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Abstract: Depth of anaesthesia (DoA) is an important measure for assessing the degree to 

which the central nervous system of a patient is depressed by a general anaesthetic agent, 

depending on the potency and concentration with which anaesthesia is administered during 

surgery. We can monitor the DoA by observing the patient’s electroencephalography 

(EEG) signals during the surgical procedure. Typically high frequency EEG signals 

indicates the patient is conscious, while low frequency signals mean the patient is in a 

general anaesthetic state. If the anaesthetist is able to observe the instantaneous frequency 

changes of the patient’s EEG signals during surgery this can help to better regulate and 

monitor DoA, reducing surgical and post-operative risks. This paper describes an approach 

towards the development of a 3D real-time visualization application which can show the 

instantaneous frequency and instantaneous amplitude of EEG simultaneously by using 
empirical mode decomposition (EMD) and the Hilbert–Huang transform (HHT). HHT 
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uses the EMD method to decompose a signal into so-called intrinsic mode functions 

(IMFs). The Hilbert spectral analysis method is then used to obtain instantaneous 

frequency data. The HHT provides a new method of analyzing non-stationary and 

nonlinear time series data. We investigate this approach by analyzing EEG data collected 

from patients undergoing surgical procedures. The results show that the EEG differences 

between three distinct surgical stages computed by using sample entropy (SampEn) are 

consistent with the expected differences between these stages based on the bispectral index 

(BIS), which has been shown to be a quantifiable measure of the effect of anaesthetics on 

the central nervous system. Also, the proposed filtering approach is more effective 

compared to the standard filtering method in filtering out signal noise resulting in more 

consistent results than those provided by the BIS. The proposed approach is therefore able 

to distinguish between key operational stages related to DoA, which is consistent with the 

clinical observations. SampEn can also be viewed as a useful index for evaluating and 

monitoring the DoA of a patient when used in combination with this approach. 

Keywords: electroencephalography; empirical mode decomposition; Hilbert–Huang 

transform; depth of anaesthesia; sample entropy 

 

1. Introduction 

A critical factor in determining whether a surgical operation will succeed or not, lies in the 

regulation of depth of anaesthesia (DoA). Monitoring the DoA is an important task during any invasive 

surgical procedures which requires the patient to be unconscious [1]. Most DoA monitoring methods to 

evaluate the degree of awareness of the patient during surgery are based on heart rate, blood pressure, 

electrocardiography (ECG) or electroencephalography (EEG). Among these, EEG can be used to 

clearly express the patient’s degree of consciousness as it has been shown that there is a significant 

difference between EEG signals acquired during conscious and unconscious states [2–4]. 

The whole operation process can be divided into three stages: before, maintenance and recovery, 

which are based on the time of induction, excision and the end of the operation. The before stage is 

defined from the moment the patient enters the operating room to them being intubated. At this stage, 

the patient can move his/her body or eyes, so the EEG signals tend to be very noisy and confused. The 

maintenance stage occurs between intubation and the end of operation during which the patient is 

under a deeply anaesthetized state. Consequently, the EEG signals at this maintenance stage are 

relatively more orderly than in other stages. After the surgery ends, the patient gradually regains 

consciousness during the recovery stage and the EEG signals will tend to be more complex during this 

stage. In order to accurately evaluate the DoA from the EEG signal, instantaneous frequency provides 

a convenient way of decomposing the different frequencies of the EEG signal, which can help the 

anaesthetist to better understand the different signal characteristics associated with the degree of 

consciousness of a patient [5]. This can then be used to distinguish the different stages during a 

surgical procedure and as a consequence improve the monitoring of DoA though better managing the 

patients’ responses to the amount of anaesthetic administered. Empirical mode decomposition (EMD) is 
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a method for analyzing non-stationary and nonlinear data such as analog as well as digitized signals, 

representing time-varying or spatially varying physical quantities [6–9]. The process involves 

decomposing these signals into several intrinsic mode functions (IMF), which are simple oscillatory 

functions with varying amplitude and frequency. IMFs provide a useful means for analysis in both the 

time and frequency domain simultaneously. Fast Fourier Transform (FFT) can then be used to convert 

these IMF back into a frequency domain, so that noise can be filtered out according to a desired 

frequency range of each IMF. 

EMD can be used to initially filter out noise-related frequencies from the raw EEG signal and 
combine selected IMFs to represent a filtered EEG signal [10]. The Hilbert–Huang transform (HHT) [6] 

is then used to get the instantaneous frequency and instantaneous amplitude of the filtered EEG signal, 

which is suitable for analyzing non-stationary and nonlinear data, such as physiological signals [6,7]. 

The instantaneous frequency, instantaneous amplitude and time elements of the filtered EEG signal 

can then be recombined to build a real-time 3D representation of the EEG signal which can 

simultaneously express the amplitude and brain wave frequencies of the EEG signal and their variation 

with time. This can be achieved more accurately than traditional approaches, such as direct EEG 

monitoring or the FFT method, which cannot simultaneously display the instantaneous amplitude, 

frequency and time of an EEG signal. The 3D instantaneous frequency based model of the EEG signal 

can be used to differentiate the frequency band characteristics associated with the degrees of 

consciousness of the patient over the different surgical stages. 

In this paper, we propose an approach towards the development of a 3D real-time visualization 

which can show the instantaneous frequency and instantaneous amplitude of EEG simultaneously by 

using EMD and HHT. Compared with the traditional physiological monitors, which are based on a 2D 

representation, this new representation can be used to enable the anaesthetist to more accurately 

monitor and evaluate the DoA of the patient during surgery and reduce risks to the patient during and 

from post-operative complications after surgery. The anaesthetist can also use the approach to 

visualize and assess the effects of different surgical procedures and patient’s pre-operative conditions 

by observing the 3D real-time representation. 

Our approach is evaluated based on its ability to differentiate between each of the three surgical 

stages (before, maintenance and recovery) using EEG data acquired during surgical procedures 

performed on thirty patients. Two indexes are applied at the end of the filtering process to distinguish 

the different operational stages, specifically the area ratio of α + β waves (8–32 Hz) under FFT curve 

(AUC) and sample entropy (SampEn) [11–13]. The bispectral index (BIS) is a non-invasive 

technology used to monitor DoA. It has been shown to be a quantifiable measure of the effect of 

anaesthetics on the central nervous system [14,15] and can be regarded as a measure of the actual 

degree of awareness of the patient. The BIS ranges from 0 to 100, where a higher score corresponds to 

a higher state of consciousness. BIS was used to compare and validate the results of calculating the 

AUC ratio of α + β waves and SampEn methods used in this study to judge whether these approaches 

can be suitably applied for monitoring DoA. The result shows that the SampEn approach is able to 

distinguish between key operational stages related to DoA, which is consistent with the clinically 

based observations. 

The rest of this paper is organized as follows: Section 2 describes the analysis methodology that 

includes the steps of our proposed signal filtering approach to produce the 3D instantaneous frequency 
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and instantaneous amplitude representation of the EEG. In Section 3 we describe the experiments and 

results of evaluating the proposed approach based on DoA data obtained from real patients. Finally 

Sections 4 and 5 provide the discussion and conclusions, respectively. 

2. Analysis Methodology 

2.1. Proposed Signal Filtering Approach Used to Generate 3D Representation of EEG 

To illustrate the proposed signal filtering approach, EEG sample data acquired from the 

maintenance stage of a nasal tumor excision procedure that was performed on a 44-year-old patient 

using a harmonic scalpel will be used. The flow chart of the processing steps in the proposed approach 

is shown in Figure 1, and the details of each step are described in the following paragraphs. 

 

Figure 1. Flow chart of Proposed EEG Signal Filtering Approach. 

Step 1. Decompose the EEG signal into several IMF 

EMD is used to decompose the EEG signal into a finite number of IMFs [6,16], which can be 

expressed as follows: 

 (1)

where  is the original signal in time domain,  is ith IMF, and  is residue. The IMFs are 

simple oscillatory functions with varying amplitude and frequency. Therefore, they are suitable for 

analysis in both the time and frequency domains simultaneously. The original signal is decomposed 

repeatedly until its residue becomes a monotonic function. Hence, we can choose different suitably 

selected IMF combinations to reduce the noise in the signal and then re-construct the signal [5,16]. To 

illustrate this using the sample EEG data Figure 2 shows the decomposed IMFs of a 40 s segment of 

the EEG signals that were acquired. 

Step 2. 

Convert to frequency domain

Step 3. 

Cut off the noise

Step 4. 

Reverse into time domain

Step 5. 

Construct filtered EEG

Step 6. 
Obtain instantaneous frequency

Step 7. 

Build the 3D representation

Step 1. 

Decompose into IMF

Raw EEG signal
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Time (sec) 

IMF1~IMF11

 

Figure 2. IMFs for a 40 s segment of EEG signals acquired during the maintenance stage 

of a nasal tumor excision operation, showing the original EEG signal, decomposed IMFs 

from 1 to 11, and the residue signal in the time domain. 

Step 2. Convert the IMFs to frequency domain 

The IMFs are converted from the time domain to the frequency domain using a FFT which has been 

shown to improve the efficiency of the Hilbert transform (HT) by more accurately capturing the 

frequency ranges present in the signal and also helps reduce errors derived from the estimation of time 

period from the time-domain based signal [17]. Thus, we can filter the noise according to the 

frequency from each IMF. Figure 3 shows the IMFs after using FFT. 

Step 3. Cut off the Noise of Each IMF 

The normal frequency of EEG signals generated by the human brain is between 0.5 Hz and 32 Hz, 

and they contain δ, θ, α and β waves, arranged from low frequency to high frequency, respectively. 

Frequencies outside this range can be regarded as noise. EEG signals are easily interfered by noise 

from equipment used during surgery (e.g., from electromyography (EMG), electrooculography (EOG) 

and electrosurgical units (ESUs)) [9,18]. These will affect the accuracy when the anaesthetist evaluates 
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the DoA of the patient. Hence filtering out this noise is a necessary task and the goal of this step is to 

cut off the noise whose frequency is less than 0.5 Hz and greater than 32 Hz, from each IMF.  

 

Figure 3. IMFs for a 40 s segment EEG signal acquired during the maintenance stage of 

the nasal tumor excision operation, showing the original EEG signal, the IMFs 1 to 11, and 

the residue signal in the frequency domain. 

Step 4. Reverse the filtered IMF into time domain 

Inverse fast Fourier transform (IFFT) is then used to convert the signal from a frequency domain 

back into a time domain. The time segment used in this approach is 40 s with an overlap 10 s. Having a 

shifting window of 30 s was selected based on trial and error to sample the signal when monitoring 

DoA, which is explained in the next step. 

Step 5. Construct the IMF of filtered EEG signal 

From observing the IMFs in the frequency domain, we found that the frequencies of the 

decomposed signal beyond IMF7 are small enough to be ignored. Hence, we choose to combine IMF1 

to IMF7 produced from the previous step, to obtain a new EEG signal, as shown in Figure 4. Using 

IFFT brings out an edge effect which causes the amplitudes of the EEG signal to be unusually high 

IMF1~IMF11 (FFT)

Frequency (Hz)
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during the first 5 and last 5 s, as shown in the red parts of Figure 4. This will lead to inaccurate 

analysis results. We therefore cut off the first and the final 5 s segments, and the result is represented 

as the filtered 30 s EEG signal segment, as shown in Figure 5. 

 

Figure 4. The circled red parts of the signal in this figure are the edge effects caused from 

the use of IFFT. 

 

Figure 5. EEG signal after filtering. 

Step 6. Obtain the instantaneous frequency via HHT 

From the previous step, we obtain the filtered EEG signal. We then obtain the instantaneous 

frequency and instantaneous amplitude of the filtered EEG signal by applying the HHT, which is 

suitable for analysing non-stationary and nonlinear data [6]. The main purpose of using the HHT 

approach [6,7] is to get an accurate instantaneous frequency-based representational decomposition of 

the complex EEG signal. This enables the EEG signal to be separated into its constituent frequencies 

providing a convenient way for the anaesthetist to read the signal information and associate it to 

different consciousness states of a patient. Figure 6 shows the frequency distribution varying with time 

(before and after filtering), for the maintenance stage of the previously described nasal tumor excision 

surgery. The x-axis is time and the y-axis shows the instantaneous frequency. The normal EEG signal 

for a human can be classified into four frequency ranges: δ (0.5–4 Hz), θ (4–8 Hz), α (8–16 Hz) and β 

(16–32 Hz), represented in Figure 6 by blue, yellow, green and pink, respectively. The red parts of the 

signal represent noise, which lie in the range greater than 32 Hz and less than 0.5 Hz. Hence the 

filtered EEG signal can be shown to have a reduced proportion of noise present in the signal. 
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Figure 6. The time and instantaneous frequency diagram at maintenance stage. (a) Before 

filtering; (b) After filtering. 

Step 7. Build the three-dimensional signal representation  

By using the data obtained from Step 6, we build the 3D real-time representation of a patient’s EEG 

signal output, where the x-axis shows the instantaneous frequency, the y-axis is time and the z-axis is the 

instantaneous amplitude. 

2.2. Evaluation Approaches for Quantifying Filtered Signal Efficiency in Identifying Patient Conscious 

States Associated to Surgical Stages 

Previous studies have shown that the different frequencies of an observed EEG can indicate the 

different states of consciousness of a patient during surgery, which can be used by the anaesthetist to 

evaluate the patient’s degree of consciousness [3]. Therefore, calculating the ratio of high frequency 

and the complexity of EEG signal can be used as indexes for evaluating the DoA of patients. In this study, 

two quantitative approaches are used to distinguish the different surgical stages, as shown in Figure 7. 

 

Figure 7. Comparison of quantitative evaluation approaches. 

AUC ( ) vs. BIS SampEn vs. BIS

Filtered EEG

Patient
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The first approach is a well-known technique for calculating the area ratio of α + β waves (8–32 Hz) 

in the EEG frequency for normal human and (0.5–32 Hz) under the FFT curve. The second approach is 

based on computing the sample entropy (SampEn) value of the signal. SampEn is an improvement of 

approximate entropy (ApEn) [11], which is a method for quantifying the amount of regularity in 

data [12,19]. SampEn is more consistent with previous research results compared to the ApEn 

approach [11]. This is because the ApEn method lacks two important properties: firstly, ApEn is 

heavily dependent on the record length and is uniformly lower than expected for short records, 

secondly, ApEn lacks relative consistency [20]. BIS has been shown to be a quantifiable measure of 

the anaesthetic effect on the central nervous system [14,15]. We use BIS collected from patients in the 

operation room during surgery as a means of evaluating the consistency of the results produced from 

the two quantitative approaches with the clinical observation. The results will compare both 

approaches to determine which one is better in assessing DoA. 

3. Experiments and Results 

In this study, the EEG signals were collected from thirty patients, all male and whose ages ranged 

from 20 to 70. Fifteen of these patients were suffering from tumors, while the remaining 15 had 

hernias, gallbladder stone, common bile duct (CBD) stones, sleep apnea syndrome, neck mass, allergic 

rhinitis, nodular goiter, hyperthyroidism, cholecystitis, and open fractured finger and cellulitis. The 

equipment in the operating room included a physiological monitor (IntelliVue MP60, Philips, 

Amsterdam, The Netherlands) and a portable computer. This equipment displays the patient’s 

physiological signals, specifically: ECG, EEG, blood pressure (BP) and saturated percentage of 

oxygen (SpO2) in real time. This study is aimed at single channel EEG signal analysis, based on a 

sample frequency of 125 Hz, for interpretation of DoA using the BIS™ Sensor (Aspect Medical 

Systems AG, Feuerthalen, Switzerland). Since only consciousness is being measured during 

anaesthesia, data from only a single channel of the EEG signal was collected. This study was also 

approved by an institutional review board and written informed consent was obtained from all the 

patients. The EEG signals were analyzed and processed every 40 s using MATLAB (R2012a, 

MathWorks, Natick, MA, U.S.A.) based on the approach introduced in Section 2. 

3.1. 3D Real-Time Representation of EEG at Each Stage 

The following 3D real-time representations in Figures 8 to 10 are from the EEG signal output 

produced during the same nasal tumor excision operation that was used to illustrate the proposed signal 

filtering approach in Section 2. The total operation time was approximately 67 min and the plots 

shown are based on a 30 s sample from each of the three surgical stages (before, maintenance, 

recovery). Figures 8 to 10 show the 3D real-time representations of the EEG signals before and after 

filtering (based on using the proposed filtering method) at the before, maintenance and recovery stages 

respectively. Note that the amplitude of the EEG signal tends to be less after filtering irrespective of 

the operational stage. Both the filtered and non-filtered signals indicate that the high frequency (α and 

β waves) occurring at stage 1 and stage 3 were higher than at stage 2 which is similar to the clinical 

expectations of α and β waves recorded from awake patients. 
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Figure 8. The 3D real-time representation of EEG at before stage. (a) Before filtering;  

(b) After filtering. 

 

Figure 9. The 3D real-time representation of EEG at maintenance stage. (a) Before filtering; 

(b) After filtering. 

 

Figure 10. The 3D real-time representation of EEG at recovery stage. (a) Before filtering; 

(b) After filtering. 

3.2. Evaluations and Results of Using AUC, SampEn on Filtered and Non-Filtered Signal, Compared 

to Obtained BIS at Each Surgical Stage 

As previously discussed the area ratio of α + β waves under the FFT curve and the SampEn 

approach were used to distinguish the different surgical stages based on the filtered EEG signals 

derived from using our proposed approach. To objectively evaluate the ability of the proposed EEG 

signal filtering approach in assessing DoA, it was also compared to a standard filtering approach 

comprising of the following steps: First the raw EEG signal is filtered by a band-pass (0.5~32 Hz) 

filter. Then EMD is used to obtain IMFs from the band-pass filtered signal. Following this a filtered 
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signal is constructed from the combination of IMF1 to IMF7. The subsequent steps are the same as 

steps 6 to 7 of the proposed signal filtering approach as described in Section 2.1. Figure 11 shows a 

part of filtered signals (by using the proposed and standard filtering approaches) in the frequency 

domain obtained via FFT again. Figure 11(a) shows that noisy signal amplitudes over 32 Hz have been 

reduced considerably after using proposed approach. In comparison with the standard approach, the 

filtered signal contains more pronounced amplitudes (noise) in the frequencies greater than 32 Hz, as 

shown in Figure 11(b). 

 

Figure 11. A part of FFT curve. (a) Proposed approach; (b) Standard filtering. 

Table 1 shows the area ratio of α + β waves in 0.5–32 Hz under the FFT curve (AUC) of the thirty 

patients before and after filtering (for the proposed and standard filtering approaches) at each 

operational stage.  
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Table 1. AUC ratio of α + β waves of thirty patients. 

Patients 

Before Maintenance Recovery 

Original 
Standard  
Filtering 

Proposed  
Approach 

Original 
Standard  
Filtering 

Proposed  
Approach 

Original 
Standard  
Filtering 

Proposed  
Approach 

1 0.524 0.519 0.531 0.474 0.470 0.454 0.547 0.541  0.555 
2 0.444 0.438 0.437 0.554 0.552 0.503 0.661 0.657  0.634 
3 0.369 0.366 0.377 0.552 0.550 0.503 0.559 0.558  0.535 
4 0.587 0.582 0.567 0.362 0.359 0.352 0.441 0.438  0.432 
5 0.527 0.519 0.541 0.571 0.568 0.533 0.496 0.490  0.497 
6 0.531 0.528 0.510 0.445 0.443 0.428 0.570 0.568  0.539 
7 0.513 0.509 0.506 0.556 0.555 0.521 0.542 0.540 0.531 
8 0.428 0.424 0.428 0.635 0.634 0.584 0.553 0.550 0.550 
9 0.480 0.476 0.484 0.586 0.584 0.553 0.536 0.532 0.523 
10 0.474 0.471 0.474 0.623 0.621 0.561 0.486 0.483 0.495 
11 0.423 0.419 0.420 0.595 0.593 0.546 0.692 0.689 0.661 
12 0.533 0.529 0.521 0.513 0.511 0.468 0.601 0.598 0.591 
13 0.489 0.483 0.481 0.452 0.450 0.425 0.484 0.482 0.468 
14 0.477 0.473 0.483 0.480 0.478 0.447 0.586 0.582 0.566 
15 0.477 0.471 0.493 0.465 0.463 0.442 0.454 0.455 0.479 
16 0.482 0.426 0.484 0.390 0.383 0.377 0.680 0.672 0.647 
17 0.453 0.449 0.446 0.485 0.484 0.462 0.651 0.646 0.653 
18 0.450 0.445 0.453 0.389 0.386 0.375 0.524 0.520 0.529 
19 0.568 0.562 0.554 0.455 0.453 0.439 0.733 0.728 0.711 
20 0.486 0.483 0.473 0.581 0.579 0.534 0.619 0.614 0.617 
21 0.487 0.483 0.488 0.603 0.602 0.563 0.660 0.652 0.625 
22 0.546 0.538 0.562 0.628 0.626 0.576 0.593 0.590 0.579 
23 0.478 0.474 0.481 0.574 0.573 0.523 0.754 0.752 0.713 
24 0.494 0.489 0.510 0.528 0.527 0.487 0.603 0.602 0.562 
25 0.488 0.483 0.497 0.484 0.482 0.458 0.730 0.728 0.706 

  



Entropy 2015, 17 940 

 

 

Table 1. Cont. 

Patients 

Before Maintenance Recovery 

Original 
Standard  
Filtering 

Proposed  
Approach 

Original 
Standard  
Filtering 

Proposed  
Approach 

Original 
Standard  
Filtering 

Proposed  
Approach 

26 0.500 0.496 0.485 0.453 0.451 0.435 0.704 0.696 0.660 
27 0.538 0.534 0.538 0.538 0.489 0.538 0.538 0.629 0.610 
28 0.532 0.529 0.532 0.532 0.378 0.532 0.532 0.452 0.434 
29 0.498 0.493 0.498 0.498 0.424 0.498 0.498 0.615 0.604 
30 0.547 0.541 0.535 0.447 0.444 0.433 0.589 0.586 0.553 

Mean ± SD 0.494 ± 0.046 0.488 ± 0.047 0.493 ± 0.044 0.515 ± 0.074 0.504 ± 0.080 0.458 ± 0.063 0.587 ± 0.086 0.588 ± 0.086 0.575 ± 0.078 

Table 2. Sample entropies of thirty patients. 

Patients 

Before Maintenance Recovery 

Original 
Standard 
Filtering 

Proposed 
Approach 

Original 
Standard 
Filtering 

Proposed 
Approach 

Original 
Standard 
Filtering 

Proposed 
Approach 

1 1.233 1.069 1.811 0.995 0.917 1.394 1.917 1.475 2.091 
2 1.248 0.959 1.379 1.180 1.251 1.281 1.655 1.577 1.910 
3 0.930 0.886 0.985 1.243 1.290 1.360 1.253 1.308 1.463 
4 1.803 1.567 2.006 0.932 0.899 1.004 1.234 1.097 1.280 
5 1.838 1.380 1.947 1.266 1.293 1.464 1.409 1.166 1.534 
6 1.303 1.222 1.532 0.965 1.075 1.226 1.362 1.335 1.506 
7 1.088 1.012 1.637 1.263 1.313 1.297 1.119 1.130 1.500 
8 0.995 0.827 1.133 1.410 1.456 1.430 1.473 1.376 1.864 
9 1.193 0.970 1.565 1.345 1.385 1.489 1.331 1.199 1.688 
10 0.648 0.697 1.352 1.402 1.453 1.310 1.020 0.966  1.517 
11 1.069 0.838 1.224 1.323 1.382 1.328 1.667 1.662 1.972 
12 1.668 1.459 1.821 1.186 1.228 1.168 1.585 1.510 1.865 
13 1.267 0.996 1.600 1.000 1.040 1.230 1.288 1.229 1.310 
14 1.114 0.971 1.441 1.095 1.144 1.140 1.597 1.397 1.917 
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Table 2. Cont. 

Patients 

Before Maintenance Recovery 

Original 
Standard 
Filtering 

Proposed 
Approach 

Original 
Standard 
Filtering 

Proposed 
Approach 

Original 
Standard 
Filtering 

Proposed 
Approach 

15 1.472 1.179 1.664 0.877 0.927 1.219 1.685 1.341 1.657 
16 1.106 0.797 1.503 0.886 0.941 1.021 1.801 1.615 1.867 
17 0.739 0.727 1.346 1.119 1.155 1.243 1.858 1.676 2.287 
18 1.420 1.070 1.448 0.972 0.974 0.995 1.522 1.336 1.736 
19 1.827 1.465 1.972 1.088 1.101 1.234 2.195 1.889 2.241 
20 1.189 1.049 1.414 1.361 1.393 1.394 1.769 1.637 2.243 
21 0.942 0.819 1.479 1.363 1.434 1.471 1.389 1.470 2.031 
22 1.789 1.539 2.154 1.385 1.464 1.455 1.226 1.237 1.876 
23 0.835 0.874 1.523 1.333 1.381 1.243 1.637 1.697 1.786 
24 1.105 0.948 1.709 1.138 1.267 1.174 1.360 1.370 1.414 
25 1.123 0.939 1.647 1.153 1.160 1.251 1.628 1.686 1.911 
26 1.259 1.089 1.574 1.107 1.117 1.224 1.671 1.646 1.766 
27 0.945 1.087 1.731 1.199 1.169 1.231 1.624 1.477 1.831 
28 1.196 1.170 1.541 0.938 0.951 1.003 1.152 1.115 1.231 
29 1.303 1.115 1.653 1.044 0.999 1.064 1.744 1.452 2.166 
30 1.302 1.252 1.854 1.218 1.063 1.261 1.422 1.422 1.605 

Mean ± SD 1.232 ± 0.312 1.066 ± 0.235 1.588 ± 0.260 1.160 ± 0.165 1.187 ± 0.183 1.253 ± 0.143 1.520 ± 0.264 1.417 ± 0.218 1.769 ± 0.291 
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The sample entropies from each of the thirty patients before and after filtering at each surgical stage 

are shown in Table 2. Finally, Table 3 shows the BISs of thirty patients at each surgical stage. These 

three indexes, indicate that the average value at stage 2 (maintenance) is less than at stage 1 (before) 

and stage 3 (recovery) with the exception of the standard filtering method. Moreover, the error bars of 

standard error of the mean (SEM) as shown in Figures 12(a,b) indicate that this differentiation between 

the stages is more pronounced when employing the SampEn method on the filtered signal generated 

using the proposed approach. Here the obtained results are also closer to the clinical observations 

based on using BIS. Although BIS can have variable reliability issues when used in conjunction with 

certain administered anaesthetic drugs, it is still considered a popular benchmark for evaluating DoA. 

Table 3. BISs of thirty patients. 

Patients Before Maintenance Recovery 
1 96.707 42.478 78.716 
2 88.129 43.266 73.252 
3 83.761 42.633 60.600 
4 89.786 41.869 64.857 
5 94.591 49.601 72.389 
6 83.140 34.439 65.506 
7 92.056 47.117 67.697 
8 91.524 56.193 81.393 
9 97.073 51.492 74.253 
10 95.158 45.326 70.980 
11 91.524 56.193 81.393 
12 90.317 38.619 80.968 
13 94.222 29.563 48.891 
14 91.403 37.051 74.931 
15 87.636 35.432 92.934 
16 94.526 32.975 67.635 
17 93.916 40.681 83.287 
18 96.976 31.599 66.262 
19 90.619 35.775 87.218 
20 85.220 47.173 85.570 
21 95.158 56.510 55.638 
22 96.488 57.252 82.872 
23 92.511 44.229 63.041 
24 94.634 42.456 78.343 
25 71.784 43.177 68.506 
26 94.032 32.501 65.099 
27 96.793 42.598 73.204 
28 75.736 33.797 51.473 
29 93.918 35.536 83.975 
30 93.133 42.076 61.803 

Mean ± SD 91.082 ± 6.042 42.320 ± 7.844 72.090 ± 10.770 
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3.3. Statistical Comparison of Differences between Each Operational Stage 

The following analysis was conducted to determine the statistical significance of whether the results 

from using the original signal, proposed and standard filtering approaches were consistent with the 

clinical observation. A one-way analysis of variance using a one-way ANOVA [21] was used to 

compute the p-value between each operational stage, to examine whether there was a significant 

difference between each surgical stage. A Student–Newman–Keuls (SNK) test was then conducted for 

multiple comparisons when the null hypothesis was not applicable [22]. If p < 0.05, it indicated there 

was a significant difference between the two stages being compared. On the contrary, p > 0.05 

suggested the two compared stages were very similar. 

 

Figure 12. SEM error bar before and after filtering. (a) By calculating AUC ratio of α + β 

waves; (b) By using SampEn and BIS. Red, blue and black lines are corresponding to Y1 

axis which is the scale for EEG signal before and after filtering, and the green line is 

corresponding to Y2 axis which is the scale for BIS. 

The use of both indexes: AUC ratio of α + β and SampEn, show a significant difference between 

stage 2 and stage 3 after filtering, which is consistent with the BIS results as shown in Table 4. 

Furthermore, the statistical analysis results of the SampEn method and BIS are identical, showing a 

significant difference between each of the three stages using both the standard and proposed filtering 

methods. The results however indicate that using the proposed filtering method is closer to the clinical 

observations as the mean value at stage 1 is lower than stage 2 when using the standard filtering 

method, which is inconsistent with the results of BIS as shown in Table 4. 
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Table 4. p-Values between each stage before and after filtering. 

Stages 

AUC Ratio of α + β SampEn BIS 

Original Standard Filtering Proposed Approach Original Standard Filtering 
Proposed 
Approach 

Original 

Stage 1  
vs.  

Stage 3 

0.494 ± 0.046*  
vs.  

0.587 ± 0.086 

0.488 ± 0.047*  
vs.  

0.588 ± 0.086 

0.493 ± 0.044*  
vs.  

0.575 ± 0.078 

1.232 ± 0.312*  
vs.  

1.520 ± 0.264 

1.066 ± 0.235*  
vs.  

1.417 ± 0.218 

1.588 ± 0.260*  
vs.  

1.769 ± 0.291 

91.082 ± 6.042*  
vs.  

72.090 ± 10.770 
Stage 2  

vs.  
Stage 3 

0.515 ± 0.074*  
vs.  

0.587 ± 0.086 

0.504 ± 0.080*  
vs.  

0.588 ± 0.086 

0.458 ± 0.063*  
vs.  

0.575 ± 0.078 

1.160 ± 0.165*  
vs.  

1.520 ± 0.264 

1.187 ± 0.183*  
vs.  

1.417 ± 0.218 

1.253 ± 0.143*  
vs.  

1.769 ± 0.291 

42.320 ± 7.844*  
vs.  

72.090 ± 10.770 
Stage 1  

vs.  
Stage 2 

0.494 ± 0.046  
vs.  

0.515 ± 0.074 

0.488 ± 0.047  
vs.  

0.504 ± 0.080 

0.493 ± 0.044  
vs.  

0.458 ± 0.063 

1.232 ± 0.312  
vs.  

1.160 ± 0.165 

1.066 ± 0.235*  
vs.  

1.187 ± 0.183 

1.588 ± 0.260*  
vs.  

1.253 ± 0.143 

91.082 ± 6.042*  
vs.  

42.320 ± 7.844 

Note: Asterisk was marked when the p value between two stages is less than 0.05. 
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4. Discussions 

In this study, SampEn was used as a quantitative method to distinguish the different surgical stages, 

where it has been previously shown to be a practical and efficient method to monitor the DoA during 

surgeries in real time [5]. From the results in Table 2, we can see that there have been three cases that 

violate the clinical observation, in which SampEn at stage 1 are still lower than at stage 2 after filtering 

(for proposed and standard filtering approaches) is applied. The main reason for this may be because of 

the extensive use in those interventions of an electrotome, which is a kind of electronic instrument that 

uses heat produced from high current density to achieve a cutting or hemostasis effect. This kind of 

instrument will produce high frequencies when used, which will interfere with the EEG signals and 

make the signals become noisy and complex. An example of this can be seen from the results of 

patient 8 (see Table 2), where according to the surgical records an electrotome was used in stage 2 

which accounted for half the operating time. This had the effect of causing the SampEn at stage 2 to be 

higher. Future work will look at removing the noise produced by the use of electrotomes and other 

high frequency cutting instruments during stage 2 over a longer time period to see if the results will be 

closer to what tends to be clinically observed. 

The results of the statistical analysis show that the differences between each surgical stage for the 

standard filtered signal (computed by using SampEn) is consistent with the trend of difference between 

each stage based on BIS. However, the mean value of the standard filtered signal at stage 1 is lower 

than stage 2 (see Table 2), which is not consistent with the BIS results. This inconsistency is mainly 

caused by the use of the band-pass filter, which will generate transition regions in the filtered signal as 

the noise in the original signal outside the 0.5 Hz to 32 Hz range cannot be effectively filtered out as 

shown in Figure 11(b) for frequencies over 32 Hz. In comparison the proposed approach obtains a 

cleaner signal over the same range as shown in Figure 11(a), and hence is more effective in filtering 

out signal noise resulting in more consistency between the BIS results and the clinical expectations. 

This is due to the additional step of performing FFT of the IMFs from EMD which has allowed us to 

considerably reduce noise (frequencies less than 0.5 Hz and over 32 Hz) in the EEG signals more 

easily in the frequency domain prior to applying the HHT process. Previous work has shown that 

performing FFT of the IMFs can improve the efficiency of HT by more accurately capturing the 

frequency ranges present in the signal, as compared to using the FFT alone which is less capable in 

analyzing the frequency content of the EEG signal [17]. This is because the time resolution 

significantly affects the calculation of corresponding frequency content of the signal [23]. The 

application of FFT on the IMFs has been applied in fault detection of bearing element [17,23] as well 

as power quality analysis [24]. In our application, the IMFs of EEG signals derived from EMD are 

enhanced by applying FFT for separating out frequencies that lie within 0.5~32 Hz more accurately. 

The signals comprising of the selected IMFs can obtain the instantaneous frequency and amplitude 

after the Hilbert transform is applied. However, if the signals have been contaminated by noise, the 

HHT process would generate degraded and error prone signals. Therefore, through applying FFT 

which performs an integration of the signals (i.e., similar to averaging the signals), the noise in the 

signals can be reduced. 

The use of EEG signals for monitoring DoA has been extensively researched over the past two 

decades. The most popular and dominant method is the BIS algorithm [25] which is based on a 



Entropy 2015, 17 946 

 

 

weighted sum of several EEG parameters, including time domain, frequency domain, and three 

spectral sub parameters (i.e., relative beta-ratio, a parameter from the power spectrum; SyncFastSlow, 

a parameter derived from bispectral analysis quantifying the degree of phase coupling; and a 

suppression ratio, quantifying the percentage of suppression during burst suppression pattern [26]). 

BIS is a statistically based and empirically derived complex parameter and has been effectively used 

for monitoring DoA compared to traditional Fourier transform algorithms that are ineffective in 

processing non-linear and non-stationary EEG signals. However BIS cannot tolerate persistent noise, 

such as substantial electrotome use, which can interfere and disrupt the BIS reading output [27]. 

Another DoA monitoring approach is the Datex Ohmeda S/5 Entropy Module approach that is based 

on entropy to describe the irregularity, complexity, or unpredictability characteristics of a signal. This 

is an innovative monitoring modality that provides information on the electrical activity of the central 

nervous system (CNS) during general anaesthesia. The method uses spectral entropy based on 

information theory to acquire and process raw EEG and frontal EMG signals. However, the spectral 

entropy is still based on the Fourier transform and assumes the EEG signals can be processed based on 

the sine and cosine of linear signals [28]. Hence, this approach also does not account for the non-linear 

and non-stationary nature of EEG signals. In this study, our approach has several advantages in 

comparison with these two popular commercially used DoA monitoring methods. Firstly, using EMD 

to decompose the complex EEG signals does not require processing the signals as the sine or cosine of 

linear signals, as the signal is decomposed directly from original signal. EMD allows the 

decomposition of the complex EEG signal from high to low frequencies of different IMFs from which 

a subset of IMFs can be selected to capture the required frequency ranges to be processed and 

represented. Secondly, our approach converts the IMFs from the time domain to the frequency domain 

using FFT, which has been shown to improve the efficiency of HT by more accurately capturing the 

frequency ranges present in the signals, while reducing errors from the estimation of the time period 

from the time-domain based signal [17]. Therefore we can more effectively filter the noise according 

to the frequency from each IMF. In comparison the use of traditional band-pass filtering results in 

transition region problems which cannot be effectively removed from the signal. Finally, applying 

HHT has provided us with a mean to visualize instantaneous frequency and amplitude versus time in a 

real-time representation of the signal. This would be impossible to see using FFT which can only 

obtain an average frequency and amplitude versus time based representation. 

5. Conclusions 

Compared with the traditional physiological monitors, the real-time 3D signal representation 

method proposed in this paper provides a more convenient way for the anaesthetist to evaluate DoA 

from EEG output. The anaesthetist can read the complete information of EEG signal more clearly and 

instantaneously reducing the cognitive burden on him for determining the patients’ conscious state and 

their reaction to administered drug by analyzing the raw signal and other monitored parameters. This 

will potentially significantly reduce the surgical as well as post-operative risks to the patient. 

A proposed filtering approach is used to filter the raw EEG signals based on EMD and HHT to 

obtain instantaneous frequency and instantaneous amplitude of EEG simultaneously. The approach has 

been shown to be more effective over the standard filtering method in filtering out signal noise. This 
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has been due to the additional step of performing FFT of the IMFs from EMD to allow us to reduce 

signal noise (at frequencies that are less than 0.5 and greater than 32 Hz) more easily in the frequency 

domain prior to performing HHT. 

SampEn is a nonlinear quantitative method which can be used to distinguish the different stages of 

surgery based on the degree of consciousness of the patient. In comparison with other linear 

approaches such as calculating the AUC ratio of α + β waves, which is based on FFT, SampEn is more 

accurate in identifying the difference between each of three operational stages (before, maintenance 

and recovery). 

The results from statistical analysis show that the differences between each stage computed by using 

SampEn is consistent with the trend of difference between each stage based on BIS which has been 

shown to be a quantifiable measure of the effect of anaesthetics on the central nervous system [14,15]. 

These results are further improved when SampEn is used with the proposed filtering approach as 

compared with the standard filtering method. Therefore, SampEn can also be viewed as a useful index 

for evaluating the DoA of a patient. In conjunction with the proposed 3D EEG signal filtering and 

signal representation method, this new index can be used to develop a semi-automated DoA monitor 

which can both visually monitor EEG signals as well as more directly inform or alert surgical staff on 

the patients DoA in relation to any given point during the surgical procedure. 

Future work will investigate the development of a deployable system which can be used in clinical 

settings in conjunction with an adaptive anaesthetic drug delivery system to help in the management of 

anaesthetic dosage based on patients’ physiological responses. 
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