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Abstract: In this paper, we proposed a novel information-based approach to precision analysis
of indoor wireless local area network (WLAN) localization using location fingerprint. First of
all, by using the Fisher information matrix (FIM), we derive the fundamental limit of WLAN
fingerprint-based localization precision considering different signal distributions in characterizing
the variation of received signal strengths (RSSs) in the target environment. After that, we explore
the relationship between the localization precision and access point (AP) placement, which can
provide valuable suggestions for the design of the highly-precise localization system. Second, we
adopt the heuristic simulated annealing (SA) algorithm to optimize the AP locations for the sake
of approaching the fundamental limit of localization precision. Finally, the extensive simulations
and experiments are conducted in both regular line-of-sight (LOS) and irregular non-line-of-sight
(NLOS) environments to demonstrate that the proposed approach can not only effectively improve
the WLAN fingerprint-based localization precision, but also reduce the time overhead.

Keywords: WLAN localization; access point placement; location fingerprint; Fisher information;
simulated annealing

1. Introduction

In the recent decade, there has been a growing interest in indoor localization techniques,
which are based on existing indoor wireless communication infrastructures and devices. Due to
the implementation ease and cost efficiency [1,2], the indoor wireless local area network (WLAN)
fingerprint-based localization approach is preferred compared to the conventional trilateration
localization approaches, which are easily compromised by the propagation path loss, multi-path
fading and environmental shadowing. As far as we know, there are generally two phases
involved in WLAN fingerprint-based localization [3–6], namely the off-line phase and on-line
phase. In the off-line phase, the fingerprint database is built based on the received signal strength
(RSS) measurements, which are associated with the calibrated reference points (RPs) in the target
environment. Then, in the on-line phase, the target locations are estimated by the matching from the
newly-recorded RSS measurements against the pre-built fingerprint database to estimate the target
locations [7].

The multi-path fading, environmental shadowing and channel interference always result in
significant temporal and spatial variations of RSS distributions and eventually lead to low localization
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precision [8]. To the best of our knowledge, there are very few works focusing on the theoretical
analysis of the WLAN fingerprint-based localization precision, but in fact, the fundamental limit of
localization precision can help greatly in AP placement optimization to achieve the highly-precise
localization purpose.

In this paper, we propose an analytical model to characterize the variation of RSSs under
different signal distributions for the sake of deriving the closed-form fundamental limit of the
WLAN fingerprint-based localization precision based on the Fisher information matrix (FIM) [9–13].
Furthermore, the impact of the number and geographical locations of APs and environment noise on
localization precision is also discussed.

The rest of this paper is structured as follows. The related works are given in Section 2. In
Section 3, we introduce the system in detail, including the calculation of the fundamental limit of
localization precision and optimization of AP placement. Simulation results are provided in Section 4.
In Section 5, some interesting discussions are presented. A case study is presented in Section 6.
Finally, we conclude the paper in Section 7.

2. Related Work

In the past decade, the WLAN fingerprint-based localization precision has been studied
extensively. The authors in [14] proposed that the number and locations of APs, the physical layout
and the mean of RSS measurements at each RP have a significant impact on localization precision.
To optimize AP placement, the existing approaches are generally based on the signal coverage,
service connectivity, network throughput and transmission rate [15]. The authors in [16] invented
a weighted kernel function by which the impact of different APs is differentiated. Specifically,
larger weights are assigned to the APs that contribute more to the localization. The authors in
[17] developed an approach to find the minimum number of APs that are used to provide the full
coverage, as well as to conduct the localization with the errors falling into a given scope. Chen
in [18] proposed an AP placement optimization approach by distinguishing every two WLAN RSS
fingerprints to guarantee satisfactory signal coverage. The localized local discriminant embedding
and AP selection (LLDE-APS) approach in [19] not only optimizes the AP placement, but also saves
the power consumption of the mobile terminal. The approach in [19] is featured with the main
advantage of extracting the most discriminative RSS features for target localization. However, the
existing works in the literature paid very little attention to the theoretical relationship between the
AP placement and localization precision. To solve this problem, we propose a novel AP placement
optimization approach to improve the localization precision, as well as to preserve the real-time
capacity of the system. In [20], the authors proposed the max Euclidean distance (ED)-based AP
placement optimization approach, aiming to achieve the maximal sum of the ED between every two
location fingerprints in a WLAN environment. However, the existing work from the literature paid
very little attention to the theoretical and analytical relations of the AP placement and localization
precision. To solve this problem, we proposed a novel AP placement optimization approach based on
the relationship between the geographical locations of APs and localization errors with the purpose
of enhancing the localization precision, as well as guaranteeing the real-time capacity of localization.

In wireless sensor networks (WSNs), there is a variety of works focusing on the error analysis
by using the FIM. The authors in [21] presented the conditions in which the multipath delay can
be used to improve the localization accuracy and meanwhile introduced the FIM to investigate the
highest achievable localization accuracy. The authors in [22] also studied the relationship between the
multipath delay and time of arrival (TOA)-based localization accuracy based on the prior statistics of
the errors. The authors in [23] relied on the Cramer–Rao lower bound (CRLB) to estimate the locations
of sensors by using the unbiased Gaussian range estimation from the anchor nodes in the angle of
arrival (AOA)-based localization. In this paper, we utilize the FIM to derive the fundamental limit of
WLAN fingerprint-based localization precision under different signal distributions. This result can
provide valuable insights into the improvement of fingerprint-based localization precision, as well as
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the overall design of the WLAN localization system. Furthermore, the simulated annealing algorithm
(SA) [24,25] is used to search the optimal AP locations, which correspond to the lowest fundamental
limit of localization precision. Although the FIM has been significantly considered in localization
precision analysis, the existing literature mainly applied it to the situation that the TOA, AOA or
RSS following the Gaussian distribution is selected as the location metric. However, in this paper,
we aim to reveal the relations of the fundamental limit of localization precision and various signal
distributions.

We clarify that the three main contributions of this paper are that: (i) the FIM is used to derive
the fundamental limit of indoor WLAN localization precision; (ii) the theoretical analysis towards
the relationship between the localization errors and signal distributions is presented; and (iii) the SA
algorithm is selected to search the optimal AP locations, which correspond to the lowest fundamental
limit of localization precision.

3. System Description

3.1. System Overview

RSSs follow the 

Gaussian signal 

distribution

RSSs follow the 

Rayleigh signal 

distribution
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No

In the LOS?

Yes

k = m? k = k + 1

Derive fundamental limit of localization 

precision under the Rayleigh and Gaussian  

signal distributions respectively

Yes

Derive fundamental limit of localization 

precision under the mixed signal distribution

Construct the objective function 

of the SA algorithm for AP 

placement optimization 

Select all the candidate 

AP locations to construct the 

solution space

Assume the i-th user 

location Ɵi = (xi, yi)
T

AP1，AP2,  , APm

Obtain the optimal 

AP placement

Search the optimal AP locations 

by the SA algorithm

Module 2：

AP placement 

optimization by using 

the SA algorithm

Module 1：

Calculation of 

fundamental limit of 

WLAN fingerprint based 

localization precision

Figure 1. Flow chart of the proposed system.

As discussed in [26], we assume that the RSSs in the non-line-of-sight (NLOS) environment
follow the Rayleigh distribution, while the ones in the line-of-sight (LOS) environment follow the
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Gaussian distribution. We define that the i-th user is in the LOS environment for the m-th AP
when there is no wall blocking for the rectilinear propagation from the m-th AP to the receiver. On
the contrary, if there is wall blocking, it is defined that the user is in the NLOS environment for
the m-th AP. Secondly, we rely on the characteristics of the FIM to derive the fundamental limit of
localization precision under the Gaussian signal distribution, Rayleigh signal distribution and mixed
signal distribution, respectively. Thirdly, we select all of the candidate AP locations to construct
the solution space. Then, we construct the objective function of the SA algorithm for AP placement
optimization with the purpose of achieving the lowest fundamental limit of localization precision.
Finally, we search the optimal AP locations by the SA algorithm. The proposed system consists of two
main modules: (i) the calculation of the fundamental limit of WLAN fingerprint-based localization
precision; and (ii) the AP placement optimization by using the SA algorithm to achieve the lowest
fundamental limit of localization precision. The flow chart of the system is shown in Figure 1.

3.2. Fundamental Limit of Localization Precision

3.2.1. Localization Precision vs. Signal Distributions

We select the COST231model [27] to characterize the propagation property in an indoor WLAN
environment. The COST231 model considers the large-scale path loss, as well as the signal
penetration, like the wall attenuation factor (WAF) and floor attenuation factor (FAF), as described
in Equation (1).

P = P(d0)− 10βlog10(
d
d0

)− wPw − χ (1)

where P and P(d0) stand for the RSSs recorded at the locations with d and d0 meters from the AP,
respectively. d0 is the reference distance, and β is the path loss exponent. wPw is the signal fading by
the walls with the number of w. χ is the noise with the variance of σ2.

By assuming that θ̂i = (x̂i , ŷi)
T is the estimated location with respect to the i-th real location

θi = (xi , yi)
T, we can calculate the covariance matrix of θ̂i by:

var
[
θ̂i

]
= Eθ

{(
θ̂i − θi

) (
θ̂i − θi

)T
}

=

[
δ2

x̂i

δŷi x̂i

δx̂i ŷi

δ2
ŷi

]
(2)

where σ2
x̂i

and σ2
ŷi

are the mean square errors (MSEs) of the estimated location in the X and Y
coordinates, x̂i and ŷi. σx̂i ŷi and σŷi x̂i are the covariance between x̂i and ŷi and between ŷi and
x̂i, respectively.

Since the value θ̂i is calculated from the estimate of P̂, the values θ̂i and P̂ have the same variance
σ2 under the unbiased estimates of P and θi. Thus, the localization error will increase as the value
σ increases. By setting fθi (P) as the probability density function (PDF) of P with respect to θi, the
expectation of the sharpness of fθi (P) equals 1/σ2, as shown in Equation (3).

E

{
−

∂2 ln fθi (P)
∂θ2

i

}
=

1
σ2 (3)

Then, we have:

var
[

P̂
]
=var

[
θ̂i

]
=σ2=

1

E
{
− ∂2 ln fθi

(P)
∂θ2

i

} (4)

For the biased estimate of θ̂i, we easily obtain:

var
[
θ̂i

]
≥ 1

E
{
− ∂2 ln fθi

(P)
∂θ2

i

} (5)
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By setting J (θi) = −E
[

∂2 ln fθi
(P)

∂2θi

]
as the FIM of θi, we have:

var
[
θ̂i

]
≥ J(θi)

−1 (6)

Then, we calculate:

J (θi) = −E

[
∂2 ln fθi (P)

∂2θi

]

= −E

∫ ∂2

∂2θi
fθi (P)

fθi (P)
fθi (P)dP−

[
∂ ln fθi (P)

∂θi

]2


= −E
[

∂2

∂2θi

∫
fθi (P)dP

]
+E
[

∂ ln fθi (P)
∂θi

]2

= E
[

∂ ln fθi (P)
∂θi

]2

(7)

As discussed in [28,29], the score function U (θi) is defined as:

U (θi) = ∇ ln fθi (P) =
∂

∂θi
ln fθi (P) (8)

Therefore, based on:

E [U (θi)] = E
[

∂

∂θi
ln fθi (P)

]
= E

[
1

fθi (P)
· ∂

∂θi

(
fθi (P)

)]
=
∫

∂

∂θ
( fθi (P)) · 1

fθi (P)
· fθi (P) · dP

=
∂

∂θ

∫
fθi (P) · dP = 0

(9)

we have var[U (θi)] = E
[

∂ ln fθi
(P)

∂θ

]2
= J (θi).

Analysis with Gaussian signal distribution

As the RSSs follow the Gaussian signal distribution, the joint PDF of RSSs is calculated by:

fθi (P) =
m

∏
k=1

1√
2πσ1

exp

(
− ξi

2

2σ1
2

)
(10)

where ξi = P− P(d0) + 10β log( dik
d0
)+Pw f , σ1

2 is the deviation of the RSSs collected by the receiver,

dik =
√
(xi − xk)2 + (yi − yk)2, (xk , yk) represents the coordinate of the k-th AP and m is the AP

number. We convert Equation (10) into:

fθi (P) =
m

∏
k=1

1√
2πσ1

exp
{
−ρ1

2
(ln dik)

2
}

(11)

where ρ1 =
(

10β
σ1 ln 10

)2
. At this point, the geometric relationship between the i-th real location and the

k-th AP is shown in Figure 2.
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i-th real location

(xi , yi)

k-th AP (xk , yk)

αik 

dik

|xi-xk|

|yi-yk|

X

Y

0

Figure 2. Geometric relationship between the i-th real location and the k-th AP.

Based on Equation (7), we have:

J (θi) =

[
Jxx (θi)

Jyx (θi)

Jxy (θi)

Jyy (θi)

]
(12)

where Jxx(θi) = − ∂2

∂x2 ln fθi (P), Jxy(θi) = − ∂2

∂x∂y ln fθi (P), Jyx(θi) = − ∂2

∂y∂x ln fθi (P) and

Jyy(θi) = − ∂2

∂y2 ln fθi (P). Based on this, we calculate that:

∂2

∂xi
2 ln fθi (P) = −ρ1

m

∑
k=1

{
ln dik ×

∂

∂xi

(
xi − xk

dik
2

)
+

(xi − xk)
2

dik
2 · dik

2

}
(13)

∂2

∂xi∂yi
ln fθi (P) = −ρ1

m

∑
k=1

{
ln dik ×

∂

∂yi

(
xi − xk

dik
2

)
+

(xi − xk) (yi − yk)

dik
2 · dik

2

}
(14)

∂2

∂yi∂xi
ln fθi (P) = −ρ1

m

∑
k=1

{
ln dik ×

∂

∂xi

(
yi − yk

dik
2

)
+

(xi − xk) (yi − yk)

dik
2 · dik

2

}
(15)

∂2

∂yi
2 ln fθi (P) = −ρ1

m

∑
k=1

{
ln dik ×

∂

∂yi

(
yi − yk

dik
2

)
+

(yi − yk)
2

dik
2 · dik

2

}
(16)

Based on Equations (7) and (9), we can simplify Equations (13)–(16) into:

Jxx (θi) = ρ1
m
∑

k=1

[
cos αik

dik

]2

Jxy (θi) = Jyx (θi) = ρ1
m
∑

k=1

sin αik cos αik
dik

2

Jyy (θi) = ρ1
m
∑

k=1

[
sin αik

dik

]2

(17)

Therefore, we can calculate { J (θi)}−1 by:

{ J (θi)}−1 =
1

|J (θi)|
·
[

Jyy (θi)

−Jxy (θi)

−Jyx (θi)

Jxx (θi)

]
(18)

where |J (θi)| = Jxx (θi) Jyy (θi)− Jxy(θi)
2. Based on Equation (6), we have:

σ2
x̂i
= E(x̂i − xi)

2 ≥ Jxx
−1, σ2

ŷi
= E(ŷi − yi)

2 ≥ Jyy
−1 (19)
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Finally, the fundamental limit of localization precision with respect to θi equals:

Vm (θi) = Jxx
−1 + Jyy

−1 =
Jxx + Jyy

Jxx · Jyy − Jxy
2 =

1
ρ1
· (

m
∑

k=1

[
cos αik

dik

]2
+

m
∑

k=1

[
sin αik

dik

]2
)

m
∑

k=1

[
sin αik

dik

]2 m
∑

k=1

[
cos αik

dik

]2
−
[

m
∑

k=1

sin αik cos αik
dik

2

]2 (20)

Analysis with Rayleigh signal distribution

As the RSSs follow the Rayleigh signal distribution, the joint PDF of RSSs is calculated by:

fθi (P) =
m

∏
k=1

ξi
σ22 × exp

(
− ξi

2

2σ22

)
(21)

where 4−π
2 σ2

2 is the deviation of RSSs. We convert Equation (18) into:

fθi (P) =
m

∏
k=1

ρ2 ln(dik)

10β ln 10
× exp

{
−ρ2

2
(ln dik)

2
}

(22)

where ρ2 =
(

10β
σ2 ln 10

)2
. Similar to the previous discussion under the Gaussian signal distribution,

we have:

∂2

∂xi
2 ln fθi (P) =

m

∑
k=1

{
(ρ2 ln dik −

1
ln dik

)× ∂

∂xi

(
xi − xk

dik
2

)
− (ρ2 +

1
ln2dik

)× (xi − xk)
2

dik
2 · dik

2

}
(23)

∂2

∂xi∂yi
ln fθi (P) =

m

∑
k=1

{
(ρ2 ln dik −

1
ln dik

)
∂

∂yi

(
xi − xk

dik
2

)
− (ρ2 +

1
ln2dik

)
(xi − xk) (yi − yk)

dik
2 · dik

2

}
(24)

∂2

∂yi∂xi
ln fθi (P) =

m

∑
k=1

{
(ρ2 ln dik −

1
ln dik

)
∂

∂xi

(
yi − yk

dik
2

)
− (ρ2 +

1
ln2dik

)
(xi − xk) (yi − yk)

dik
2 · dik

2

}
(25)

∂2

∂yi
2 ln fθi (P) =

m

∑
k=1

{
(ρ2 ln dik −

1
ln dik

)× ∂

∂yi

(
yi − yk

dik
2

)
− (ρ2 +

1
ln2dik

)× (yi − yk)
2

dik
2 · dik

2

}
(26)

Based on Equations (7) and (9), we obtain:

Jxx =
m
∑

k=1
(ρ2 +

1
ln2dik

)×
[

cos αik
dik

]2

Jxy = Jyx =
m
∑

k=1
(ρ2 +

1
ln2dik

)× sin αik cos αik
dik

2

Jyy =
m
∑

k=1
(ρ2 +

1
ln2dik

)×
[

sin αik
dik

]2

(27)

Finally, the fundamental limit of localization precision with respect to θi is:

Vm (θi) = Jxx
−1 + Jyy

−1 =
Jxx + Jyy

Jxx · Jyy − Jxy
2

=

m
∑

k=1
s×

[
cos αik

dik

]2
+

m
∑

k=1
s×

[
sin αik

dik

]2

m
∑

k=1
s×

[
sin αik

dik

]2
×

m
∑

k=1
s×

[
cos αik

dik

]2
−
[

m
∑

k=1
s× sin αik cos αik

dik
2

]2

(28)

where s=ρ2 +
1

ln2dik
.
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For simplicity, we define the average of the fundamental limit of localization precision for the
target environment as:

Vave (θ) =
1
n

n

∑
i=1

Vm (θi) (29)

where n is the number of RPs.

3.2.2. Impact of the AP Number

Based on Equations (20) and (28), the relationship between the fundamental limit of localization
precision with m and m + 1 APs respectively is described as:

Vm (θi)−Vm+1 (θi) =

(
sin αi(m+1)

di(m+1)

√
ηim

m
∑

k=1

[
c cos αik

dik

]2
−ωim −

cos αi(m+1)
di(m+1)

√
ηim

m
∑

k=1

[
c sin αik

dik

]2
−ωim

)2

ωim ·ωi(m+1)
(30)


ηim =

m
∑

k=1

[
c cos αik

dik

]2
+

m
∑

k=1

[
c sin αik

dik

]2

ωim =
m
∑

k=1

[
c sin αik

dik

]2
×

m
∑

k=1

[
c cos αik

dik

]2
−
[

m
∑

k=1

c2 sin αik cos αik
dik

2

]2 (31)

c = ρ1 and s for the Gaussian and Rayleigh signal distributions, respectively. Based on
Equations (30) and (31), we observe that the increase of the AP number reduces the fundamental
limit of localization precision. Furthermore, the relationship Vm (θi) = Vm+1 (θi) holds as the
AP locations are collinear (i.e., αi(m+1) = αik, k ∈ {1, · · · , m}). Figures 3 and 4 show the
cumulative distribution functions (CDFs) of errors with different AP numbers in the LOS and NLOS
environments, respectively. As can be seen from these figures, the variation of the AP number has
a slight impact on the localization errors when the AP number is larger than three. Furthermore,
compared to the Rayleigh signal distributions, the Gaussian signal distribution generally results in
higher localization precision.
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Figure 3. CDFs of errors with different AP numbers in the LOS environment. (a) Under the Gaussian
signal distribution; (b) under the Rayleigh signal distribution.
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Figure 4. CDFs of errors with different AP numbers in the non-LOS (NLOS) environment. (a) Under
the Gaussian signal distribution; (b) under the Rayleigh signal distribution.

3.2.3. Impact of Noise Variance

Based on Equations (20) and (28), we can observe that the variation of σ has a significant impact
on the fundamental limit of localization precision. To illustrate this observation more clearly, we
present the CDFs of errors with different variances of noise in the LOS and NLOS environments,
respectively, as shown in Figures 5 and 6. From these figures, the increase of noise variance (i.e., σ2)
results in the decrease of localization precision, as expected.
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Figure 5. CDFs of errors with different variance of noise in the LOS environment. (a) Under the
Gaussian signal distribution; (b) under the Rayleigh signal distribution.
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Figure 6. CDFs of errors with different variances of noise in the NLOS environment. (a) Under the
Gaussian signal distribution; (b) under the Rayleigh signal distribution.

3.2.4. Fundamental Limit with a Mixed Signal Distribution

In the actual indoor environment, the RSSs from different APs cannot be guaranteed to follow
a unique signal distribution. Therefore, without losing generality, we assume that the RSSs from the
former m1 APs follow the Gaussian signal distribution, while the RSSs from the latter m2 APs follow
the Rayleigh signal distribution. Based on this, we have:

fθi (P) = fθi (P1) · fθi (P2)

fθi (P1) =∏m1
k=1

1√
2πσ1

exp
(
− ξ2

2σ1
2

)
fθi (P2) =∏m2

k=1
ξi

σ2
2 · exp

(
− ξi

2

2σ2
2

) (32)

Thus, we have: 

Jxx =
m1
∑

k1=1
ρ1

[
cos αik1

dik1

]2
+

m2
∑

k2=1
s
[ cos αik2

dik2

]2

Jxy = Jyx =
m1
∑

k1=1
ρ1

sin αik1
cos αik1

dik1
2 +

m2
∑

k2=1
s

sin αik2
cos αik2

dik2
2

Jyy =
m1
∑

k1=1
ρ1

[
sin αik1

dik1

]2
+

m2
∑

k2=1
s
[ sin αik2

dik2

]2

(33)

Therefore, the fundamental limit of localization precision with respect to θi under the mixed
signal distribution is calculated by:

V (θi) = Jxx
−1 + Jyy

−1 =
Jxx + Jyy

Jxx · Jyy − Jxy
2 (34)

3.3. AP Placement Optimization

As one of the most representative heuristic optimization algorithms, the SA algorithm applies
the concept of the annealing process in metallurgy to conduct the optimization search. In the SA
algorithm, an initial temperature is set before the annealing process. As the temperature drops, the
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SA algorithm iteratively searches for the optimal solution. Different from many existing optimization
searching algorithms, like the hill climbing (HC) algorithm [30], the SA algorithm distributes an
acceptance probability to each newly-obtained solution, rather than discarding the new solution,
which has a higher cost compared to the previous one. Based on this, the SA algorithm is featured
with the high probability of achieving the global optimum. Furthermore, the SA algorithm has been
proven to consume much lower time overhead compared to the widely-used brute-force searching
(BFS) [31] algorithms.

In our system, we rely on the SA algorithm to search the optimal AP locations, which correspond
to the smallest value of the objective function f=Vave (θ), as shown in Figure 1. Specifically, we first
define the parameters used in the SA algorithm, i.e., the starting temperature T0, cooling factor α,
iteration number N and ending temperature Ts. Second, we select all of the candidate AP locations
to construct the solution space W. Third, we construct the initial solution W0 = Wcurrent, where
Wcurrent is the solution in the current iteration, and then conduct the solution updating to obtain the
new solution Wnew = Wcurrent. Fourth, we do the searching of the optimal solutions in an iterative
manner. The acceptance probability of each newly-obtained solution, p, is calculated by:

p = min
[

1, exp
(
−l

f (Wnew)− f (Wcurrent)

T

)]
(35)

where l is a constant. T is the temperature for the current iteration. f (Wnew) and f (Wcurrent) are
the values of the objective function when the AP is located at Wnew and Wcurrent, respectively. The
temperature for the z + 1-th iteration equals Tz+1 = αTz. To illustrate this process more clearly, the
flow chart of the SA algorithm used for AP placement optimization is shown in Figure 7.

Select all the candidate AP locations 

to construct the solution space W   

Obtain

 the optimal AP 

placement

Construct the initial solution 

W0=Wcurrent and set T = T0

Define the parameters T0, a, N, and TS

 ƒ=ƒ(Wnew) ƒ(Wcurrent) 

Yes

Yes

Module 2：AP placement optimization by using the SA algorithm

Conduct the solution updating to 

obtain Wnew

 ƒ  0？

p=exp(- ƒ/T)

p>random[0,1]？

Yes

Accept the new solution 

and set Wcurrent=Wnew,

ƒ(Wcurrent)=ƒ(Wnew)

Iteration 

number = N？

No

No

T>TS？

Yes

No

Set T=T×a and 

iteration number = N

No

Figure 7. Flow chart of the SA algorithm used for AP placement optimization.
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4. Simulation Results

We conduct the simulations in two typical environments, the regular LOS and irregular NLOS
environments. For simplicity, we select the k-nearest neighbor (k-NN) algorithm [2] to examine the
error performance of the proposed approach. The k-NN algorithm computes the Euclidean distances
in signal space between the newly-recorded RSSs and pre-stored RSSs in the fingerprint database
and then calculates the geometrical center of the k-nearest neighbors as the estimated location. The
parameters that are also used in [32] are shown in Table 1.

Table 1. Parameters. RP, reference point.

Parameters Values

Platform MATLAB 7.0
Carrier frequency 2.4 GHz

P (d0) −28 dBm
β 2.2

Number of candidate AP locations 144 (LOS), 176 (NLOS)
Number of RPs 144 (LOS), 176 (NLOS)

Number of test points 100
Dimensions of the target environment 12 m× 12 m (LOS), 36 m× 21 m (NLOS)

k 3
T0 200
N 500
α 0.95
TS 0.1
Pw 10

4.1. Regular LOS Environment

Figure 8 shows the regular LOS environment with dimensions of 12 m by 12 m. The 144 RPs
(with •’s) with an interval of 1 m are uniformly calibrated in this environment.

12m

1
2
m

Figure 8. The regular LOS environment.

Figure 9 shows the CDFs of errors achieved by the LLDE-APS [19], conventional max
ED-based [20], symmetric and proposed fundamental limit-based AP placement optimization
approaches. As the simplest approach, the symmetric AP placement optimization approach divides
the target environment into a batch of subareas with the approximately same dimensions, and
meanwhile, an AP is placed at the geometrical center of each subarea. As can be seen from
Figure 9, we observe that the proposed approach provides smaller localization errors compared to
the conventional ones when the AP number is larger than two.
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Figure 9. CDFs of errors in the regular LOS environment. (a) With one AP; (b) with two APs; (c) with
three APs; (d) with four APs.

4.2. Irregular NLOS Environment

Figure 10 shows the irregular NLOS environment with dimensions of 36 m by 21 m. We
uniformly calibrated 176 RPs (with •’s) with an interval of 1 m in the lobby. In this environment,
there are in total six office rooms, two washrooms, three corridors, one lobby, one staircase and two
elevators. The six areas where the candidate APs can be placed are notated as Subareas 1–6.
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Figure 10. The irregular NLOS environment.

Figure 11 shows the CDFs of errors by using the previously-introduced four AP placement
optimization approaches as the AP number increases from one to four. Based on the results in
Figures 9 and 11, it can be proven that in both regular LOS and irregular NLOS environments, the
proposed approach can guarantee the high WLAN fingerprint-based localization precision.
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Figure 11. CDFs of errors in the irregular NLOS environment. (a) With one AP; (b) with two APs; (c)
with three APs; (d) with four APs.
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4.3. Computation Overhead

We conduct all of the computation on a desktop with an Inter(R) core(TM) i3-3220 processor,
4 GB RAM and Windows 8 operating system. We compare the time overhead by the max ED-based
AP placement optimization and the proposed AP optimization as the AP number increases from one
to four. By using the SA algorithm, the time overhead involved in the max ED-based AP placement
optimization is much higher than the proposed AP optimization, since the ratios of time overhead are
much larger than one, as shown in Figure 12. From this figure, we observe that the proposed approach
consumes much lower time overhead compared to the max ED-based AP placement optimization
approach. Furthermore, the increase of the AP number enlarges the ratios of the time overhead.
Based on this, the proposed approach is proven to be more efficient for the scenario with a large
number of APs used for localization.
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Figure 12. Ratios of time overhead by the SA algorithm.

Figure 13 compares the time overhead required by the BFS, SA and HC algorithms under
different numbers of APs. From Figure 13, we observe that the time overhead by the HC algorithm is
the lowest among these three algorithms, whereas it very easily falls into the local optimum. Different
from the HC algorithm, the SA algorithm is based on the universal searching scheme and, meanwhile,
requires lower time overhead compared to the BFS algorithm. Therefore, it is proven that the SA
algorithm generally performs better than the HC and BFS algorithms, especially under a large number
of APs.
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Figure 13. Time overhead by the brute-force searching (BFS), SA and hill climbing (HC) algorithms.
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5. Discussion

The interesting questions about the difference in the placement of the optimal AP locations, as
well as the localization errors under different signal distributions remain to be answered.

Figure 14 shows the results of the placement of the optimal AP locations under the Gaussian,
Rayleigh and mixed signal distributions, respectively, in the NLOS environment. From these figures,
we can find that the optimal AP locations, which correspond to the lowest fundamental limit of
localization precision, are generally non-collinearly distributed. To illustrate this result clearly, we
take the mixed signal distribution as an example. By connecting every two most adjacent optimal AP
locations with a purple line, the purple lines should be collinear when the optimal AP locations are
collinearly distributed.

1

2 3 4 5 6

Gaussian signal distribution

Rayleigh signal distribution

Mixed signal distribution

(a)
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Figure 14. Placement of the optimal AP locations. (a) With three APs; (b) with four APs; (c) with five
APs; (d) with six APs; (e) with seven APs; (f) with eight APs; (g) with nine APs; (h) with 10 APs.
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Figure 15. CDFs of errors under different signal distributions. (a) With three APs; (b) with four APs;
(c) with five APs; (d) with six APs; (e) with seven APs; (f) with eight APs; (g) with nine APs; (h) With
10 APs.
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Figure 15 compares the CDFs of errors with respect to the Gaussian, Rayleigh and mixed signal
distributions, respectively, in the NLOS environment. As can be seen from these figures, we observe
that the Gaussian signal distribution generally brings the smallest localization errors, while the largest
errors result from the Rayleigh signal distribution. Based on this, we can make a reasonable conjecture
that a high localization precision is most likely to be provided when the APs with the LOS property
to the receiver are used for localization.

6. Case Study

Based on the previous discussion, we find that the proposed approach can help much in
designing a highly-precise localization system. In this section, we will continue to focus on the
cases study in a real indoor WLAN environment. Specifically, the positioning precision and
the corresponding time overhead are investigated under different AP numbers, AP optimization
approaches and signal distributions.

As shown in Figure 16, all of the experiments are conducted in a real indoor WLAN environment
with dimensions of 57 m× 25 m on the same floor in the Yi Fu building at Chongqing University of
Posts and Telecommunications (CQUPT). The 10 candidate AP locations are notated as 1©, 2©, · · · , 10©.
The Samsung S7568 smartphone, which has our developed WLAN RSS scanner installed, and D-link
DAP-2310 AP are selected as the receiver and transmitter, respectively, as shown in Figure 17. To
construct the fingerprint database, we uniformly calibrate 73 RPs in two straight corridors and one
office room, namely Areas 1, 2 and 3.
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Figure 16. Layout of the target environment.

(a) (b)

Figure 17. Experimental platform of WLAN RSS recording. (a) Deployment of D-link DAP-2310 APs;
(b) interface of WLAN RSS.
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6.1. CDFs of Errors with Different AP Numbers

Figure 18 shows the CDFs of errors with different AP numbers under the Gaussian, Rayleigh
and mixed signal distributions. As can be seen from this figure, the increase of the AP number
improves the positioning precision, which is in accordance with the previous simulation results.
However, when the AP number is larger than five, the impact of the variation of the AP number
on the positioning precision is slight.
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Figure 18. CDFs of errors with different AP numbers. (a) Under the Gaussian signal distribution; (b)
under the Rayleigh signal distribution; (c) under the mixed signal distribution.

6.2. CDFs of Errors by Using Different AP Optimization Approaches

To further study the effectiveness of the proposed approach, Figure 19 compares the CDFs of
errors by using the proposed fundamental limits, existing LLDE-APS and max ED approaches. In
Figure 19, the lower and upper bounds of errors indicate the groups of candidate AP locations
corresponding to the lowest and highest mean of positioning errors, respectively. From this figure, we
can find that although the proposed approach fails to achieve the highest mean of positioning errors,
its error performance is still better than the existing LLDE-APS and max ED approaches.
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Figure 19. CDFs of errors by using different AP optimization approaches. (a) With three APs; (b) with
four APs; (c) with five APs; (d) with six APs.

6.3. Positioning Errors under Different Signal Distributions

We compare the mean of positioning errors corresponding to the groups of optimal candidate
AP locations under the Gaussian, Rayleigh and mixed signal distributions, respectively, in Table 2.
From this table, we observe that the group of optimal candidate AP locations under the mixed signal
distribution achieves the lowest positioning errors compared to the Gaussian and Rayleigh signal
distributions. Furthermore, the mixed signal distribution is featured with the same error performance
as the Rayleigh signal distribution, which relies on the fact that the RSSs in the target environment can
be fitted well by the Rayleigh signal distribution, especially when the AP number is larger than three.

Table 2. Mean of positioning errors under different signal distributions.

AP Number Gaussian Signal Distribution Rayleigh Signal Distribution Mixed Signal Distribution

2 3.884 m 5.360 m 3.225 m
3 2.911 m 2.974 m 2.701 m
4 2.494 m 2.210 m 2.210 m
5 2.255 m 1.966 m 1.966 m
6 2.032 m 1.884 m 1.954 m
7 1.8998 m 1.819 m 1.819 m
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6.4. Time Overhead by Using Different AP Optimization Approaches

To examine the efficiency of the proposed approach, Figure 20 illustrates the time overhead
involved in the proposed fundamental limits, LLDE-APS and max ED approaches, respectively, as the
AP number increases from three to six. From this figure, we can find that the time overhead required
by the proposed approach is significantly lower than the one by the LLED-APS or max ED approach.
This result is due to the reason that the LLED-APS or max ED approach requires traversing all of the
RPs in each round during the iterative process, whereas the proposed approach optimizes the AP
locations by calculating the closed-form solution to the fundamental limit of localization precision
only once.
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Figure 20. Time overhead by using different AP optimization approaches.

6.5. Extension to a Multi-Floor Environment

We continue to conduct the experiments in a typical indoor multi-floor environment (including
the fourth the fifth floors in the Yi Fu building at CQUPT), as shown in Figure 21. These two
floors have the same planestructure depicted in Figure 16. The difference from the previously
discussed single-floor environment can be summarized in three ways: (i) the propagation model
in the multi-floor environment considers not only the signal fading by the walls, but also the one by
the floors; (ii) the estimated location is a two-dimensional coordinate in the single-floor environment,
while the one in the multi-floor environment is a three-dimensional coordinate; and (iii) the FIM of the
estimated location in the single-floor environment is a symmetric two by two matrix, while the one in
the multi-floor environment is a symmetric three by three matrix. Based on this, the previous results
under the single-floor condition can be easily extended into the multi-floor scenario. In addition, to
perform the testing, the nine candidate AP locations are notated as 1©, 2©, · · · , 9©, and meanwhile,
the target environment is divided into five subareas, namely Areas 1, 2, 3, 4 and 5. To construct the
fingerprint database, we uniformly calibrate 53 and 73 RPs on the fourth and fifth floors, respectively.
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Figure 21. Layout of an indoor multi-floor environment.

6.5.1. CDFs of Errors by Using Different AP Optimization Approaches

To investigate the performance of the proposed approach in the indoor multi-floor environment,
Figure 22 compares the CDFs of errors by using the proposed fundamental limits, existing LLDE-APS
and max ED approaches. From this figure, it is proven that the proposed approach can generally
achieve the highest positioning accuracy compared to the existing AP optimization approaches in the
indoor multi-floor environment.
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Figure 22. CDFs of errors by using different AP optimization approaches. (a) With three APs; (b) with
four APs; (c) with five APs; (d) with six APs.
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6.5.2. Positioning Errors under Different Signal Distributions

Table 3 compares the mean of positioning errors corresponding to the groups of optimal
candidate AP locations under the Gaussian, Rayleigh and mixed signal distributions, respectively.
In this table, we can find that by using the groups of optimal candidate AP locations, the mixed signal
distribution always achieves the smaller mean of positioning errors than the one by the Gaussian
or Rayleigh signal distribution. Furthermore, the groups of optimal candidate AP locations under
different AP numbers are illustrated in Table 4.

Table 3. Mean of positioning errors under different signal distributions.

AP Number Gaussian Signal Distribution Rayleigh Signal Distribution Mixed Signal Distribution

3 5.07 m 3.65 m 3.65 m
4 3.55 m 3.59 m 3.26 m
5 3.25 m 3.31 m 3.19 m
6 3.12 m 3.32 m 3.12 m
7 3.08 m 2.93 m 2.87 m
8 2.87 m 3.02 m 2.78 m
9 2.77 m 2.77 m 2.77 m

Table 4. Groups of optimal candidate AP locations under different signal distributions.

AP Number
Gaussian

Signal
Distribution

Rayleigh
Signal

Distribution

Mixed
Signal

Distribution

3 3© 5© 9© 4© 6© 7© 4© 6© 7©
4 3© 4© 5© 7© 1© 4© 7© 8© 4© 5© 6© 7©
5 3© 4© 6© 7© 8© 1© 3© 6© 8© 9© 2© 4© 6© 7© 8©
6 2© 3© 4© 6© 8© 9© 1© 3© 5© 6© 7© 8© 2© 3© 4© 6© 7© 8©
7 2© 3© 5© 6© 7© 8© 9© 3© 4© 5© 6© 7© 8© 9© 1© 2© 3© 4© 6© 7© 8©
8 1© 2© 3© 4© 5© 6© 7© 8© 1© 3© 4© 5© 6© 7© 8© 9© 1© 2© 3© 4© 6© 7© 8© 9©
9 1© 2© 3© 4© 5© 6© 7© 8© 9© 1© 2© 3© 4© 5© 6© 7© 8© 9© 1© 2© 3© 4© 5© 6© 7© 8© 9©

7. Conclusions

In this paper, we proposed a novel information-based approach to analyze the localization
precision, as well as to optimize the AP placement for indoor WLAN localization using the location
fingerprint. We derived the fundamental limit of WLAN fingerprint-based localization precision
by using the FIM and then relied on the SA algorithm to search the optimal AP locations, which
correspond to the lowest fundamental limit of localization precision. Compared to the widely-used
max ED-based and symmetric AP placement approaches, the proposed approach performs better in
the aspects of localization errors and time overhead. Moreover, experimental results are presented in
order to support our claims. For the future work, the information-based precision analysis of WLAN
fingerprint-based localization in a multi-floor environment forms an interesting topic.
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