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Abstract: As the number of elderly people has increased worldwide, there has been a 

surge of research into assistive technologies to provide them with better care by 

recognizing their normal and abnormal activities. However, existing abnormal activity 

recognition (AAR) algorithms rarely consider sub-activity relations when recognizing 

abnormal activities. This paper presents an application of the Hidden State Conditional 

Random Field (HCRF) method to detect and assess abnormal activities that often occur in 

elderly persons’ homes. Based on HCRF, this paper designs two AAR algorithms, and 

validates them by comparing them with a feature vector distance based algorithm in two 

experiments. The results demonstrate that the proposed algorithms favorably outperform 

the competitor, especially when abnormal activities have same sensor type and sensor 

number as normal activities. 

Keywords: hidden state conditional random field; abnormal activity recognition;  

smart home 

 

1. Introduction 

Smart homes are one realization of ambient intelligence (AmI) [1] which is emerging as an 

omnipresent computing technology that can anticipate people’s goals and intentions with contextual 

sensor data. As the number of elderly people in society increases, the need for assistive technologies in 
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the home becomes more urgent [2]. As age-related changes in the brain cause a decline in short-term 

memory and slow learning ability, elderly people run into all sorts of barriers in performing their daily 

routine tasks [3]. Thus, to better care for elderly people, we not only need to know what they are 

doing, but also need to know if there are some abnormal activities [4]. Abnormal activity  

recognition (AAR) in smart home is an emerging technology that can help elderly residents live 

comfortably and safely by identifying unexpected and irregular events [5], e.g., falls or taking 

medicine many times in a short time. 

Over the last decade, there has been a considerable research on AAR in smart homes. However, 

most of it is based on cameras [6,7], wearable sensors [8,9] and RFID sensors[10,11], and studies on 

AAR in AmI environments using non-obtrusive and pervasive sensors are rare. In 2007 and 2008, 

Jakkula et al. [12,13] proposed recognizing abnormal activities using non-obtrusive sensors. In their 

research, they used temporal logic (before, after, meets, overlaps, starts ...) to identify temporal 

relationships between events and detected anomalies by calculating the probability of a given event 

occurring or not occurring. However, this method needs a long time to learn all the temporal relations 

and events grouped together are only from the same device. In 2011, Jakkula et al. [14] also proposed 

recognizing abnormal activities based on a One-class Support Vector Machine (One-class SVM), and 

later Lotfi et al. [15] proposed recognizing abnormal activities in smart homes based on a clustering 

and neural networks method, but neither both of them can model the temporal relationships between 

activities. In 2014, Wang et al. [16] defined abnormal activity as an activity which deviates greatly 

enough from those normal activities, and recognized abnormal activities using a distributed abnormal 

activity detection approach which employs the computing and storage resources of simple and 

ubiquitous sensor nodes, but they cannot deal with abnormal activities which deviate only a little from 

those normal activities. In the same year, Zhao et al. [5] proposed a Markov Chains Model-based 

method to classify abnormal sequences by analyzing the probability distribution of the spatiotemporal 

activity data, but the sensors used were only infrared sensing tubes. Mahmoud et al. [17] proposed a 

hybrid technique for user activity outlier detection which consists of a two-stage integration of 

principal component analysis and fuzzy rule-based systems. 

Nowadays, there are still some difficulties to recognize abnormal activities in smart homes. First of 

all, since abnormal activities are often unknown in advance and many types of abnormal activities 

occur very infrequently, it is often hard to obtain samples to train the abnormal activity recognition 

model. Furthermore, even if there are some examples known as anomalous, they may not represent the 

underlying distribution of that class accurately, making them unsuitable as training data. Secondly, it is 

hard to recognize sequential abnormal activities. Some abnormal activities are sequentially anomalous, 

in particular, an anomalous pattern is often defined as a series of events that are normal individually 

but abnormal only collectively. For example, toileting is a common and expected activity, but a 

frequent repetition in a short time may indicate something anomalous. It is well known that activities 

and abnormal activities are often composed by several sub-activities, especially complex activities, 

e.g., washing the hands implies the following sub-steps: move to the kitchen (or bathroom), turn on 

water, use hand soap, wash hands, dry hands. Also, individuals may complete one activity in different 

ways, e.g., making a phone implies the following variants: sits down during conversation, stands in 

one place during conversation, or walks around during the phone call. These actions and different 

ways are the intrinsic sub-structures of the whole activity. 
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A number of algorithms have been proposed to recognize sequential activities based on Conditional 

Random Field (CRF) [18–20] and to recognize objects and gestures based on Hidden Conditional 

Random Field (HCRF) [21,22]. However, abnormal activities are not predictable and annotating them 

all in advance is infeasible, which thus suggests the need for a recognition algorithm for sequential 

AAR. Considering the activity characteristic, this paper proposes using HCRF to improve the AAR 

accuracy by modeling relations between sub-activities. 

HCRF expands CRF by incorporating hidden state variables which can model the sub-structures of 

a sequence. CRF is a sequence probabilistic graphical model and can be used for sequence labeling [23]. 

CRF can be understood as a sequential extension to the Maximum Entropy Model (MEM) [24] and its 

main idea is the MEM [25], which models all that is known and assumes nothing about what is 

unknown. HCRF is a sequence probabilistic graphical model which introduces probability calculus and 

statistical inference, and takes root in MEM. It can capture internal substructures and model context 

relations of sub-activities by detecting causal dependencies from data.  

The remainder of this paper is organized as follows: firstly, HCRF that is used for AAR will be 

presented. Then, two AAR algorithms based on HCRF will be described. After recognizing normal 

activities using HCRF, we validate our algorithms and discuss the results. Finally, we conclude by 

summing up our findings. 

2. Hidden Conditional Random Field 

HCRF takes root in CRF [26], which has been proved equivalent to the MEM [25]. Both CRF and 

HCRF can be used for sequence labeling. For every time step t=1, 2, ···, T, CRF consists of sequential 

variable pairs of state variables yt and observable variables xt, and can capture extrinsic dynamics 

between activity labels. HCRF is an undirected graph model and it can be used for labeling segmented 

sub-sequence. For each local observation vector x={x1, x2,···, xT}, HCRF assumes that there are one 
state label y ∈ Y, Y={1,2,···,K}and a vector h={h1, h2,···, hT}, where ht ∈ H, t=1,2,···,T  and H is a 

finite set of possible hidden labels in the model. The Graphical structure of CRF and HCRF are shown 

in Figure 1(a) and Figure 1(b). 

We can only observe vector x={x1, x2,···, xT} and state label y in the training dataset. Since the 

variables h1, h2,···, hT are not observed, they are called hidden state variables in the model. The 

number of hidden states (NH) in H is decided at the training stage by minimizing the error of the 

training data [27]. HCRF is discriminative model and it models conditional probability using feature 

functions like MEM. Given an observation vector x, it defines a conditional probabilistic model as: 
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where θ is the parameters of the model, ( , , ; ) RyΨ ∈θh x  is potential function defined in Maximum 

Entropy Model and parameterized by θ. 
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Figure 1. (a) Graphical structure of Conditional Random Field. (b) Graphical structure of 

Hidden Conditional Random Field. 

Given an observation vector x and all possible hidden state variables h, it follows that: 
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We now turn to the definition of the potential function ( , , ; )yΨ h x θ  which is very important for 

HCRF. We assume an undirected graph structure, with the hidden variables h={h1, h2,···, hT} and 

corresponding to vertices in the graph. We use E to denote the set of edges in the graph, and 
( , ) Ej k ∈ to signify that there is an edge in the graph between variables hj and hk. With this definition, 

the potential function takes the following form [21]: 

1 1 2 2

1 ( , ) E

( , , ; ) ( , , , ) ( , , , , , )
T

j jl l l k l
j l j k

y f j y h f j k y h hθ θ
= ∈

Ψ = + h x x xθ  (3)

where 1 2,l lf f are functions defining the features in the model, and 1 2,l lθ θ  are the components of θ . In 

the model, feature 1
lf  depends on single hidden variable values and models the relation between 

observation and hidden variable, while feature 2
lf  depends on pairs of values and models the relation 

between two hidden variables. 

Given a new test x, HCRF infers label y by *arg max ( , )y Y P y∈ x θ , where *θ  is parameters of the 

model that estimated trained using training dataset. 

2.1. Parameter Estimation 

Following CRF [23], we use the following objective function in training the parameters: 
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where the first term of Equation (4) is the log-likelihood of the data, and the second term is the log of a 

Gaussian prior with variance 2σ , i.e., 
2

2

1
( )
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θ θ . 

This work lets * arg max ( )L= θθ θ  and uses a gradient ascent to search for the optimal parameter 

values. In this section we describe how the gradient of ( )L θ  can be calculated efficiently. Consider the 

likelihood term that is contributed by the i-th training example, defined as: 
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We first consider derivatives with respect to the parameters 1
lθ corresponding to features 1

lf  that 

depend on single hidden variables. Taking derivatives gives: 
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Equation (6) can be expressed in terms of components ( , )j iP h a= x θ  and ( , )iP y x θ  which can be 

calculated using belief propagation [28]. A similar calculation gives: 
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where ( , | , , )j kP h a h b y= = θx  can also be computed efficiently using belief propagation. For 

Y, 1,2, , ,y j T∀ ∈ ∈  ( , ) Ej k ∈ , , Ha b∈ , belief propagation can be used to calculate the following 

quantities in ( E Y )O  time: 
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( , )Z y x θ  in Equation (8) is a partition function defined by a summation over the h variables and it 

can be used to calculate ( , ) ( , ) ( , )
y

P y Z y Z y′
′= x x xθ θ θ . Equations (9) and (10) are marginal 

distributions over individual variables hj or pairs of variables hj, hk. Thus the gradient of ( )iL θ  can be 

defined in terms of these marginal, and hence can be calculated efficiently. In our experiments, we 

performed gradient ascent with the BFGS optimization technique [29]. 

2.2. Inference 

After the parameters *θ  are trained, the aim of HCRF is to infer the label y of a new test x by 

( )Yarg max | ,y P y ∗
∈ θx . For K possible states of label y, it first calculates ( )| ,P y = i ∗θx  to get a K 

likelihood value , 1, 2, ,il i K=  . After that, we make up this K likelihood value as one likelihood 

vector 1 2{ , , , }KL l l l=  , and denote index of the likelihood value in L as the likelihood value index. 



Entropy 2015, 17 1363 

 

 

Then, we find the maximum likelihood value (MLV) of L and denote the index of the MLV in L as the 

MLV index. By finding the MLV index in L, we can find the optimal label. For example, the MLV of 

likelihood vector (1.5, 3.1, 2.5) is 3.1. Since the index of the MLV 3.1 in (1.5, 3.1, 2.5) is 2, the 

corresponding optimal label is 2. 

3. Abnormal Activity Recognition Algorithm Based on HCRF 

There are many kinds of abnormal activities in a smart home and there can be abnormality in time, 

places, frequency and duration. For example, sleeping on the floor and sleeping at eating time are 

abnormal activities with wrong place and wrong time. Toileting frequently and showering too long are 

abnormal activities with wrong frequency and duration. Also, there are abnormal activities that occur 

often and can be expected in advance and there are abnormal activities that occur rarely and are not 

expected in advance. “Resident does not get up on time” is an expected abnormal activity if a resident 

has not got up on time before, and “Falling” is an unexpected abnormal activity if a resident has not 

fallen before. This section focuses on “forgetting” and “new activity” abnormal activities that often 

occur in elderly homes. 

To assess a new activity, we often compare it with normal activities [16,30]. Thus, a model that can 

compare normal activity and new activity is important for abnormal activity recognition. Considering 

HCRF one can model the similarity between a testing sample and training labels, so we proposed to 

recognize abnormal activities based on HCRF, and use a likelihood vector to represent the similarity 

between the testing activity and every type of training activity, using the MLV index to represent the 

most similar training activity, and using MLV to represent the similar value between a testing activity 

and the most similar training activity. 

In our AAR algorithm, the purpose of HCRF is not to find activity labels, but to compute activity 

consistents and find abnormalities. Figure 2 gives the framework of AAR based on HCRF. 

{( , )}n nyx

 

Figure 2. The framework of Abnormal Activity Recognition based on HCRF. 
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As Figure 2 shows, there are two stages in our AAR algorithm, the model building stage and the 

abnormal activity recognition stage. In the model building stage, we first build and train HCRF using 

all kinds of normal activities. Then, we infer the likelihood vector of all kinds of normal activities 

using the trained HCRF model and put the MLV of each type of normal activity in sets Sk, 
1, 2, ,k K=  . Finally, we save the trained HCRF model and the MLV sets of each type of normal 

activity. In the abnormal activity recognition stage, we first infer the likelihood vector of the testing 

activity based on the trained HCRF and the testing activity observation sequence. Then, we find out 

the MLV V and MLV index i of the testing activity. Finally, we find any abnormality by comparing 

MLV V of the testing activity and MLV of the training activity that correspond to the MLV index i. 
Given MLV Vt of a testing activity observation sequence t and MLV NiV of the most similar normal 

activity i, we assess testing activity by: 

( ) 1 100t Ni
normal

Ni

V V
F t

V

 −
= − × 
 

 (11)

Obviously, for any testing activity, there is [0,100]normalF ∈ , and the larger the normalF  value is, the 

more similar it is to a normal activity i. To decide if the testing activity is an abnormal activity, we set 

a threshold γ . The value of γ is decided by the degree of abnormal activities we want to recognize.  
If normalF γ> , the testing activity observation sequence is deemed as a normal activity and consistent 

with the most similar normal activity i, otherwise, the testing activity observation sequence t is deemed 

as an abnormal activity.  

Next, we will give two types of abnormal activity recognition algorithms based on HCRF. To find 

abnormal activities with small differences with normal activities, we set γ = 98. The first type of 

abnormal activity we focused on is “forgetting” activities. Since this type of abnormal activity is often 

abnormal in sequence, we call them sequence abnormal activities. Algorithm 1 gives the procedure of 

sequence AAR based on HCRF.  

Algorithm 1. The procedure of sequence AAR based on HCRF. 

Input: (1) Normal activity observation vectors and corresponding activity labels: ( , )n nyx , 
1, 2, ,n N0=  ; 

 (2) Abnormal activity that corresponding to every kind normal activity; 

 (3) Observation vector of new activity. 

Output: Normal or abnormal type. 

1. Train HCRF using ( , )n nyx , 1, 2, ,n N0=  ; 

2. Compute the likelihood vectors of all normal activities based on trained HCRF, find out all the 
MLVs of the k-th normal activity, and puts the MLVs in to the normal MLV sets kS k K, =1,2, , ; 

3. For observation vector of new activity, compute the likelihood vector based on trained HCRF, 

and find out MLV V and MLV index i; 
4. Compute normalF  using Equation (11) based on iS . If 98normalF > , the activity is normal, turn 

step 6; otherwise, the activity is abnormal and turn step 5; 

5. Check the abnormal type by comparing with the i-th type normal activity; 

6. Output 
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The second type of abnormal activity we focused on is “new” activities. Since these are activities 

that have not happened before, we call this kind abnormal activity a rare abnormal activity. Algorithm 2 

gives the procedure for rare AAR based on HCRF. 

Algorithm 2. The procedure of rare AAR based on HCRF 

Input: (1) Normal activity observation vectors and corresponding activity labels: ( , )n nyx , 

1, 2, ,n N0=  ; 

(2) Observation vector of new activity. 

Output: Normal or abnormal. 

1. Train HCRF using ( , )n nyx , 1, 2, ,n N0=  ; 

2. Compute the likelihood vectors of all normal activities based on trained HCRF, find out all the 

MLVs of the k-th normal activity, and puts the MLVs in to the normal MLV sets 

kS k K, =1,2, , ; 

3. For observation vector of new activity, compute the likelihood vector based on trained HCRF, 

and find out MLV V and MLV index i; 
4. Compute normalF  using Equation (11) based on iS . If 98normalF > , the new activity is deemed 

as normal activity, otherwise, it is deemed as abnormal activity. 

5. Output 

The two algorithms both train HCRF using all kind of normal activities. Then, based on trained 

HCRF, they compute the likelihood vectors of all kinds of normal activities and put the MLV into the 
normal MLV sets Sk, 1, 2, ,k K=  . For a new activity, they first compute the likelihood vector based 

on trained HCRF, and find out the MLV V and MLV index i. Then, they compute normalF  using 

Equation (11) based on iS . If 98normalF > , the activity is deemed a normal activity, otherwise, the 

activity is deemed an abnormal activity. The difference between them is that Algorithm 1 still needs to 

check the abnormal type by comparing with the i-th type normal activity. For many training normal 

activities, there will be many MLV for each Sk. For this case, we compute the consistent of V and Si 

using Least-squares Approach [31] or One-class SVM [14]. 

4. Experiments 

This section will describe three experiments. Firstly, we will validate HCRF in recognizing normal 

activities using a benchmark normal dataset “WSU Apartment Test bed, ADL adlnormal” which is 

collected in a smart apartment testbed located on the WSU campus [32]. Then, since there is no open 

source database about abnormal activities using non-obtrusive sensors, we do experiments with abnormal 

activities that were generated based on the above normal dataset in the next two AAR experiments. 

The “WSU Apartment Test bed, ADL adlnormal” dataset was gathered by Diane Cook to recognize 

and assess the consistency of Activities of Daily Living that individuals perform in their own homes. 

There are 24 residents who performed five activities in a smart apartment testbed located on the WSU 

campus. Sensors in the apartment include monitor motion sensors (M), temperature sensors (T), water 

sensors (W), burner sensors (B), phone sensors (P), and item sensors (I). The motion sensors are 

located on the ceiling approximately 1 meter apart to locate the resident, the Voice over IP (VOIP) 

technology captures phone usage and switch sensors to monitor usage of the phone book, a cooking 
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pot, and the medicine container. The five activities include both basic and more complex ADLs that 

are found in clinical questionnaires and are listed as follows: 

(1) Telephone Use: Look up a specified number in a phone book, call the number, and write down 

the cooking directions given on the recorded message. 

(2) Hand Washing: Wash hands in the kitchen sink. 

(3) Meal Preparation: Cook oatmeal on the stove according to the recorded directions, adding 

brown sugar and raisins (from the kitchen cabinet) once done. 

(4) Eating and Medication Use: Eat the oatmeal together with a glass of water and medicine. 

(5) Cleaning: Clean and put away the dishes and ingredients. 

Figure 3 is the performing routes of the five normal activities, where Ai presents the i-th activity. 

From the figure we can see that the activities 2–5 are very similar, while the activity 1 “Make a phone 

call” is very different from them. 

 

Figure 3. The performing routes of five normal activities (Ai present the i-th activity). 

4.1. Experiment 1 

This experiment is designed to validate the HCRF model in recognizing normal activities. The 

adlnormal dataset includes sensor event data for 24 individuals who were asked to perform the five 

ADL activities, yielding a total of 120 activity traces containing 6425 sensor events (time slices). We 

train the HCRF model using the previous 5000 time slices and the trained HCRF model is applied on 

the next 1425 time-slices using a sliding window of fixed size. The class label with the highest 

likelihood is assigned to the frame at the center of the sliding window. The number of hidden states 

(NHS) and the length of the sliding window size (LW) are decided at the training stage. We assess the 

HCRF activity recognition results with a multi-class classification measure [33] which included 
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average accuracy, error rate, precision, recall, f-score. Also, Support Vector Machine (SVM) [34,35] is 

supplemented for comparison purposes in the experiment. 

Table 1 is the result for the SVM and HCRF models with the measures for multi-label 

classification, where NHS is the number of hidden states and LW is the length of the sliding window 

size. From the table we can see that HCRF achieves a higher average accuracy, precision, recall, f-score 

and lower error rate than SVM, thus HCRF can better recognize normal activities. This is because 

HCRF can capture the intrinsic sub-structures of activity sequence and can encode the dynamics of the 

actions, while SVM only can model the activity feature in the same time slice and cannot encode the 

dynamics of actions. Also, Figure 4 compares the recognition accuracy for the SVM and HCRF 

models in the five activities from which we can see the recognition accuracies of HCRF get better 

results than SVM in four out of five activities. For the activity “Wash-hands”, SVM performs better 

than HCRF, this is because the activity involves little sensor activity and its sub-structure is minimal, 

thus modeling the sub-structure of this activity cannot help the activity recognition.  

Table 1. The result for Support Vector Machine (SVM) and Hidden Conditional Random 

Field (HCRF) models with the measures for multi-label classification. 

 SVM HCRF(NHS= 5, NW= 40) 

Average Accuracy 0.8712 0.9258 
Error Rate 0.1288 0.0742 
Precision 0.7076 0.7710 

Recall 0.5535 0.7987 
F-score 0.3106 0.3923 

 

Figure 4. The accuracies of SVM and HCRF model for five individual activities. 

4.2. Experiment 2 

In next two experiments, a feature vector distance based algorithm is used for AAR for comparing 

with the results of the HCRF-based the algorithms. The algorithm is essentially a simple clustering 

based abnormal activity recognition method [10,11] and they both find abnormalities by comparing the 
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testing activity with the normal activity. The feature vector distance-based algorithm uses the activity 

feature vector distance to measure the activity similarity. The activity feature vector is expressed by 

the change sensors and is a vector with dimensions equal to the sensor number. When one activity is 

carrying out, if the i-th sensor state is changed, the i-th value of the activity feature vector is denoted as 

1, otherwise, the i-th value of the activity feature vector is denoted as 0. For two activity feature 

vectors  1 2( , , , )N
i i i iA a a a=  and 1 2( , , , )N

j j j jA a a a=  , the distance between them is computed using 

the corresponding Euclidean distance: 

2

1

( , ) ( )
N

n n
i j i j

n

d A A a a
=

 
= − 

 
  (12)

where N is the sensor number. 

We use a method similar to the HCRF-based AAR algorithm to decide if the testing activity is 
abnormal. Given an activity feature vector tA  of testing activity observation sequence t and activity 

feature vector NiA of the most similar normal activity i, we assess testing activity by: 

( , )
( ) 1 100t Ni

normal
Ni

d A A
F t

A

 
= − ×  
 

 (13)

Also, there is [ ]0,100normalF ∈  for any testing activity. This experiment focuses on the recognition 

of “forgetting” abnormal activities and Table 2 lists seven abnormal activities generated based on the 

five normal activities, where the first abnormal activity is generated by the first normal activity, the 

second abnormal activity is generated by the second normal activity, the third and the six abnormal 

activities are generated by the third normal activity, the four and the seven abnormal activities are 

generated by the fourth normal activity, the fifth abnormal activity is generated by the fifth normal 

activity. To validate Algorithm 1, we recognize abnormal activities based on Algorithm 1 and the 

feature vector distance, respectively. 

Table 2. Seven abnormal activities. 

According to Algorithm 1, we first train HCRF using normal activities 1–5 and then compute their 

likelihood vectors based on the trained HCRF. The MLV and MLV index of normal activities  

1–5 are (1, 326), (2, 100), (3, 573), (4, 195) and (5, 364), where the first value in brackets are the MLV 

indexes, and the second value in brackets are the MLVs. 

Abnormal activity Appearance Sensor appearance 

1. Make a phone call Look in phone book twice I08 give two ABSENT and PRESENT states 

2. Wash hands Forget to turn off the tap 
AD1-B senses water flow when M18 gives  
state OFF 

3. Cook1 Forget to replace spices I01, I02, I03, I05 do not give state PRESENT 
4. Eat1 Forget to take medicine There are no states change for I06 
5. Clean Forget to clean dishes AD1-B does not sense water flow 

6. Cook2 
Forget to turn off the 
microwave 

AD1-A senses water flow when M14 give state ON 
and M17 give state OFF 

7. Eat2 Take the medicine twice I06 give two ABSENT and PRESENT states 
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For each testing activity, we compute the likelihood vector of the observation sequence based on the 

trained HCRF, and find out the MLV and MLV index. The likelihood vectors of testing activities 1–7 

are shown in Table 3, where the first column represents the testing activities, and the second column 

represents the likelihood vectors. The likelihood vectors in this table represent the similarity between 

testing activities 1–7 and normal activities 1–5. Figure 5 is the visualization of the likelihood vectors 

of seven testing sequences and the MLV of five normal activities from which we can find out the  

MLV index of testing activities. Then, we determine whether the testing activity is abnormal using 

Equation (11). For instance, since the MLV index of testing activity 1 is 1, we consider testing activity 1 

is most similar with normal activity 1. Computing Fnormal using the MLV 438.6745 of testing activity 1 

and the MLV 326 of the saved normal activity 1, we get Fnormal = 65.43 < 98. Thus, we judge the 

testing activity 1 is an abnormal activity generated by the activity “Make a phone call”. 

Table 3. Likelihood vectors of seven sequences with HCRF. 

Testing activities Likelihood vectors (HCRF, NHS=6) 

1 (438.6745, 409.2975, 398.6318, 32.4444,370.9995) 
2 (183.4544, 194.3961,191.3976, 188.1670, 91.9349) 
3 (790.0633, 839.4842, 842.2406, 28.0053,841.0192) 
4 (148.7053, 143.4191, 134.0438, 150.5547,131.7339) 
5 (347.8836, 375.7072, 372.7866, 370.8800,377.1156) 
6 (888.2495, 943.2903, 948.6662, 929.4592, 3.2157) 
7 (366.4750, 372.8574, 363.0768, 378.3354, 3.6117) 
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Figure 5. The visualization of likelihood vectors of seven testing sequences and MLV of 

five normal activities. 

Finally, we find out the abnormal type by analyzing the observation sequence of testing activity. For 

instance, since the MLV index of testing activities 3, 6 are 3, they are both abnormal activities 

generated by the activity “Cook”. Comparing the observation sequences of testing activity 3 and 
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activity “Cook”, we find I01, I02, I03, I05 do not give “PRESENT” states in the observation sequence 

of testing activity 3, and deduce it is the first abnormal type of the activity “Cook” that is “Forgets to 

replace spices”. Comparing the observation sequences of testing activity 6 and the normal activity 

“Cook”, we find AD1-A still senses water flow when M14 gives state ON and M17 gives state “OFF” 

in the observation sequence of testing activity 3, and deduce it is the second abnormal type of the 

activity “Cook” that is “Forgets to turn off microwave”. Also, since the MLV index of testing activity 

4 and testing activity 7 is 4, we consider they are abnormal activities generated by the activity “eat”. 

By comparing the observation sequences of testing activity 4 and the activity “Eat”, we find there are 

no states change for I06 in the observation of the third testing activity, and deduce it is the first type 

abnormal of the activity “Eat” that is “Forgets to take medicine”. By comparing the observation 

sequences of the seven testing activities with the normal activity “Eat”, we find I06 gives two 

“ABSENT” and “PRESENT” states in the observation of testing activity 3, and deduce it is the second 

abnormal type of the activity “Eat” that is “Takes the medicine twice”. 

The feature vector distance-based AAR algorithm first extracts the feature vectors of all normal 

activities and the testing activity, then computes the feature vector distance between the normal and 

testing activity. Table 4 lists the feature vector distances between the seven testing activities and five 

normal activities, where the first column represents testing activities, columns 2–5 represent the 

feature vector distances between the testing activity and the five normal activities. Figure 6 is the 

visualization of the feature vector distances between test sequences 1–7 and normal sequences 1–5.  

As they show, the distance between testing activities 1–3, 6, 7 and normal activities 1–3, 3, 4 are all 

equal to zero. Thus, we cannot find the difference between them and judge them as normal activities, 

despite the fact testing activities 1–3, 6, 7 are abnormal activities. From the table we can see that both 

normal activities 4 and 5 have minimum distances with testing activity 4, thus we cannot find the most 

similar normal activity and cannot decide which activity has generated it. For testing activity 5, since 

there is minimum distance with normal activity 4, we consider normal activity 5 is the most similar to 

testing activity 5. We compute Fnormal = with Equation (13) and get Fnormal < 98, thus we consider 

testing activity 5 is an abnormal activity that was generated by the activity “Clean”. 

Table 4. Feature vector distances between testing sequences 1–7 and normal sequences 1–5. 

Testing activities Feature vector distance 

1 0 3.8730 4.4721 3.7417 3.7417 
2 3.8730 0 3.3166 2.2361 1.0000 
3 4.4721 3.3166 0 3.1623 3.4641 
4 3.1623 2.2361 3.4641 2.0000 2.0000 
5 3.6056 1.4142 3.3166 1.7321 1.0000 
6 4.4721 3.3166 0 3.1623 3.4641 
7 3.7417 2.2361 3.1623 0 2.0000 
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Figure 6. The visualization of feature vector distances between testing sequences and 

normal sequences. 

Obviously, Algorithm 1 not only can recognize abnormal sub-activities of those seven activities 

quickly, but also can find the type of abnormality, while the feature vector distance-based AAR 

algorithm can recognize only one of these seven abnormal activities. This is because sequence AAR 

based on HCRF can capture the sub-structure and context relationships, and thus can distinguish the 

activities detected by the same sensor with different sensor order and frequency  

4.3. Experiment 3  

This experiment focuses on the recognition of “new activity” and is also based on the dataset “WSU 

Apartment Test bed, ADL adlnormal”. In this experiment, we generate another two activities and 

denote them as activity 6: “From the hall back to the bedroom”, and activity 7: “From the bedroom to 

the hall”. The two activities have same route, sensor type and sensor number, but have opposite 

directions, and different order and frequency.  

To validate Algorithm 2, we first consider activities 1–5 as training activities and activities 1–7  

as testing activities to recognize abnormal activities based on Algorithm 2 and feature vector  

distance respectively. 

For abnormal activities based on Algorithm 2, we first train HCRF with activities 1–5 and compute 

the likelihood vectors of training activities based on trained HCRF. The MLV and MLV index of 

activities 1–5 are denoted as (1, 326), (2, 100), (3, 573), (4, 195) and (5, 364). Then, we compute the 

likelihood vectors of the observation sequences of testing activities 1–7 based on the trained HCRF, 

respectively. The likelihood vectors of testing activities 1–7 are shown in Table 5 and the visualization 

of likelihood vectors is shown in Figure 7.  
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Table 5. Likelihood vectors of testing sequences with HCRF. 

Testing activities Likelihood vectors (HCRF, NHS=6) 

1 (326.2816, 282.5083, 267.3135, 319.4811, 309.4781) 

2 (93.6532, 100.1750, 95.8154, 92.6123, 96.3673) 

3 (533.7155, 567.2989, 573.7141, 549.1944, 568.0089) 

4 (188.4216, 178.8475, 172.9113, 195.1255, 190.3030) 

5 (336.0484, 359.2741, 358.9083, 358.9799, 364.3324) 

6 (67.7235, 57.4616, 52.3373, 64.4937, 61.6425) 

7 (70.7103, 59.9438, 54.5756, 67.7057, 64.3426) 
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Figure 7. The visualization of likelihood vectors of seven testing sequences and MLV of 

five normal activities. 

From the table we can see that the MLV of activities 1–5 are 326.2816, 100.1750, 573.7141, 

195.1255, 364.3324 and the MLV indexes of activities 1–5 are 1–5. Because their MLV are very close 

to the MLV of the saved training activities 1–5 and for testing activities 1–5, Fnormal < 98, we consider 

testing activities 1–5 are normal activities. Since the MLV indexes of activities 6, 7 are 1, we compare 

the MLV 67.7235 and 70.7103 with the MLV of training activity 1 and get Fnormal < 98. Thus, we 

judge activities 6, 7 are rare abnormal activities. In addition to finding abnormalities, our algorithm 

can also distinguish them as the activities 6, 7 have unequal MLVs. 

The feature vector distance-based AAR algorithm first extracts the feature vectors of training 

activities 1–5 and testing activities 1–7. Then the algorithm computes the feature vector distance 

between the corresponding training activity and testing activity. Table 6 shows the feature vector distances 

between the testing activities 1–7 and training activities 1–5 and Figure 8 is their visualization.  
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Table 6. Feature vector distances between testing sequences 1–7 and training sequences 1–5. 

Testing activities Feature vector distance 

1 0 3.8730 4.4721 3.7417 3.7417 
2 3.8730 0 3.3166 2.2361 1.0000 
3 4.4721 3.3166 0 3.1623 3.4641 
4 3.7417 2.2361 3.1623 0 2.0000 
5 3.7417 1.0000 3.4641 2.0000 0 
6 1.7321 3.7417 4.3589 3.6056 3.6056 
7 1.7321 3.7417 4.3589 3.6056 3.6056 
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Figure 8. The visualization of feature vector distances between testing sequences and 

normal sequences. 

Because the minimum feature vector distances between testing activities 1–5 and training activities 

1–5 are all zero, we consider them as normal activities. Because the testing activities 6, 7 and training 

activity 1 both have the minimum feature vector distances 1.7321 and Fnormal < 98, we consider them 

as abnormal activities, but because the two testing activities have equivalent minimum feature vector 

distances with training activity 1, we cannot distinguish them. To further validate Algorithm 2, we also 

take activities 1–6 as training activities and activities 1–7 as testing activities, and compare the result 

with the feature vector distance AAR algorithm. After training HCRF with activities 1–6, we compute 

the likelihood vectors of training activities based on the trained HCRF. 

The MLV and MLV index of training activities 1–6 are denoted as (1, 269), (2, 82), (3, 475), (4, 160), 

(5, 299) and (6, 61). For testing activities 1–7, we compute the likelihood vectors of the observation 

sequences based on the trained HCRF, respectively, and the likelihood vectors of testing activities 1–7 

are shown in Table 7 and the visualization of likelihood vectors is shown in Figure 9. As the table 

shows, the MLV of activities 1–7 are 269.8225, 82.358, 475.9057, 160.3794, 299.6182, 61.2882, 

63.5533 and the MLV indexes of activities 1–7 are 1–6, 6. For testing activities 1–6, there are Fnormal < 
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98. Thus we consider testing activities 1–6 are normal activities. Since the MLV indexes of activity 7 

are 6, we compare the MLV 63.5533 with the MLV 61 of training activity 6 and get Fnormal < 98. Thus, 

we judge activity 7 as a rare abnormal activity. 

Table 7. Likelihood vectors of seven testing sequences with HCRF. 

Testing activities Likelihood vectors (HCRF, NHS=6) 

1 (269.8225, 229.6156, 249.1611, 263.6643, 252.2116, 262.2444) 

2 (75.0678, 82.3581, 77.7119, 75.9655, 78.9250, 75.7699) 

3 (428.8811, 467.7071, 475.9057, 450.2416, 470.2999, 434.1561) 

4 (154.4092, 145.0172, 151.6422, 160.3794, 155.4553, 143.3504) 

5 (271.4594, 295.0582, 293.9657, 294.0288, 299.6182, 269.1849) 

6 (55.9792, 47.5435, 49.1397, 53.4108, 50.2745, 61.2882) 

7 (58.7701, 49.5426, 51.8330, 56.1844, 52.5862, 63.5533) 
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Figure 9. The visualization of likelihood vectors of seven testing sequences and MLV of 

six normal activities. 

Similarly, the feature vector distance-based AAR algorithm first extracts the feature vector of 

training activities 1–6 and testing activities 1–7, and computes the feature vector distance between 

training activity and testing activity. Table 8 is the feature vector distances between testing activities 

1–7 and training activities 1–6. We also give the visualization of the feature vector distances between 

test sequences and normal sequences in Figure 10. As we know, the activity 7 has not appeared before 

and is abnormal activity in fact. However, since the minimum feature vector distances between testing 

activities 1–7 and training activities 1–6 are all zero, we consider them as normal activities. From the 

assessing of testing activity 7 we can see that feature vector distance based AAR algorithm cannot 

distinguish activities with same sensor type and sensor number but difference order and frequency. 
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Table 8. Feature vector distances between test sequences 1–7 and training sequences 1–6. 

Testing activities Feature vector distance 

1 0 3.8730 4.4721 3.7417 3.7417 1.7321 
2 3.8730 0 3.3166 2.2361 1.0000 3.7417 
3 4.4721 3.3166 0 3.1623 3.4641 4.3589 
4 3.7417 2.2361 3.1623 0 2.0000 3.6056 
5 3.7417 1.0000 3.4641 2.0000 0 3.6056 
6 1.7321 3.7417 4.3589 3.6056 3.6056 0 
7 1.7321 3.7417 4.3589 3.6056 3.6056 0 
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Figure 10. The visualization of feature vector distances between test sequences and normal sequences. 

This experiment shows HCRF can recognize “new activity” and Algorithm 2 not only can 

distinguish abnormal activities of different sensor types and sensor number well (activities 6 and 7), 

but also can distinguish abnormal activities with the same sensor type and sensor number but different 

sensor order and frequency (activity 7). 

5. Conclusions  

To allow elderly people to be better assisted with context-aware services, this paper introduces the 

HCRF model-based AAR algorithm for recognizing two types of abnormal activities named 

“forgetting” and “new activity” which often occur in elderly persons’ homes. To validate the proposed 

algorithm, in addition to using HCRF to recognize normal activities, the HCRF model-based AAR 

algorithm as well as feature vector distance-based AAR algorithm is used for comparison in 

recognizing two types of abnormal activities in two experiments. The results show that the HCRF 

model-based AAR algorithm outperforms the feature vector distance-based AAR algorithm and 

confirms that modeling actions (sub-activities) and the underlying correlations can contribute to AAR. 
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