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Abstract: The present paper analyzes numerically the entropy generation induced by forced
convection in a canonical configuration. The configuration itself includes two well known fluid
dynamic problems: (1) an external flow (flow around a cylinder, Kármán flow); and (2) an internal
flow (flow between two concentric rotating cylinders, Couette flow). In many daily engineering
issues (e.g., cooling of electric machines), a combination of these problems occurs and has to be
investigated. Using the canonical configuration, the fields of entropy generation are analyzed in this
work for a constant wall heat flux but varying two key parameters (Reynolds numbers Re∞ and
Re0). The entropy generation due to conduction shows an absolute minimum around Re0 = 10, 000.
The same minima can be found by a detailed analysis of the temperature profile. Thus, entropy
generation seems to be a suitable indicator for optimizing heat exchange processes and delivers a
large amount of information concerning fluid and heat transport.
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1. Introduction

Due to higher demands of power density for electric machines, investigations regarding the
thermal management are getting more important. This ensures higher reliability and efficiency of
the device, to name just two significant aspects. Inside an alternator, fan blades generate a pressure
gradient by their rotational motion. Air from the engine bay streams through the alternator, flows
through the rectifier domain and finally leaves the system in radial direction. In the rectifier domain,
electronic components are pressed or glued on a heat sink. The design involves openings through
the heat sink as well as ribs or pins. Therefore, the fluid undergoes different flow conditions that
influence the heat transfer inside an alternator system. In most cases, a better cooling is in conflict
with other aspects (e.g., costs or aeroacoustic emissions). A higher volumetric flow rate increases
heat transfer, due to an increasing convective thermal energy transport. However, the maximum
sound pressure level is strictly restricted as well and constrains the available range for the engineer.
To detect local areas where heat transfer to the fluid could be intensified, a first obvious step is to
check the temperature on the solid side. However, the temperatures show only the final outcome
of the heat transfer. They convey no further information about the underlying processes. Looking
only at temperatures, it cannot be found what is limiting heat transfer and where or why this occurs.
Thévenin and Janiga [1] showed how to combine Evolutionary Algorithms with Computational Fluid
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Dynamics (CFD) in order to optimize the flow for a wide range of engineering problems. Now,
the analysis of entropy generation is a reliable approach to find regions with a high potential for
such optimizations.

2. Entropy Generation Minimization

Bejan [2] explained that “entropy generation through heat and fluid flows combines at the most
fundamental level the basic principles of thermodynamics, heat transfer and fluid mechanics”. By
investigating entropy generation information is obtained about the flow field and this gives the
opportunity to find reasons for high local temperatures. It should be possible in this way to identify
regions with a high potential for Optimization based on Computational Fluid Dynamics (written
CFD-O), which will be used in this project [1]. Based on this, design studies could be performed more
efficiently, compared to a simple analysis of temperature fields.

2.1. Literature Survey

This chapter gives a short overview about previous studies of interest for the present
investigations. Note that a complete overview about the entropy generation minimization (EGM)
method can be found in, e.g., [3] or [4]. Poulikakos and Bejan [5] derived the theoretical framework
for an optimal fin geometry in forced convection using EGM. Fowler and Bejan [6] obtained optimal
sizes of bodies for external flows based on EGM. Wenterodt [7] showed thanks to EGM that an optimal
Reynolds number (Re) exists for a heated pipe. Carrington and Sun [8] analyzed internal and external
flows with the second-law analysis (SLA). Herwig and Schmandt [9] used SLA to determine the drag
coefficient for external flows with the help of the volumetric entropy generation in the flow field.
Ko and Ting [10] investigated the competition between the entropy generation due to dissipation
and conduction for laminar forced convection in curved rectangular ducts with external heating.
Şahin [11] varied duct geometries, gave an analytical formulation and estimated the best geometry
based on EGM. Mahmud et al. [12] presented an analytical solution for the entropy generation
between two concentric rotating cylinders. Mirzazadeh et al. [13] extended the analytical solution
for non-linear viscoelastic fluids. Yilbas [14] computed temperature rise and entropy generation due
to conduction and dissipation for this case. Further fundamental studies were done by, e.g., ([15–17]).
Giangaspero and Sciubba ([18,19]) used the entropy concept to study the thermal management for
different electric machines. Many different authors ([20–24]) used the EGM method to find an optimal
heat-sink geometry. The present paper is a first step toward applying EGM for a real, industrial
configuration. The first objective is to demonstrate the benefit obtained by analyzing the entropy
budget compared to currently employed post-processing steps, for instance looking directly at the
temperature fields.

2.2. Entropy Balance Equation

Following Bejan [2], the total entropy generation Ṡ
′′′
Gen is the sum of entropy generation due to

conduction Ṡ
′′′
C and entropy generation due to dissipation Ṡ

′′′
D:

Ṡ
′′′
Gen = Ṡ

′′′
C + Ṡ

′′′
D

= Ṡ
′′′

C + Ṡ
′′′
C′ + Ṡ

′′′

D + Ṡ
′′′
D′

(1)

where Ṡ
′′′

C
and Ṡ

′′′

D
are the time mean components and Ṡ

′′′
C′ and Ṡ

′′′
D′ are the fluctuation components

for conduction and dissipation, respectively. After the temperature and velocity distributions of the
flow field are solved, the time mean values can be calculated by the given temperature and velocity
distributions from the solved flow field:
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where k is the thermal conductivity and µ the dynamic viscosity. Equations (2) and (3) include the
mean temperature and velocity gradients, respectively and represent the direct entropy generation in
the mean flow field. However, if the flow becomes turbulent the terms resulting from the fluctuating
parts of the flow field (involving T′, u′, v′ and w′) are not directly available from any prediction based
on RANS (Reynolds-Averaged Navier Stokes equations), and are difficult to measure directly with
sufficient accuracy close to the wall, where it is most important:
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Here, T′ in the denominator appears only in higher order terms when 1/T is expanded into
a series and therefore is neglected in this leading order approach [25]. To consider the fluctuation
effects as well, Kock and Herwig ([25,26]) proposed a model with variables that are delivered by any
commercial CFD-code:

Ṡ
′′′
C′ =

kε

Prtωt
S
′′′

C (6)

Ṡ
′′′
D′ = β

ρωtkε

T
(7)

where β was found to be β = 0.09. With Equations (6) and (7) the fluctuation terms from Equations (4)
and (5) can be modeled when using, e.g., Menter’s k-ω-SST turbulence model. For other turbulence
models, corresponding formula can be found in, e.g., Kock [27]. Finally, the total entropy generation
for turbulent flows becomes a post-processed value computed by a volume integral of the local values
over the domain of interest:
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(8)

3. Canonical Configuration

A three-dimensional numerical study of an electric alternator delivers a huge quantity of data.
Due to the geometrical and physical complexity of the setup a large number of finite volumes have to
be used for a simulation (small cells being especially needed in near-wall regions). In most cases,
a detailed quantitative analysis of these data is not performed. Therefore, further investigations
regarding new physical indicators like, e.g., entropy generation are necessary to support, facilitate
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and speed-up the analysis. To enable the development of such indicators, a simplified but relevant
configuration has been first identified, called “canonical configuration” in this work. Eger et al. [28]
introduced the concepts underlying this configuration and showed its benefit based on a Nusselt
number analysis. Figure 1 explains the choice of the canonical configuration. Using it, it is possible
to investigate fluid processes and heat transfer at different scales, controlled either by ambient
parameters (global scale “∞”) or by near-wall gradients (local scale “0, 1”), alone or in combination,
while keeping a single geometrical setup described by a small number of parameters. Thanks to such
a simple configuration, the quantity of data that must be analyzed is heavily reduced. However, the
transport phenomena found in real electric alternator systems are still represented.

Flow passing cylinder

T0 or q̇0

r0

Re∞ = u∞ ·d0
ν∞

T∞

Canonical configuration

β

T1 or q̇1

T0 or q̇0r1

r0
ε

Re∞

T∞

Re0 = ω0·r0·d0
ν∞

Rotating cylinders

T1 or q̇1

ε

T0 or q̇0

r0

r1

Re0

Re1

Figure 1. Canonical configuration used for further investigations of transport phenomena and for the
development of physically-based indicators of heat transfer.

Thus, the canonical configuration offers the opportunity to investigate physically-based
indicators, e.g., entropy generation, with a high level of generality. Ultimately, a thermal optimization
of electric machines regarding fluid and heat transport should become possible. The opening angle
β in main flow direction defines the openings on both sides. Its range is obviously defined by
0 ≤ β ≤ π/2. The gap ε between the rotating cylinder and the external sleeve is strictly positive.
Compared to a single cylinder, two additional design parameters have been added, here β and ε.
Table 1 gives an overview about the parameters that have an influence on the flow field locally (within
the annuli) as well as globally (in the whole domain).

Table 1. Parameters influencing the flow and temperature field.

Locally Globally

Dynamic u0 u∞
Heat transfer (T1 − T0), u0 (T1 − T0), u∞
Design Π = r1/r0 β

The ratio of outer (r1) and inner radius (r0) is defined as Π. The tangential velocity u0 of the
rotating cylinder is defined with u0 = ω0r0, where ω0 is the angular velocity of the rotating cylinder.
The oncoming flow at the channel inlet is expressed by u∞. For an increasing opening angle β→ π/2,
the canonical configuration converges toward the (external) flow around a cylinder. A decreasing
opening angle β → 0 leads to the study of the (internal) flow between two concentric rotating
cylinders. For the range 0 < β < π/2 transport processes involve both aspects.
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4. Physical Model

The problem described in the previous section can be considered either as a three-dimensional
or a two-dimensional problem. Figure 2 shows the cylinder and sleeve mounted in a rectangular
domain, constructed as a three-dimensional problem with symmetry boundary conditions in
cross direction.

D

2D

D

10
D

20D

5D 10D

Figure 2. Dimensions of the first geometrical setup based on the canonical configuration.

As further boundary conditions, velocity inlet (left side of the domain) and pressure outlet (right
side of the domain) are systematically employed for all computations. In these investigations, two
different Reynolds numbers are important, written Re∞ and Re0 (see Figure 1):

• Re∞ describes globally the oncoming flow and is computed from the inlet velocity.
• Re0 describes the local process and is built from the tangential velocity of the rotating cylinder.

For practical purposes, the focus is set on the transport phenomena between the cylinder and
surrounding sleeve. Therefore, the channel can be constructed without an increased wake region to
reduce the numerical effort. The sleeve is defined as adiabatic and the wall of the rotating cylinder
with an isoflux boundary condition. The heat flux is expressed in dimensionless form q̇∗0 which is
defined as:

q̇∗0 =
q̇0(2r0)

k∞T∞
= 0.05 (9)

The ambient temperature is constant with a value of T∞ = 300 K. The flow field in all following
simulations is considered as steady and incompressible. Ideal gas has been chosen as working fluid
(air in this study). Due to the small temperature change in the flow field, the thermo-physical
properties such as dynamic viscosity µ and thermal conductivity k are assumed constant with values
of 1.831× 10−5 Pa · s and 0.0261 W/(m ·K), respectively. Using the canonical configuration for a first
study, the design parameters were set to β = π/6 and Π = 2. In this case the transport processes
involve external and internal flows and therefore describe the processes found in a real alternator
system. The ratio between the outer and inner tangential velocity is defined as λ = ω1r1/(ω0r0) = 0,
due to the static sleeve around the cylinder. However, the inner cylinder is in rotation, which
is expressed by Re0. Both Reynolds numbers (Re∞ for global changes of u∞ and Re0 for local
changes of u0) are varied in magnitude. The ranges for all simulations are 0.5 ≤ Re∞ ≤ 4096 and
6 ≤ Re0 ≤ 50, 000, changing the values by a factor 2 between two cases.
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5. Numerical Method

The equations of conservation of mass, momentum, and energy are discretized with ANSYS
CFX 16.2, relying on the Reynolds-Averaged Navier Stokes (RANS) approach. In our investigations
Menter’s k-ω-SST model is chosen due to its ability to integrate the Navier-Stokes equations in the
low Re regime near the wall without using damping corrections. Additionally, it leads to better
predictions of flow separation [29]. The selected advection scheme uses a second-order scheme when
possible and blends to a first-order scheme if needed to maintain boundedness. The flow equations
are solved sequentially with double precision. For the grid, hexahedra elements are chosen, which
are shown in Figure 3, placing the first grid element at a dimensionless wall distance y+ ≤ 1, as
needed for high accuracy [30]. This results in very small elements near the walls of the cylinder and
the sleeve, due to high velocity gradients.

Figure 3. Hexahedral grid employed for the canonical configuration.

Starting with an element size of h = 0.05 mm and a growing ratio of r = 1.16, the total number
of elements is about 272,700. The convergence criteria for momentum and mass, heat transfer,
turbulence and the additional terms of ṠGen are set as a factor of 10−6. To check the convergence
behavior of the entropy generation terms, Equation (8) was completely implemented within the
solver. For this purpose, additional variables were defined into the model settings, allowing a direct
computation of entropy generation after each iteration solving the conservation equations for mass,
momentum and energy. Therefore, entropy generation is directly calculated within the solver and
can be immediately analyzed. Due to the high values of Re∞ and Re0 included in the range of
interest, viscous dissipation has to be considered within the energy equation in principle. Note that no
difficulties have been encountered concerning convergence when including the viscous work term.

6. Grid-Independence Test and Code Verification

Grid-independence tests and code verification were carried out for the two cases shown
in Figure 1.

6.1. Internal Flow: Two Concentric Rotating Cylinders

First, the flow between two concentric rotating cylinders has been investigated as an example
for an internal flow (corresponding to the local flow between the two cylinders for the canonical
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configuration at β = 0). The physical and numerical models described above are used for both
examples. Following Yilbas [14], the flow in the annuli is laminar since Re0 is below the critical value:

Re0,crit =
ρ∞u0d0

µ∞
≤ 50, 000 (10)

The dimensionless temperature difference between the outer and inner cylinder is defined as:
Ω = (T1 − T0)/T0 (assuming that T1 > T0). The dimensionless radial distance is R = r/r0. The
Brinkman number (Br) is the ratio between the thermal energy that is produced due to dissipation
and the ability of the fluid to evacuate this energy:

Br = Ec · Pr =
(r0ω0)

2

k(T1 − T0)
(11)

In order to obtain a suitable Br value, and only for this case, the dynamic viscosity µ was
artificially changed to 0.01831 Pa · s. Figure 4 shows the numerically calculated dimensionless entropy
generation profiles (NṠ,Gen,T) compared to the analytical solutions from Mirzazadeh [13] for a varying
ratio Br/Ω. The dimensionless entropy generation terms are calculated as:

NṠ,Gen,q =
ṠGen,qkT2

0

q̇2 and NṠ,Gen,T =
ṠGen,Tr2

0T2
0

k(T1 − T0)2 (12)

for isoflux (NṠ,Gen,q) or isothermal (NṠ,Gen,T) boundary condition, respectively.
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Ṡ,
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Analytical results of Mirzazadeh Numerical results
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2
1.5
1
0.5

Figure 4. Effect of Br/Ω on NṠ,Gen,T for β = 30◦, Π = 2 and λ = 0 (isothermal boundary condition).

The numerical solutions are systematically in excellent agreement with the analytical solutions
for the cases with 0.5 ≤ Br/Ω ≤ 3, when Br is constant and Ω is changed in magnitude. In Figure 4,
both cylinders are associated with an isothermal boundary condition.

6.2. External Flow: Flow Passing Cylinder

In a further study, the flow passing an infinite cylinder has been investigated as an example of
pure external flow (corresponding to the global flow for the canonical configuration at β = π/2).
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The Reynolds number Re∞ (defined with the oncoming flow u∞) is varied in magnitude in a range of
1 < Re∞ < 5300, which is large enough to cover all following investigations, leading to a maximum
of Re∞ = 4096. For a detailed grid-independence test and code verification, the integral values of
ṠD and ṠC in the complete domain around the cylinder are considered. Therefore, an increased size
of the channel is needed to capture all entropy generation terms in the wake region. In this case, the
wake region is extended to a size of twenty-two times the cylinder diameter. The other geometrical
parameters are kept constant as it is shown in Figure 2. Following Bejan [31], the entropy generation
terms on an immersed body can be calculated as:

ṠGen =
Q̇0 (T0 − T∞)

T0T∞
+

FDu∞

T∞
(13)

where FD is the drag force:

FD =
1
2

ρ∞u2
∞cD A (14)

The comparison to the numerical solutions are shown in Figure 5. Experimental values of the
drag coefficient (cD) for the flow passing a cylinder are available in many textbooks, e.g., Zierep [32].
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and Ṡ
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D
Ṡ
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+ Ṡ

′′′
C′ and Ṡ
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D
+ Ṡ

′′′
D′

ṠC = Q̇0(T0−T∞)
T0T∞

ṠD =
1
2 ρ∞u3

∞cD A
T∞

Figure 5. Comparison between reference obtained analytically (with Equation (13)) and
experimentally (with cD for varying Re∞) with numerical results obtained for ṠD and ṠC. The symbols
correspond to the numerical results of the present study with only the mean components (blue) or
accounting additionally for fluctuation components (green). Solid line and filled symbols are for ṠD,
dashed line and hollow symbols for ṠC.

By substituting the experimental results in Equation (14) for different Re∞ values, the entropy
generation due to dissipation ṠD can be calculated. Therefore, the analytical calculation of ṠD
becomes possible with experimental data of cD. The entropy generation due to conduction ṠC can
be calculated with the given thermal boundary condition. In the current case, an isoflux boundary
condition (q̇∗ = 0.05) is used to calculate numerically the resulting wall temperature T0. The mean
components (Ṡ

′′′

C
and Ṡ

′′′

D
) show steadily increasing discrepancies for Re∞ ≥ 80. However, including
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the fluctuation components (Equations (6) and (7)) in the entropy generation equation, the values are
in a very good agreement with the reference for the whole range considered for Re∞.

This concludes the successful verification of the developed numerical approach. For the
tested configuration of the flow between two concentric rotating cylinders, the numerical results
are identical or very close to the analytical predictions. For the flow passing a cylinder the
analytical observations combined with experimental data for cD showed a very good agreement to
the numerical solutions as well. However, a grid wall resolution y+ ≤ 1 is as expected needed for an
accurate analysis of flow, heat transfer, and associated entropy generation.

7. Results And Discussions

Using now the canonical configuration for a first full-scale study, the design parameters were
set as described in Section 4. All diagrams show the results in a double logarithmic reference
frame, except for the results of the dimensionless temperature difference θq shown in Figure 9. In
Sections 7.1–7.4 the integral (global) analysis of the entropy generation will be discussed. Section 7.5
gives an outlook about the possibilities offered by a differential (local) analysis. To allow a
better understanding of the flow system, Figure 6 shows in the left picture the flow velocity and
temperature profiles. In the right picture, the skin friction coefficient C f = 2τw/(ρu2

∞) on the cylinder
wall is shown.

n

n

T

~u

q̇∗0 = 0.05

Figure 6. Left: Flow velocity (dashed) and temperature (dotted) profiles. Right: Skin friction
coefficient C f on the cylinder wall for Re0 = 6 and Re∞ = 2048, respectively.

7.1. Entropy Generation Due to Dissipation

Figure 7 represents the very considerable change of the volumetric flow rate (V̇) obtained when
varying Reynolds numbers (Re∞ and Re0). This quantity is computed on the interface located at the
farther end of the sleeve, where the flow is leaving the annuli, as shown in Figure 7. Figure 8 shows
the same analysis with respect to the dimensionless volumetric entropy generation due to dissipation
(NṠ,D,q) between the rotating cylinder and static sleeve. Both results are in very good agreement and
show similar trends. However NṠ,D,q provides a smoother evolution. With an increasing Reynolds
number (Re∞ or Re0) the volumetric flow rate and the dimensionless entropy generation due to
dissipation increase as well. Hence, a reduction of the entropy generation due to dissipation is as
expected directly connected to a reduction in flow speed and thus Reynolds number. For the range
0.5 ≤ Re∞ ≤ 8 the flow is always strongly influenced by the local tangential velocity u0 (Re0).
The oncoming flow is too slow and has therefore no influence on the entropy generation due to
dissipation. If, however, the magnitude of the global velocity u∞ (quantified by Re∞) increases, a
higher local tangential velocity u0 (Re0) is needed to influence the flow field through the motion of
the cylinder. The point where Re0 is becoming the dominating effect is clearly identifiable for all Re∞.
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Figure 7. Effect of Re0 and Re∞ on V̇.

With Re0 ≈ 15, 000, even the highest oncoming flow (Re∞,max = 4096) has no real influence
on the volumetric flow rate or on the entropy generation due to dissipation. As a consequence,
the maximum of entropy generation due to dissipation is NṠ,D,q,max = 254 for all Reynolds
numbers considered in this study. Such results demonstrate that the interaction between global
ambient parameters (through u∞) and near-wall gradients (through u0) is very important for the
characterization of the flow field.
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Figure 8. Effect of Re0 and Re∞ on NṠ,D,q.
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The expected positive effect caused by an increasing oncoming flow Re∞ has under some
circumstances no influence on the cooling, when Re0 dominates the process. In other words, an
increasing volumetric flow rate in an alternator system can be without any effect if the flow field is
mainly influenced by the ribs or openings in the rectifier domain, at local scale. Analyzing the entropy
generation due to dissipation reveals such effects in a conspicuous manner.

7.2. Entropy Generation Due To Conduction

Figure 9 summarizes the results for the dimensionless temperature difference between the
rotating cylinder and the ambient temperature T∞ (assuming T0 > T∞), defined as:

θq = log
(

T0 − T∞

T∞

)
(15)

-3.0

-2.5

-2.0

-1.5
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-0.5

0.0

1 10 100 1000 10,000 100,000

θ q

Re0

Re∞ =

0.5–8

16

32

64
128
256
512
1024
2048
4096

Figure 9. Effect of Re0 and Re∞ on θq.

For θq the magnitudes considered are nearly identical to each other for 0.5 ≤ Re∞ ≤ 8. For
such conditions, the dimensionless temperature difference decreases slightly when increasing local
Reynolds number, Re0. However, for cases with Re∞ ≥ 16 the magnitude of θq first increases
till a specific value of Re0, and decreases later when increasing further Re0. All minima of the
dimensionless temperature difference are around Re0 ≈ 10, 000 for 0.5 ≤ Re∞ ≤ 4096. Varying
Re∞, the magnitudes of θq,min are different from each other, the lowest temperature being found for
the highest incoming flow, Re∞ = 4096. For the highest local tangential velocity (Re0 = 50, 000)
the obtained magnitudes also differ from each other. Figure 10 shows the results for the entropy
generation due to dissipation NṠ,C,q. In the range 0.5 ≤ Re∞ ≤ 8 the magnitudes of NṠ,C,q are similar
to each other and thus appear close to a single line. At low values of Re0, the magnitudes of θq

and NṠ,C,q decrease monotonically with an increasing oncoming flow velocity (quantified by Re∞).
At Re∞ = 4096 both variables (θq and NṠ,C,q) reach their lowest value. Therefore, it appears that
the heat transfer increases with a higher global Reynolds number Re∞, as expected. Regarding now
Re0, the dimensionless temperature difference as well as the dimensionless entropy generation due
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to conduction reach their minima almost at the same position, independently of Re∞ in the range
(0.5 ≤ Re∞ ≤ 4096):

θq,min ⇔ NṠ,C,q,min = f (Re0 ≈ 10, 000) (16)
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Figure 10. Effect of Re0 and Re∞ on NṠ,C,q.

Therefore, the dimensionless entropy generation due to conduction delivers the same minima
as the dimensionless temperature difference for the cases considered. However, the dimensionless
entropy generation shows a smoother course and a more marked minimum for conduction. Here, the
minima is NṠ,C,q,min = 0.04 for all Re∞ ≤ 1, 024. For Re0 ≥ 15, 000 the viscous dissipation becomes
significant, leading to an increase in θq as well as NṠ,C,q. At Re0 = 50, 000 the entropy generation
due to conduction reaches NṠ,C,q,max = 4 for all Re∞ ≤ 4, 096. For the range 16 ≤ Re∞ ≤ 4096 the
dimensionless temperature difference and the dimensionless entropy generation due to conduction
show a local peak before the function reaches its global minima. Figure 11 shows the local peak
values as filled square symbols of the corresponding color. The points corresponding to the condition
Re0 = Re∞ are additionally shown as crosses. It can be observed that the local maxima are found
shortly after the condition Re0 = Re∞. An explanation could not be found up to now.

As a whole, entropy generation due to dissipation shows results similar to the volumetric flow
rate along the outlet interface. Entropy generation due to conduction delivers the same minima as
the dimensionless temperature difference between the cylinder and the fluid. However, the entropy
generation due to dissipation and to conduction have the same unit (W/K) and can thus be analyzed
together. This simplifies the physically-based comparison between the two possibly concurrent
objectives, minimizing ṠD,q and minimizing ṠC,q. The alternative comparison between V̇min (m3/s)
and θq,min (−) would be far more difficult to interpret.
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Ṡ,

C
,q

Re0

Re0 = Re∞

Re∞ =

0.5–8
16
32
64
128
256
512
1024
2048
4096

Figure 11. Points where Re0 = Re∞ is reached.

7.3. Total Entropy Generation

From the previous Sections 7.1 and 7.2 the following conclusions can be derived:

• A lower entropy generation due to dissipation NṠ,D,q,min is associated to lower values of Re0,min

as well as Re∞,min.
• A lower entropy generation due to conduction NṠ,C,q,min is correlated with an

increasing Re∞,max.
• The minima of entropy generation due to conduction NṠ,C,q,min are all observed close a specific

value of Re0 (around 10, 000) for all Re∞.
• Below this value, the flow field is too slow for an optimal convective thermal energy transport.
• Above this value, fluid dissipation increases and therefore the temperature difference between

fluid and solid gets smaller.

The final challenge is to find the best compromise between entropy generation due to dissipation
and entropy generation due to conduction. A qualitatively similar competition was discussed in the
introduction, discussing the competing goals between cooling and noise emissions. Figure 12 shows
the sum of entropy generation due to dissipation and conduction (NṠ,Gen,q). As it can be seen, the
minima of NṠ,Gen,q is at Re0 ≈ 800, for all Re∞ ≤ 256.

NṠ,Gen,q,min = f (Re0 ≈ 800){for 0.5 ≤ Re∞ ≤ 256} (17)

This value is much smaller than the minima for the entropy generation due to conduction, which
is at Re0 ≈ 10, 000. For Re∞ ≥ 1024 the total entropy generation is strongly influenced by the entropy
generation due to dissipation and therefore follows the behavior of NṠ,D,q, already shown in Figure 8.
The solid blue line corresponding to Re∞ = 512 in Figure 12 shows the transition between both
typical behaviors. Figures 13 and 14 show NṠ,D,q, NṠ,C,q and NṠ,D,Gen for Re∞ = 32 and Re∞ = 1024,
respectively, these values being chosen as being representative of these two different regimes. For
the case Re∞ = 32 in Figure 13, the entropy generation due to conduction NṠ,C,q is the dominating
effect, till Re0 ≈ 1600. At this point the entropy generation due to dissipation NṠ,D,q reaches the same
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magnitude and continues to grow with an increasing Re0. At Re0 ≈ 6500 the total entropy generation
NṠ,Gen,q depends on the entropy generation due to dissipation, only. For the case Re∞ = 1024 in
Figure 14, NṠ,D,q and NṠ,C,q have roughly the same magnitude, till Re0 ≈ 800.
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Figure 12. Effect of Re0 and Re∞ on NṠ,Gen,q.
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Ṡ,

q

Re0
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Figure 13. NṠ,D,q (dotted, ♦), NṠ,C,q (dashed, �) and NṠ,Gen,q (solid,4) for Re∞ = 32.
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Figure 14. NṠ,D,q (dotted, ♦), NṠ,C,q (dashed, �) and NṠ,Gen,q (solid,4) for Re∞ = 1024.

Hence, both have an influence on the total entropy generation NṠ,Gen,q. After this point the
entropy generation due to dissipation NṠ,D,q becomes the dominating effect due to a higher Re0 and
completely controls the total entropy generation above Re0 ≈ 3000. The total entropy generation
shows an earlier minimum as the entropy generation due to conduction. This is because of the
dissipation, which is included in the total entropy generation as well. Therefore, in order to minimize
total entropy generation, the magnitude of the Reynolds numbers have to be further reduced.

7.4. Irreversibility Ratios

Figure 15 shows the irreversibility distribution ratio according to Bejan [2], which is defined as:

φ =
dissipation
conduction

=
NṠ,D,q

NṠ,C,q
(18)

The behavior of φ is similar to NṠ,D,q in Figure 8, except for maxima found at Re0 ≈ 20, 000.
Its magnitude is equal for all Re∞ considered, with φmax = 500. After Re0 ≈ 20, 000 the entropy
generation due to conduction NṠ,C,q mostly contributes to the total energy generation, due to viscous
effects. Figure 16 presents the Bejan number (Be) which was introduced by Paoletti et al. [33] and is
defined as:

Be =
conduction

total generation
=

NṠ,C,q

NṠ,Gen,q
(19)

The range of the Bejan number is 0 ≤ Be ≤ 1, where 0 is the limit at which the irreversibility
is dominated by dissipation effects. At Be = 1 the irreversibility due to conduction dominates and
at Be = 0.5 the irreversibility rates of dissipation and conduction are equal. The dashed line shows
the equilibrium. For the range 6 ≤ Re0 ≤ 200, Re∞ = 1024 corresponds exactly to Be = 0.5. For
Re∞ ≤ 512 the same equilibrium is reached at Re0 ≈ 1600. For values Re∞ ≥ 2048 the entropy
generation due to dissipation is the dominating effect and no equilibrium is observed. The minima
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of Be is at Re0 ≈ 20, 000 with the magnitude Bemin = 0.0035 for all Re∞ ≤ 2048. For all considered
Re∞ ≤ 256 the behaviors are qualitatively similar to each other.
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Figure 15. Effect of Re0 and Re∞ on φ.
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Figure 16. Effect of Re0 and Re∞ on Be.
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7.5. Information Regarding The Flow Field

In Figures 17–19 contour plots of velocity, temperature and total entropy generation are shown
for the case Re0 = 6 and Re∞ = 2048. Symmetric results are naturally obtained. High velocities are
seen in Figure 17 around the cylinder. In the near-wall region the velocity goes to zero due to the
no-slip boundary condition.

Figure 17. Contour plot of u for Re0 = 6 and Re∞ = 2048.

Figure 18. Contour plot of T for Re0 = 6 and Re∞ = 2048.
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Between the rotating cylinder and the fixed sleeve, a back flow area exists along the sleeve’s wall
(highlighted in Figure 19). In this area the flow velocity is obviously very low. For a better thermal
energy transport such areas should be avoided. Looking at the temperature contour plot in Figure 18
the thermal energy transport downstream of the cylinder is clearly visible (highlighted in Figure 19).
High temperatures are found behind the rotating cylinder. The temperature gradients in the fluid are
much smaller than along the solid-fluid interface. Due to that, most of the areas (in particular in front
of, above and below the cylinder) convey no further information about the flow field when analyzing
the temperature. Compared to the velocity contour plot, the temperature contour plot gives no useful
information for optimizing the flow field. In Figure 19 all information from the previously discussed
variables (u and T) can be found by analyzing the entropy generation. The back flow area clearly
appears, as well as the area of thermal energy transport downstream of the cylinder. In addition, the
separation point along the rotating cylinder can be clearly detected.

Flow separation

Thermal

energy

transport

Back flow area

Back flow area

Figure 19. Contour plot of Ṡ
′′′

Gen,q for Re0 = 6 and Re∞ = 2048.

Finally, the total volumetric entropy generation describes both entropy generation due to
dissipation and due to conduction in one single value, as discussed in Section 7.3. Based on
this information, optimizing the sleeve shape to get a better cooling of the rotating cylinder
becomes possible.

8. Conclusions

Numerical investigations of entropy generation relying on a canonical configuration have been
carried out successfully. Thanks to this simplified configuration the complex flow processes that
occur in a real alternator system can be simulated in an efficient manner. By reducing the numerical
effort, the identification of suitable indicators such as entropy generation becomes possible. The first
and second law of thermodynamics have been used in combination with numerical simulations to
demonstrate the advantage of this new concept. After grid-independence tests and code verification,
promising results have been obtained.

A constant wall heat flux along the cylinder was considered for all simulations. The oncoming
flow u∞ enters the domain between the static sleeve and the rotating cylinder through an opening
angle β = π/6.
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The entropy generation due to dissipation NṠ,D,q shows a smooth variation when varying
oncoming flow velocity u∞ (thus Re∞) and tangential velocity u0 (connected to Re0). When increasing
Reynolds number (Re∞ or Re0), NṠ,D,q increases as well. Therefore, the minimum of NṠ,D,q is found
at the lowest Reynolds numbers. These results correlate with the volumetric flow rate V̇ measured
along the outlet of the canonical configuration.

The volumetric entropy generation due to conduction NṠ,C,q decreases when increasing the
velocity of incoming flow Re∞. The minimum is found at Re0 ≈ 10, 000 for all simulations considered.
Below this value, the flow field is too slow for an optimal thermal energy transport. Above this value
the viscous effects increase and, therefore, the temperature difference between fluid and solid gets
smaller. These results correlate with the dimensionless temperature difference θq.

The total volumetric entropy generation NṠ,Gen,q shows a similar behavior as the entropy
generation due to conduction for all Re∞ ≤ 256. Here, the minima NṠ,Gen,q,min is at Re0 ≈ 800.
If Re∞ is larger, the total entropy generation becomes dominated by the entropy generation due to
dissipation and has therefore its minima at small Re∞ and Re0 values.

Considering the contour plots it can be seen, that the total entropy generation contains in a
lumped form the information from velocity and temperature, which is very important, for instance
in connection with recirculation areas. In addition, the entropy generation enables a physically-based
comparison between two competing properties measured with the same unit. Based on entropy
generation, optimizing cooling properties of electric machines should be possible. With this
knowledge, promising regions for optimization can be located.

The next step consists in carrying out a design optimization of the canonical configuration
based on the entropy generation and on the results discussed in this work. Finally, a real, industrial
configuration will be considered in the same manner.
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