0. We can write the probability of any 

conformation of the system according to the Boltzman distribution as:  

p X( ) = e−βU X( )

Z  
 (11)

β is 1/kBT, where kB is the Boltzmann constant and T is the temperature in Kelvin. The numerator is 

known as the Boltzmann factor, and Z is the partition function, which sums over the Boltzmann factors 

of all states and normalizes the probability: 

Z = e−βU X( )  (12)

We can then define the specific case of ligand binding to a two-state receptor. This system can be 

defined as a two-component system in which each component is two-state: one component 

representing the receptor, R, with states on and off, and the second component representing the ligand, 

L, with states bound and unbound. It should be noted that for the ligand, the conformational energy 
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term represents the component of the binding energy that is independent of the state of the receptor. 

Using the explicit definition of the concentration: 

X  =
NX

V
 (13)

where Nx is the number of molecules of X and V is the volume, we can rewrite (2) with the explicit 

definition of protein concentration:  

K =

Nf
on

V
Nf

off

V

=
fon

f
off

 

 (14)

where N is the total number of receptors and fon and foff are the fraction of receptors in the on and off 

states, respectively. Given that the system is ergodic, the frequency of a given state at steady state will 

converge to the ensemble probabilities. Rewriting (1) by substituting thermodynamic equilibrium 

constants with ratios of probabilities, we can define the allosteric efficacy as: 

α
p L = unbound,R = on( )
p L = unbound,R = off( ) =

p L = bound,R = on( )
p L = bound,R = off( )  (15)

Using (10) and (11), we can write (15) as: 

α e
−β Uconf L=unbound( )+Uconf R=on( )+Uint L=unbound ,R=on( )





e
−β Uconf L=unbound( )+Uconf R=off( )+Uint L=unbound ,R=off( )





= e
−β Uconf L=bound( )+Uconf R=on( )+Uint L=bound,R=on( )





e
−β Uconf L=bound( )+Uconf R=off( )+Uint L=bound,R=off( )



  

 (16)

Equation (16) reduces to: 

 α = e
−β Uint L=bound,R=on( )−Uint L=bound,R=off( )( )+ Uint L=unbound ,R=off( )−Uint L=unbound,R=on( )( )




  (17)

We then find the analogous expression of (9): 

− 1

β
log α( ) = Uint L = bound,R = on( ) − Uint L = bound,R = off( )( ) + Uint L = unbound,R = off( ) − Uint L = unbound,R = on( )( ) (18)

As (18) indicates, the allosteric efficacy is a function the interaction energy between the states, and 

we have succeeded in expressing the thermodynamic allosteric efficacy as a function of local 

interactions in our simple two-component ligand/receptor system. However, this result is significantly 

more useful for considering multi-component systems if additional energetic symmetries are imposed 

by using an Ising model potential energy function. While these symmetries are not strictly realized in a 

biomolecular system, we will show that their application leads to concise analytic expressions that are 

qualitatively and quantitatively accurate as well for systems in which these symmetries are not present. 
 

2.2. The Allosteric Ising Model (AIM) for Multicomponent Systems 

The Ising model is a statistical mechanical model originally developed to describe phase behavior in 

ferromagnetic materials [21]. The Ising model, as well as Ising-like models, have since been applied to 

other complex systems with collective behavior [22,23], including cooperativity during folding [24–26] 
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and in oligomeric assemblies [27,28]. In the Ising model, each particle has two states, corresponding to 

a spin state of up or down: 

s
X

= −1 X =↓
1 X =↑





  

 (19)

The potential energy function of an n-component Ising model is: 

U X( ) = − h
i
s

i
i=1

n

 −
j
ij

2j=1

n


i=1

n

 s
i
s

j

 
 (20) 

In the Ising model, hi is the potential energy of particle i due to the magnetic field, and jij is the spin 

coupling between particles i and j, where jii is taken to be 0. If the field term is taken to be site-specific, 

one can see that the field term can be considered to correspond to the conformational energy, and the 

spin coupling term to the pairwise interaction energy. We can rewrite the potential function as: 

U X( ) = u
i
confs

i
i=1

n

 +
u

i,j
int

2
s

i
j=1

n


i=1

n

 s
j

 
 (21)

where u
i
conf  is the conformational energy of component i, and u

i,j
int  is the interaction energy of 

components i and j. By using (21) for the potential energy function, we impose the following 

symmetries on the two-state components (with binary states represented by up and down arrows): 

 

Uconf X =↑( ) = −Uconf X =↓( )
Uint X

i
=↑,X

j
=↑( ) = Uint X

i
=↓,X

j
=↓( ) = −Uint X

i
=↑,X

j
=↓( ) = −Uint X

i
=↓,X

j
=↑( )  (22)

For Ising models composed of several components and various interaction topologies, these 

symmetries allow for concise analytical expression for the allosteric efficacy and binding affinity. We 

will refer to these models as Allosteric Ising Models (AIMs). 

Considering the analogy to the ligand(L)-receptor(R) systems and treating the on/off and 

bound/unbound states as up/down spins (see Figure 2A), the potential energy function according to 

(21) can be written as: 

U s
L
,s

R( ) = u
L
confs

L
+u

R
confs

R
+u

L,R
int s

L
s

R
 (23)

As the interaction energy between the receptor and the ligand must be zero when the ligand is in the 

unbound state, we write an alternative non-Ising potential energy function where the interaction energy 

is 0 when the ligand is unbound: 

 
U s

L
,s

R( ) = u
L
confs

L
+ u

R
confs

R
+ u

L,R
int sL +1

2
s

R  (24)

This equation can be re-written as an Ising model potential energy function: 

U s
L
,s

R( ) = u
L
confs

L
+ u

R
conf +

u
L,R
int

2









 s

R
+

u
L,R
int

2
s

L
s

R
 (25)
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Figure 2. Schematic representations of Allosteric Ising models (AIMs). In the four AIMs 

analyzed here the ligand, L, is represented as a red triangle, and the protein is the blue 

circle subdivided into various constituent structural components. Lines separating ligand 

from protein or protein structural components from each other are labeled with the 

appropriate interaction energy term (as used in the text). Allosteric effective interactions 

are represented with green dotted lines. (A): The simple two-component ligand/receptor 

system. (B): A three-component ligand/receptor system with two allosteric sites, A1 and 

A2. (C): A three-component ligand/receptor system with one channel, C, coupling the 

ligand and the allosteric site A. (D): A four-component ligand/receptor system with two 

channels, C1 and C2, coupling the ligand and the allosteric site A. 

Thus we will proceed with (23) despite the seemingly non-physical interaction, and later confirm 

that the relationships derived using this model accurately represent those of non-Ising systems. The 

allosteric efficacy using this potential energy function is: 

α
p L =↓,R =↑( )
p L =↓,R =↓( ) =

p L =↑,R =↑( )
p L =↑,R =↓( )  (26)

and we can simplify (17) to: 

α = e
−4βuL,R

int

 (27) 

Equation (27) indicates that in the Allosteric Ising Model for the ligand/receptor system 

(“ligand/receptor AIM”), the allosteric efficacy is simply a function of the ligand-receptor interaction 

energy term. Positive allostery (agonism) is attributed to negative interaction energy; negative allostery 

(inverse agonism) is attributed to positive interaction energy. Note that as the interaction energy 

between the ligand and receptor is related to the allosteric efficacy by a log transformation, we will use 
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here the allosteric efficacy and interaction energy interchangeably, and specifically use interaction 

energy for visual representations, where the log scale is required.  

The two-component model assumes that the protein is entirely rigid, with two global states. 

However, it is possible for the ligand to allosterically modulate multiple distinct allosteric sites (see 

Figure 2B). It is well known, for example, that GPCRs can signal through multiple downstream 

signaling pathways through coupling to various G protein subtypes and β-arrestin [29,30], and that 

different ligands can differentially activate these pathways [31,32]. Therefore it may be necessary to 

distinguish among multiple allosteric sites in the representation of receptor allostery. If we introduce 

two non-interacting allosteric sites, A1 and A2, we can write the potential energy function as: 

U L,A
1
,A

2( ) = u
L
conf + u

A1

conf + u
A2

conf + u
L,A1

int + u
L,A2

int   (28)

Then the allosteric efficacy at a site is: 

α
p L =↓,A

1
=↑( )

p L =↓,A
1

=↓( ) =
p L =↑,A

1
=↑( )

p L =↑,A
1

=↓( )  (29)

The probability of each state is the sum of the probability of two underlying states: 

αL,A1

p L =↓,A
1

=↑,A
2

=↑( ) + p L =↓,A
1

=↑,A
2

=↓( )
p L =↓,A

1
=↓,A

2
=↑( ) + p L =↓,A

1
=↓,A

2
=↓( ) =

p L =↑,A
1

=↑,A
2

=↑( ) + p L =↑,A
1

=↑,A
2

=↓( )
p L =↑,A

1
=↓,A

2
=↑( ) + p L =↑,A

1
=↓,A

2
=↓( )  (30)

which is equal to: 
conf conf conf int int conf conf conf int int
L LA A L,A L,A A A L,A L,A1 2 1 2 1 2 1 2

conf conf conf int int conf conf conf int in1
L LA A L,A L,A A A L,A L,A1 2 1 2 1 2 1 2

u u u u u u u u u u

L,A u u u u u u u u u u

e e

e e

   
      

 
  

−β − + + − − −β − + − − +

−β − − + + − −β − − − + +

+α
+

conf conf conf int int conf conf conf int int
L LA A L,A L,A A A L,A L,A1 2 1 2 1 2 1 2

t conf conf conf int int conf conf conf int int
L LA A L,A L,A A A L,A L,A1 2 1 2 1 2 1 2

u u u u u u u u u u

u u u u u u u u u u

e e

e e

   
      

   
      

−β + + + + −β + − + −

−β − + + − −β − − − −

+=
+

 
  

 (31)

This reduces to: 

α
L,A1

= e
−4βuL,A1

int

 (32)

which indicates that the allosteric efficacy of a ligand at an allosteric site is independent of other 

allosteric sites it modulates as well (provided the allosteric sites are not coupled through another 

interaction). In terms of receptor signaling, this analysis predicts that there could exist ligands with 

absolute bias for only one signaling pathway. This would require the downstream effectors (e.g., the G 

proteins or β-arrestin for GPCRs) to interact with unique and independent allosteric sites.  

2.3. Representation of allosteric propagation through specific regions within the protein 

In addition to the existence of multiple allosteric sites, allosteric conformational coupling can be 

propagated through specific regions within the protein, often called “paths” or “channels”. Using the 

AIM approach described here, we can expand the treatment of allostery to proteins with multiple 

structural components, where some components are allosterically regulated, and some others mediate 

the allosteric regulation. We begin with a three-component model, composed of the ligand L, a channel 

C, and an allosteric site A (see AIM represented in Figure 2C). The potential energy function is: 

U L,C,A( ) = u
L
confs

L
+ u

C
confs

C
+ u

A
confs

A
+ u

L,C
int s

L
s

C
+ u

C,A
int s

C
s

A
+ u

L,A
int s

L
s

A
 (33)



Entropy 2015, 17 2904 

 

 

The allosteric efficacy is then: 
conf conf conf int int int conf conf conf int int int
L LC A L,C L,A C,A C A L,C L,A C,A

conf conf conf int int int conf conf conf in1
L LC A L,C L,A C,A C A L,C

u u u u u u u u u u u u

L,A u u u u u u u u u u

e e

e e

   
      

 
  

−β − + + − − + −β − + − − + −

−β − − + + − − −β − − − +

+α
+

conf conf conf int int int conf conf conf int int int
L LC A L,C L,A C,A C A L,C L,A C,A

t int int conf conf conf int int int conf con
L LL,A C,A C A L,C L,A C,A C

u u u u u u u u u u u u

u u u u u u u u u u

e e

e e

   
      

   
      

−β + + + + + −β + − + − −

+ + −β − + + − − −β −

+=
+

f conf int int int
A L,C L,A C,Au u u u 

  
− − − +

 
(34)

Equation (34) simplifies to: 

α
L,A

= e
−4βuL,A

int cosh 2β u
L,C
int + u

C,A
int( )( ) + cosh 2βu

C
conf( )

cosh 2β u
L,C
int − u

C,A
int( )( ) + cosh 2βu

C
conf( )

 (35)

where cosh is the hyperbolic cosine function: 

cosh x( ) = ex + e− x

2
 (36)

It should be noted that the exponential term in (35) is the conditional allosteric efficacy. The 

conditional allosteric efficacy can be written as the sum of weighted allosteric efficacies, with each 

allosteric efficacy conditioned on a different state of the channel and then weighted by the 

corresponding probability of that state: 

α
L,A C

= p C =↑( )α
L,A C=↑ + p C =↓( )α

L,A C=↓
 (37)

where for a given state, s, of C: 

α
L,A C=s

=
p L =↑,A =↑,C = s( )p L =↓,A =↓,C = s( )
p L =↑,A =↓,C = s( )p L =↓,A =↑,C = s( )  (38)

Equation (38) simplifies to: 

α
L,A C

= e
−4βuL,A

int

 (39)

Comparing (39) with the allosteric efficacy of the two-component ligand/receptor system expressed 

in (27), it is clear that the conditional allosteric efficacies in the three-component system are simply the 

allosteric efficacies of the corresponding two-component systems.  

We can then differentiate the allosteric efficacy contributed by the direct interaction of two 

components, i.e., the conditional allosteric efficacy, from the indirect contributions, and write: 

αL,A = α
L,A C

αL,A
indirect  (40)

where the allosteric efficacy contributed by the indirect interaction is: 

α
L,A
indirect ,C =

cosh 2β u
L,C
int + u

C,A
int( )( ) + cosh 2βu

C
conf( )

cosh 2β u
L,C
int − u

C,A
int( )( ) + cosh 2βu

C
conf( )

 (41)

Importantly, (41) provides a description of the allosteric efficacy as a function of the channel 

through which it is propagated. There are immediate inferences that can be drawn from this 

representation. First, the channel must have little preference for either one of its conformations, so that 

signaling through it can have a high intrinsic signal-to-noise ratio. Based on this inference, mutations 
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that further stabilize the intrinsically preferred conformation of a channel will decrease the allosteric 

efficacy of a ligand, whereas mutations that destabilize that conformation will increase the allosteric 

efficacy. The existence of these two classes of mutations has immediate implications for the ability to 

test experimentally the role of specific domains in allosteric signaling. Second, because allosteric 

transmission through the channel depends on a balance between the channel’s conformational energy 

and the interaction energy between the channel and ligand, and the channel and allosteric site, it 

follows that a low intrinsic signal-to-noise ratio can be overcome by an increased coupling of the 

ligand to the channel. Lastly, if the sign of the coupling of the ligand to the channel is opposite that of 

the channel to the allosteric site, the allosteric signal can be reversed. Consequently, a binding site on a 

protein that has been evolved for positive allostery by endogenous ligands, can be targeted as a site for 

negative allosteric modulation, and vice versa. It is well known that endogenous agonist-binding sites 

can be targeted by inverse-agonists, so this result is anchored in experimental evidence.  

2.4. The Channel as a Chain of Interacting Structural Components 

Comparison of (35) with (39) indicates that the allosteric efficacy can be written in terms of the 

conditional allosteric efficacies due to direct interactions: 

αL,A = α
L,A C

cosh
1
2

log α
L,C A

α
C,A L( )





+ cosh 2βu
C
conf( )

cosh
1
2

log
α

L,C A

α
C,A L























+ cosh 2βu
C
conf( )

 
(42)

In effect, the conditional allosteric efficacy is the signal-to-noise ratio for a single step in the signal 

propagation process, and the effective signal-to-noise ratio for the entire signal propagation system can 

be described by a non-linear function of all the constituent propagation steps.  
Equation (42) can also be written as the effective interaction energy, u

L,A
int ∗ : 

 

uL,A
int ∗ = uL,A

int − 1

4β
log

cosh 2β u
L,C
int + u

C,A
int( )( ) + cosh 2βu

C
conf( )

cosh 2β u
L,C
int − u

C,A
int( )( ) + cosh 2βu

C
conf( )













 (43)

and thus as the sum of the direct and indirect interactions: 

u
L,A
int ∗ = u

L,A
int + u

L,A
indirect ,C   (44)

It should be noted that the designation of channel versus allosteric site is purely an operational 

definition in which the site that performs the function of interest is referred to as the allosteric site. If 

both sites are functional, such as the example of two independent allosteric sites described above, and 

if they interact, we can rewrite (42) as: 

αL,A1
= α

L,A1 A2

cosh
1
2

log α
L,A2 A1

α
A1,A2 L( )





+ cosh 2βu
A2

conf( )
cosh

1
2

log
α

L,A2 A1

α
A1,A2 L























+ cosh 2βu
A2

conf( )
 (45)
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The description of the allosteric efficacy as a function of the channel through which it is propagated, 

in (41), indicates that if the channel is a one-dimensional chain of interacting structural components, 

the allosteric efficacy is quickly diminished (it has been shown that the spin correlation function 

decays exponentially with distance in one-dimensional Ising models [21]). In Figure 3, the effective 

interaction energy between the first and last components of one-dimensional Ising chains with uniform 

conditional allosteric efficacies of 10, 100, 1,000, 10,000, and 100,000 are shown as a function of 

chain length. For weakly interacting systems, channels formed by structural components interacting in 

series do not appear to be good mediators of allosteric efficacy. The prevalence of multi-segment 

transmembrane signaling complexes may indicate an evolutionary mechanism to overcome the 

limitations of serial channels. 

 

Figure 3. The effective interaction energy through serial channels. Effective interaction 

energies of the first and last components of one-dimensional Ising chains are plotted as a 

function of chain length for conditional allosteric efficacy values of 10 (black), 100 (blue), 

1000 (purple) 10,000 (red) and 100,000 (orange). The inset shows detail for short chain 

lengths. The effective interaction energy is seen to decay exponentially with channel length. 

2.5. Comparison of Allosteric Propagation in Ising and Non-Ising Systems 

As described in Section 2.2, the above analysis is made possible through the energetic symmetries 

imposed by the Ising model. However, it is unlikely these energetic symmetries exist in real allosteric 

proteins. Thus, it is important to consider how well the relationships derived from AIMs describe  

non-Ising two-state models, which are expected to be better representations of the types of interaction 

networks present in the biomolecular systems of interest.  
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To consider this problem, we sampled 100,000 non-Ising two-state allosteric systems with 

interaction energies and configurational energies sampled from normal distributions of mean 0 and 

standard deviation of β−1, 3/β, or 5/β. The exact allosteric efficacies, calculated from the exact 

probabilities of each state, were then compared to the allosteric efficacies estimated from (42) using 

the direct allosteric efficacy terms. We should note that while direct allosteric efficacies can be 

calculated for non-Ising model, the calculation of the configuration energy term followed: 

 
2u

C
conf ≈ Uconf C =↑( ) − Uconf C =↓( ) (46)

As above, we addressed problems that may arise from the non-physical interaction energy between 

unbound ligand and the protein by setting to 0 all interaction energies with the unbound ligand. Results 

of these calculations are shown in Figure 4, where the corresponding effective interaction energies 

have been used for clarity. Our calculations indicate that (42) is a good estimate of the true allosteric 

efficacy in non-Ising systems in which the allosteric efficacy is high (see Figure 4A). As the standard 

deviation on the energy term distribution increases, and more systems have significant deviation from 

Ising-like behavior, two distinct groups of false positives (exact effective interaction energy is 0 but 

estimated interaction energy is non-zero) and true negatives (exact effective interaction energy is  

non-zero but estimated interaction energy is 0) do appear, but the sign of the allosteric modulation is 

conserved (see Figures 4B,C).  

 

Figure 4. Using the Ising model to estimate effective interaction energies in non-Ising 

three-component/two-state systems. The exact effective interaction energies of 100,000 

three-component/two-state non-Ising systems are plotted against the effective interaction 

energy estimated using the equations derived for the three-component Ising model (see 

(42)). The systems are generated using energy terms sampled from a normal distribution of 

mean 0 and standard deviation of 1/β (A), 3/β (B), and 5/β (C) and the points are plotted 

with 10% opacity. 

That the model maintains high accuracy for systems with high allosteric efficacy in spite of the two 

groups of inaccuracy (i.e., false positives and true negatives), suggests that this model should reflect 

many of the qualitative and quantitative properties of actual allosteric systems. 
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2.5. A Relation of AIMs to the Structural Dynamics Analysis of Biomolecular Function 

Efforts to identify allosteric sites and channels in the structures of functional biomolecules have 

utilized estimates of correlation or mutual information between the structural dynamics of known 

allosteric sites and candidate modulation sites or channels, most often based on the analysis of 

molecular dynamics (MD) trajectories [33,34,18,19] or elastic network models (ENMs) [35,36]. 

Equation (43) indicates that structural components that can act as channels will have high effective 

interaction energy with known allosteric sites (e.g.,  ), and the Shannon-Hartley theorem, (8), 

suggests that the allosteric efficacy can be related to the mutual information via the channel capacity. It 

is not clear, however, how this relates to the mutual information that is evaluated from an MD 

simulation. As we and others have used mutual information successfully to interpret the structural 

dynamics and allostery from MD trajectories [18–20], it is interesting to test the use of mutual 

information as an identifier of allostery in the context of AIMs. To this end we calculated the 

symmetric uncertainty [37], a normalized variant of the mutual information, between each component 

in two-component Ising models and two-component non-Ising models, and compared the symmetric 

uncertainty to the absolute interaction energy. The symmetric uncertainty (SU) between components is: 

SU Xi,X j( ) =
2I Xi,X j( )

H X
i( ) + H X

j( )  (47)

where I is the mutual information: 

I X
i
,X

j( ) = H X
i( ) + H X

j( ) − H X
i
,X

j( ) (48)

and H is the Shannon entropy:  

H X( ) = − p X( )log p X( )( )  (49)

We generated 100,000 two-component Ising systems and 100,000 two-component non-Ising 

systems with energy terms sampled from a normal distribution with mean 0 and standard deviation of 

1, and calculated the symmetric uncertainty and allosteric efficacy of each. We find that the symmetric 

uncertainty enforces a lower limit on the allosteric efficacy, and allosteric efficacy increases with 

higher symmetric uncertainty (see Figure 5). Thus, mutual information is a good predictor of allosteric 

activity in the two-state models explored here. The use of mutual information in systems that are not 

two-state will be discussed further below. 

uC,A
int
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Figure 5. Calculated mutual information between the channel and allosteric sites sets a 

lower bound on the allosteric efficacy. The symmetric uncertainty between the two 

components is plotted against the absolute effective interaction energy for 100,000  

two-component/two-state non-Ising models (A), and two-component Ising models (B). The 

systems are generated using energy terms sampled from a normal distribution of mean 0 

and standard deviation of 1/β, and the points are plotted with 10% opacity. 

2.6. AIMs and Multiple Allosteric Channels 

Many proteins have been suggested to have multiple allosteric channels [38]. Assuming that the 

channels are independent, careful algebra (not shown) reveals that to study the allosteric efficacy of a 

multi-channel system one can iteratively replace the direct interaction energy term with a direct 

interaction and indirect interaction of the same effective interaction energy. The effective interaction 

energy due to multiple independent channels is additive: 

u
L,A
int ∗ = u

L,A
int + u

L,A

indirect,CN

i=1

N

  (50)

and the allosteric efficacy is then multiplicative: 

α
L,A

= α
L,A C1,...,CN{ } α

L,A

indirect ,CN

i=1

N

∏  (51)

This formally obvious result reveals the advantage of multiple channels in an allosteric protein: 

perturbations such as mutations that disrupt the conformational stability of one channel will not abolish 

allosteric function completely. Many parallel weak channels introduce significant robustness when 

compared to the allosterically equivalent single strong channel built in series, because the latter is 

completely eliminated by disruption of even a single interaction between two of its structural 

components. 

To test the ability of Equation (51) to reflect accurately the behavior of non-Ising systems, we again 

constructed 100,000 two- and three-channel non-Ising allosteric systems using the methodology 

described for single channel systems, and compared the resulting allosteric efficacy to that calculated 

using (51) (see Figure 6). Again, we find good agreement between the estimates using (51) and the 
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exact calculated efficacies, although the accuracy is slightly reduced as the number of channels 

increases from two to three.  

 

Figure 6. Relation of effective interaction energies in non-Ising two-state systems with 

multiple independent channels to estimates from the corresponding Ising model. The exact 

effective interaction energies of 100,000 two-state non-Ising system is plotted against the 

effective interaction energy estimated using the equations derived for the n-channel Ising 

model (Equation (51)) for two (A), and three (B) independent channels. The systems are 

generated using energy terms sampled from a normal distribution of mean 0 and standard 

deviation of 1/β, and the points are plotted with 10% opacity.  

Because it is unlikely that allosteric proteins consist of absolutely independent channels, we 

explored the effect of interaction between channels through the use of two AIMs: one two-channel 

system where both channels provide equal magnitude positive allosteric coupling, and one two-channel 

system where both channels are of equal magnitude but opposite direction. The allosteric efficacy was 

calculated for each system as a function of the interaction energy between the two channels of allostery 

for ligands that are coupled to one, or both channels.  

As depicted in Figure 7, we found that when two channels mediating positive allosteric modulation 

have a negative interaction energy, the allosteric efficacy of the ligand is increased, even if the ligand 

only interacts with one channel (Figure 7A). This is not unexpected; the second channel acts as an 

indirect channel from the first channel to the allosteric site and additionally multiplies the allosteric 

efficacy of the channel. However, if the ligand interacts with both channels, the allosteric efficacy is 

not the square of the allosteric efficacy of binding to one channel as would be for two identical, 

independent channels. This is because the interaction of the ligand with the first channel has already 

partially shifted the conformational distribution of the second channel, decreasing its channel efficacy 

by effectively increasing its intrinsic conformational preference (and thus its intrinsic signal-to-noise).  

For the second two-channel system, with channels providing allosteric coupling in opposite 

directions, we find that when the interaction energy between the channels is negative, there is 

decreased allosteric efficacy for the ligand in either channel, whereas positive interaction energy 

between the channels leads to increased allosteric efficacy (Figure 7B). From the perspective of the 

positive channel, if the channels have a negative interaction energy, the second (negative) channel is an 
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indirect channel that flips the sign of the allosteric signal; this leads to reduced overall allosteric 

efficacy due to negation. However, if the two channels have a positive interaction energy, the signal 

through the second channel is flipped twice and left unchanged, leading to increased allosteric 

efficacy. Interestingly, if the ligand interacts with both channels equally, the effective interaction 

energy from this pair of channels is 0, independent of the interactions between the channels. In a 

receptor with these characteristics, antagonists could interact with each channel without 

conformational preference for the channel, or interact with both channels with the same sign, leading 

to no allosteric signal.  

 

Figure 7. The effective interaction energy of a two-channel AIM as a function of the 

interaction energy between the channels. (A): The two-channel system in which each 

channel contributes to positive allosteric modulation is shown for a ligand that interacts 

with one channel (blue) or both channels (black). (B): A two-channel system with one 

positive allosteric channel and one negative allosteric channel is shown for a ligand that 

interacts only with the positive channel (blue), only with the negative channel (red), or 

both channels (black). The effect of interactions between channels is seen to modify 

significantly the allosteric signal transduction. 

2.7. Illustration of AIM-Based Analysis of Allosteric Coupling Mechanisms: The Asymmetric D2 

Receptor Homodimeric Signaling Complex 

The application of the new formalism based on AIMs was used thus far to represent small, ideal 

systems in order to extract insights into the physics of allostery on a conceptual level. To examine the 

practical implementation of AIMs for real allosteric proteins of biological interest, we chose to 

construct AIMs consisting of a small number of structural components where the numerical 

calculations of allosteric properties can be performed easily. Such use of AIMs as a coarse-grain level 

of representation is advantageous in testing hypotheses about the underlying structural mechanisms of 

real allosteric proteins. This concept is illustrated here with the example of a well-characterized GPCR 

dimer system.  
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We constructed a model of asymmetric signaling in the dopamine D2 receptor (D2R) homodimer, 

based on the structural model of the asymmetric dimer and the constructs used to explore its function 

that were published recently [39]. Because D2R can signal as both a monomer and a homodimer, a 

novel experimental construct developed in the Javitch lab [39] was required to make possible the 

characterization of the dimer as a signaling unit. The results demonstrated experimentally that the D2R 

homodimer cannot signal through each monomer simultaneously, but instead signals through a single 

protomer at a time in an asymmetric manner (the signaling protomer will be referred to as “protomer A”). 

Furthermore, the results indicate that the function of the protomers is characterized by negative 

cooperativity: the stabilization of the on state of the non-signaling monomer (“protomer B”) by agonist 

biding decreases signaling by protomer A, whereas the stabilization of the off state of protomer B by 

the binding of an inverse agonist increases signaling by protomer A. Lastly, it is shown in [39] that 

perturbations known to completely disrupt activation in the monomer, including: (i)-ablation of ligand 

binding, (ii)-removal of intracellular loop 3 (IL3), and (iii)-mutations introduced in (a)-intracellular 

loop 2 (IL2), (b)-the conserved DRY motif, and (c)-the conserved NPxxY motif, all disrupt activation 

in the homodimer when applied to protomer A. Unexpectedly, however, the perturbations in (iii) also 

disrupt activation when applied to protomer B.  

A molecular model of the homodimer complex with the G protein that senses the activation of the 

receptor was constructed in [39] to explain the experimental results in a structural context. The 

template for this model was the active state crystal structure of another GPCR, rhodopsin, bound to its 

G protein, transducin. In this molecular model the interface of the homodimer involves the 4th 

transmembrane segment (TM4), and the G protein interacts with the signaling protomer A through 

IL3, IL2, and helix 8 (H8), while protomer B interacts through its IL2 and H8 (see Figure 8). We used 

AIMs as described below to explore the feasibility of the allosteric properties proposed for this 

structural model.  

Based on the experimental measurements of activation, an AIM representing the homodimer was 

constructed starting with a model for a signaling monomer (monomer A) and a G protein that can bind 

this monomer and become activated. Since the IL2, DRY, and NPxxY mutations behave identically in 

the experiments, we represented all three as a single structural component termed the conserved 

binding motifs (CBMs), due to their role in G protein activation by the GPCR [40–44]. In this AIM (see 

Figure 8A), the signaling monomer is composed of the following structural components: a ligand that 

can bind and unbind, a transmembrane domain, and two intracellular regions (IL3 and the CBMs); the 

G protein is composed of a structural component that can bind and unbind the signaling monomer, and 

one that can be activated. The conformational energies of the components of each protomer were 

chosen to prefer the off state ( uconf = 1), and the interaction energies between all components were 

negative such that they preferred to be in the same state ( uint = −1). We find that this coarse grained 

model responds as expected to agonists, antagonists, and inverse agonists (see Figure 8B). To create a 

homodimer with negative cooperativity, we then added to the AIM a negative cooperativity between 

the one monomer that can bind G protein (which is now protomer A) and one that cannot (protomer B), 

represented as a positive interaction energy between their transmembrane domains (see Figure 8C). 

We then calculated the allosteric efficacy for the homodimer when protomer A was bound to agonist 
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and protomer B was simultaneously bound to either an agonist, an antagonist, or an inverse agonist. 

This model reproduces the observed negative cooperativity (See Figure 8D) 

 

Figure 8. Analysis of the AIM for a well-characterized asymmetric D2 homodimer of the 

dopamine D2 receptor (D2R). (A): The D2R monomer AIM. (B): The effective interaction 

energy calculated for the D2R monomer AIM is presented for ligands that are agonists, 

antagonists, and inverse agonists, and also for the mutation of either IL3 or the conserved 

binding motifs (CBMs). (C): A molecular model of the homodimer obtained as described 

in the text, is shown with each AIM domain labeled in white on the structural 

representation. Protomer A is in blue, protomer B is in orange, and the G protein is in red. 

(D): The effective interaction energy for the D2R homodimer AIM is presented for 

different combinations of the states of protomer A (indicated by A in the top row) and 

those of protomer B in the dimer (B, bottom row).  

To explore the effects of removing IL3 and introducing the CBM mutations, we constructed AIMs 

with the perturbations modeled as either: i) stabilizing the off state of the mutated structural 

component, ii) stabilizing its on state, or iii) reducing the interaction energy between the structural 

component and the G protein to 0. Modeling the two perturbations in protomer A by imposing (i) or 

(iii), reduced activation as expected. However, stabilizing the off state of IL3 in protomer B increases 

activation in our model when it should have no effect, indicating that treating the IL3 mutation such 

that it eliminates interaction between IL3 and the G protein is a better model. On the other hand, 
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treating the CBM perturbation in protomer B as stabilizing the off state leads to more activation, so that 

the effect of the mutation cannot be explained without an interaction between the CBM in protomer B 

and the G protein. To reconcile these effects in the model, we assumed that protomer B and the G 

protein bind in a state-independent way (the G protein’s state independent binding is represented by 

uG binding

conf  in the AIM), and modeled the CBM mutation effect as further decreasing state-independent 

binding. We find that if u
G binding

conf  is increased from 1 to 2, allosteric efficacy is reduced (see Figure 8D). 

The finding that state-independent interactions between the G protein and CBMs on both protomer A 

and protomer B are required for activation is in full agreement with the structural model of the dimer 

as presented [39], in which not only protomer A, but also IL2 and H8 from protomer B interact with 

the G protein directly. As this structural information was not used in the construction of the AIMs, the 

prediction from the allosteric model underscores the ability of the AIMs-based approach in this 

illustration to connect the representation of allostery with the structural context of the modeled 

biomolecular systems. 

3. Conclusions  

We have explored models of biomolecular allostery through the use of Allosteric Ising Models 

(AIMs) in order to develop a quantitative theoretical description that bridges the features of the 

structural components and their interactions, to the thermodynamic allosteric parameters. From this 

perspective, we show first that the allosteric efficacy is the steady state signal-to-noise ratio for the 

ligand signal through the corresponding noisy receptor. We find that the allosteric efficacy, or the 

corresponding effective interaction energy, between two allosterically coupled sites can be expressed 

in terms of the conformational and interaction energies of the constituent parts for many small systems 

and interaction motifs. This formulation allows us to show that the allosteric efficacy is the product of 

the indirect allosteric efficacies through independent pathways, suggesting a mechanism by which 

biomolecular systems have evolved to be robust to mutation. While the equations were derived here 

using the Ising model to make use of symmetries in the potential energy function, we show that the 

model can produce good estimates of the allosteric properties of non-Ising two-state pairwise 

interaction models as well.  

A general inference from the use of AIMs as discussed here is that the results can suggest some 

constraints on the design principles of allosteric proteins. Thus, we find that it is more efficient and 

more robust to use multiple parallel channels that are individually weak than to use a single series 

channel that is strong, and that interactions between the parallel channels can additionally increase 

allosteric efficacy. From a structural perspective it is possible to surmise that α-helices behave as 

strong serial channels, where as β-sheets behave more like coupled parallel channels that are 

individually weak. Indeed, it has been shown that significant long-distance correlations exist in  

β-sheets [45], but little work has been done to study the connection of the properties of these 

fundamental units of protein structure to their involvement in known allosteric mechanisms. 

Understanding the allosteric properties of such structural components and common structural motifs 

from the perspective shown here offers valuable insight into how the wide array of allosteric proteins 

observed in nature could have been obtained from the limited number of amino acids and folding motifs. 
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The illustration of the application of AIMs to the D2 receptor homodimer was successful in 

producing an allosteric model that predicted structural details of molecular interactions. However, it is 

important to note that the AIM framework assumes that structural components within biomolecular 

systems exhibit two-state behavior. While this assumption has been used widely in the study of GPCRs 

and transporters (e.g., the proposed “rocking bundle” mechanism [46,47]), experimental and 

computational studies indicate [30,48–54] that the character of the conformational space sampled by 

these molecular machines is not strictly two-state as is often assumed. The principles demonstrated in 

this manuscript are not mathematically transferable directly to models where structural components 

require representation by: i)-more than two discrete states, or ii)-continuous states in one or more 

dimensions. The study of the more complex systems necessitates a more general approach such as the 

N-body information theoretical analysis we have previously developed [18,55]. We have used such an 

N-body Information Theory (NbIT) analysis to identify allosteric channels and collective behavior in 

both transporters [18] and GPCRs [55]. To address the more complex properties of large allosteric 

systems such as the complex biomolecules responsible for cell function, it may be necessary to 

formulate a generalization of the NbIT model that allows arbitrary allosteric systems to be constructed 

and explored in the manner in which the AIMs were analyzed here.  
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