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Abstract: In this paper, the general wiretap channel with channel state information (CSI) at the
transmitter and noiseless feedback is investigated, where the feedback is from the legitimate receiver
to the transmitter, and the CSI is available at the transmitter in a causal or noncausal manner. The
capacity-equivocation regions are determined for this model in both causal and noncausal cases,
and the results are further explained via Gaussian and binary examples. For the Gaussian model, we
find that in some particular cases, the noiseless feedback performs better than Chia and El Gamal’s
CSI sharing scheme, i.e., the secrecy capacity of this feedback scheme is larger than that of the CSI
sharing scheme. For the degraded binary model, we find that the noiseless feedback performs no
better than Chia and El Gamal’s CSI sharing scheme. However, if the cross-over probability of the
wiretap channel is large enough, we show that the two schemes perform the same.
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1. Introduction

It is known to all that the capacity of a point-to-point discrete memoryless channel (DMC) cannot
be increased by using noiseless feedback. However, does the feedback (from the legitimate receiver
to the transmitter) enhance the security of the wiretap channel? Ahlswede and Cai [1] and Dai et al. [2]
studied this problem. Specifically, Ahlswede and Cai [1] showed that the secrecy capacity Cs f of the
degraded wiretap channel with noiseless feedback is given by:

Cs f = max
p(x)

min{I(X; Y), I(X; Y)− I(X; Z) + H(Y|X, Z)}, (1)

where X, Y and Z are for the transmitter, legitimate receiver and wiretapper, respectively, and
X → Y → Z forms a Markov chain. Recall that the secrecy capacity Cs of the degraded wiretap
channel is determined by Wyner [3], and it is given by:

Cs = max
p(x)

min{I(X; Y), I(X; Y)− I(X; Z)}. (2)

From (1) and (2), it is easy to see that the noiseless feedback increases the secrecy capacity of
the wiretap channel. Based on the work of [1], Dai et al. [2] studied a special wiretap channel with
feedback (Y → X → Z) and showed that the secrecy capacity of this model is larger than that of
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the model without feedback, i.e., the noiseless feedback helps to enhance the security of the special
wiretap channel Y → X → Z. Here, note that in [1] and [2], the legitimate receiver just sends back
the previous received symbols to the transmitter, and it is natural to ask: is it better for the legitimate
receiver to send back purely random secret keys to the transmitter? Ardestanizadeh et al. [4] answered
this question by considering the model of the wiretap channel with secure rate-limited feedback.
Ardestanizadeh et al. [4] showed that if the limits (capacity) of the feedback channel are denoted
by R f , the secrecy capacity of the physically-degraded wiretap channel (X → Y → Z) with secure
rate-limited feedback is given by:

Cs f = max
p(x)

min{I(X; Y), I(X; Y)− I(X; Z) + R f }. (3)

Compared to (1), it is easy to see that if R f ≤ H(Y|X, Z), sending purely random secret keys is no
better than sending Yi−1 back. If R f > H(Y|X, Z), I(X; Y)− I(X; Z) + R f > H(Y|Z), sending purely
random secret keys is better than sending Yi−1 back. Besides these works on the wiretap channel
with feedback, Lai et al. [5] studied the wiretap channel with noisy feedback; He et al. [6] studied
the Gaussian two-way wiretap channel and the Gaussian half-duplex two-way relay channel with an
un-trusted relay; and Bassi et al. [7] studied the wiretap channel with generalized feedback. Bounds
on the secrecy capacities of these feedback models are obtained in [5–7].

Recently, the wiretap channel with channel state information (CSI) has received much attention.
The Gaussian wiretap channel with noncausal CSI at the transmitter was studied in [8,9], and an
achievable rate-equivocation region was provided for this Gaussian model. Based on the work of [8],
Chen et al. [10] studied the discrete memoryless wiretap channel with noncausal CSI at the transmitter
and also provided an achievable rate-equivocation region for this model. The encoding-decoding
scheme of [10] is a combination of the binning technique of Gel’fand and Pinsker’s channel [11]
and the random binning technique of Wyner’s wiretap channel [3]. After that, Dai et al. [12]
studied the outer bound on the capacity-equivocation region of [10] and also investigated the capacity
results of the discrete memoryless wiretap channel with causal or memoryless CSI at the transmitter.
Besides these works on the wiretap channel with CSI only available at the transmitter, Chia and
El Gamal [13] investigated the wiretap channel with CSI causally or non-causally at both the
transmitter and the legitimate receiver and provided an achievable secrecy rate, which was larger
than that of [10]. In [13], since both the transmitter and the legitimate receiver have access to the
CSI, the CSI serves as a secret key shared by them. Therefore, the encoding-decoding scheme of [13]
is similar to that of the wiretap channel with rate-limited feedback [4]. Besides these works on the
wiretap channel with CSI, Liu et al. [14] studied the block Rayleigh fading MIMO wiretap channel
with no CSI available at the legitimate receiver, the wiretapper and the transmitter, and they showed
that if the legitimate receiver had more antennas than the wiretapper, non-zero secure degrees of
freedom (s.d.o.f) could also be achieved.

In this paper, we study the general wiretap channel with CSI (causally or non-causally at the
transmitter) and noiseless feedback; see Figure 1. In Figure 1, the transition probability of the channel
depends on a CSI sequence VN , which is available at the channel encoder in a noncausal or causal
manner. The inputs of the channel are XN and VN , while the outputs of the channel are YN and
ZN . Moreover, there exists a noiseless feedback from YN to the channel encoder. The motivation of
this work is to find whether the noiseless feedback helps to enhance the secrecy rate of the wiretap
channel with noncausal or causal CSI at the transmitter [10,12] and whether the noiseless feedback
does better than the shared CSI between the legitimate receiver and the transmitter [13] in enhancing
the secrecy rate of the state-dependent wiretap channel.
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Figure 1. General wiretap channel with noncausal or causal channel state information (CSI) and
noiseless feedback.

The capacity-equivocation region of the model of Figure 1 is determined for both the noncausal
and causal cases, and the results are further explained via degraded binary and Gaussian examples.
For the Gaussian example, we find that both the feedback scheme and the CSI sharing scheme [13]
help to enhance the security of the wiretap channel with noncausal CSI at the transmitter [10,12],
and moreover, we find that in some particular cases, the noiseless feedback performs even better
than the shared CSI [13], i.e., the secrecy capacity of the degraded Gaussian case of the model of
Figure 1 is larger than that of the degraded Gaussian case of [13]. For the binary example, we also
find that both the feedback scheme and the CSI sharing scheme [13] help to enhance the security
of the wiretap channel with causal CSI at the transmitter. Unlike the Gaussian case, we find that
the noiseless feedback performs no better than the shared CSI [13], i.e., the secrecy capacity of the
degraded binary case of the model of Figure 1 is not more than that of the degraded binary case
of [13]. However, if the cross-over probability of the wiretap channel is large enough, we find that the
two schemes perform the same.

The remainder of this paper is organized as follows. The capacity-equivocation region of the
model of Figure 1 is provided in Section 2. Gaussian and binary examples of the model of Figure 1
are shown in Section 3. Section 4 is for the final conclusion.

2. Capacity-Equivocation Region of the Model of Figure 1

In this paper, random variables, sample values and alphabets are denoted by capital letters,
lower case letters and calligraphic letters, respectively. A similar convention is applied to the random
vectors and their sample values. For example, UN denotes a random N-vector (U1, ..., UN), and
uN = (u1, ..., uN) is a specific vector value in UN that is the N-th Cartesian power of U . UN

i denotes a
random N− i + 1-vector (Ui, ..., UN), and uN

i = (ui, ..., uN) is a specific vector value in UN
i . Let PV(v)

denote the probability mass function Pr{V = v}. Throughout the paper, the logarithmic function is
to the base two.

2.1. Definitions of the Model of Figure 1

Let W, uniformly distributed over the alphabetW , be the message sent by the transmitter. The
components of the channel state sequence VN are independent and identically distributed. The
probability of each component is PV(v). VN is independent of W. Let Yi−1 (2 ≤ i ≤ N) be the
i-th time feedback from the legitimate receiver to the transmitter. For the noncausal case, the i-th time
channel encoder fi is a (stochastic) mapping:

fi :W ×Y i−1 × VN → Xi, (4)
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where fi(w, yi−1, vN) = xi ∈ X , w ∈ W , yi−1 ∈ Y i−1 and vN ∈ VN . For the causal case, the i-th time
channel encoder fi is a (stochastic) mapping:

fi :W ×Y i−1 × V i → Xi, (5)

where fi(w, yi−1, vi) = xi ∈ X , w ∈ W , yi−1 ∈ Y i−1 and vi ∈ V i. Here, note that for the causal case,
Vi is independent of (Yi−1, W, VN

i+1, Zi−1).
The channel is discrete memoryless, and its transition probability is given by:

PZN ,YN |XN ,VN (zN , yN |xN , vN) =
N

∏
i=1

PZ,Y|X,V(zi, yi|xi, vi), (6)

where xi ∈ X , vi ∈ V , yi ∈ Y and zi ∈ Z .
The wiretapper’s equivocation about the message W is denoted by:

∆ =
1
N

H(W|ZN). (7)

The decoder fD is a function that maps a received sequence of N channel outputs to the
messages set:

fD : YN →W . (8)

We denote the probability of error Pe by Pr{W 6= Ŵ}.
Given a pair (R, Re) (R, Re > 0), it is said to be achievable if, for arbitrary small positive ε, there

exists an encoding-decoding scheme, such that:

lim
N→∞

log ‖ W ‖
N

= R, lim
N→∞

∆ ≥ Re, Pe ≤ ε. (9)

The set R(n f ), which is composed of all achievable (R, Re) pairs, is called the
capacity-equivocation region of the model of Figure 1 with noncausal CSI at the transmitter. An
achievable rare C(n f )

s , which is denoted by:

C(n f )
s = max

(R,Re=R)∈R(n f )
R, (10)

is called the secrecy capacity of the model of Figure 1 with noncausal CSI at the transmitter.
Analogously, let R(c f ) be the capacity-equivocation region of the model of Figure 1 with causal

CSI at the transmitter and C(c f )
s , which is denoted by:

C(c f )
s = max

(R,Re=R)∈R(c f )
R, (11)

be the secrecy capacity of the model of Figure 1 with causal CSI at the transmitter.

2.2. Main Result of the Model of Figure 1

The following Theorem 1 characterizes the capacity-equivocation region R(n f ) of the model of
Figure 1 with noncausal CSI at the transmitter; see the following.

Theorem 1. A single-letter characterization of the regionR(n f ) is as follows,

R(n f ) = {(R, Re) : 0 ≤ Re ≤ R,

0 ≤ R ≤ I(K; Y)− I(K; V),

Re ≤ H(Y|Z)},
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for some distribution:

PKVXYZ(k, v, x, y, z) = PZY|XV(z, y|x, v)PX|KV(x|k, v)PKV(k, v),

which implies the Markov chain K → (X, V)→ (Y, Z).

Proof. See Sections A and B.

Remark 1.

• The range of the random variable K satisfies ‖K‖ ≤ ‖X‖‖V‖ + 1. The proof is standard and
easily obtained by using the support lemma (see [15]), and thus, we omit the proof here.

• Corollary 1. The secrecy capacity C(n f )
s satisfies:

C(n f )
s = max

PX|KV PKV
min{I(K; Y)− I(K; V), H(Y|Z)}. (12)

Proof. Substituting Re = R into the regionR(n f ) in Theorem 1, we have:

R ≤ I(K; Y)− I(K; V), (13)

R ≤ H(Y|Z), (14)

By using (10), (13) and (14), Formula (12) is achieved; thus, the proof is completed.

• Here, note that if ZN is a degraded version of YN (which implies the existence of the Markov
chain K → (X, V) → Y → Z), the capacity-equivocation region R(n f ) still holds. The proof
of this degraded case is along the lines of the proof of Theorem 1, and thus, we omit the proof
here. In [10,12], an achievable rate-equivocation region Rn

i is provided for the wiretap channel
with noncausal CSI, and it is given by:

Rn
i = {(R, Re) : Re ≤ R,

R ≤ I(K; Y)− I(K; V), Re ≤ I(K; Y)− I(K; Z)},

where the joint probability distribution PKVXYZ(k, v, x, y, z) ofRn
i satisfies:

PKVXYZ(k, v, x, y, z) = PZ|Y(z|y)PY|XV(y|x, v)PX|KV(x|k, v)PKV(k, v).

Here, note that:

I(K; Y)− I(K; Z) = H(K|Z)− H(K|Y)
(a)
= H(K|Z)− H(K|Y, Z) = I(K; Y|Z)
≤ H(Y|Z),

(15)

where (a) is from K → Y → Z. Therefore, it is easy to see that the achievable rate-equivocation
regionRn

i of [10] and [12] is enhanced by using this noiseless feedback.

The following Theorem 2 characterizes the capacity-equivocation region R(c f ) of the model of
Figure 1 with causal CSI at the transmitter; see the following.

Theorem 2. A single-letter characterization of the regionR(c f ) is as follows,

R(c f ) = {(R, Re) : 0 ≤ Re ≤ R,

0 ≤ R ≤ I(K; Y),

Re ≤ H(Y|Z)},
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for some distribution:

PKVXYZ(k, v, x, y, z) = PYZ|XV(y, z|x, v)PX|KV(x|k, v)PK(k)PV(v).

which implies the Markov chain K → (X, V)→ (Y, Z) and the fact that V is independent of K.

Proof. • Proof of the converse: Using the fact that Vi is independent of Yi−1 and Zi−1, the
converse proof of Theorem 2 is along the lines of that of Theorem 1 (see Section A), and thus,
we omit the proof here.

• Proof of the achievability: The achievability proof of Theorem 2 is along the lines of the
achievability proof of Theorem 1 (see Section B), and the only difference is that for the causal
case, there is no need to use the binning technique. Thus, we omit the proof here.

The proof of Theorem 2 is completed.

Remark 2.

• The range of the auxiliary random variable K satisfies ‖K‖ ≤ ‖X‖‖V‖. The proof is standard
and easily obtained by using the support lemma (see p. 310 of [16]), and thus, we omit the
proof here.

• Corollary 2. The secrecy capacity C(c f )
s satisfies:

C(c f )
s = max

PX|KV PK
min{I(K; Y), H(Y|Z)}. (16)

Proof. Proof of (16): Substituting Re = R into the regionR(c f ), we have:

R ≤ I(K; Y), (17)

R ≤ H(Y|Z), . (18)

By using (11), (17) and (18), Formula (16) is achieved; thus, the proof is completed.

• Here, note that if ZN is a degraded version of YN , the capacity-equivocation region R(c f ) still
holds. The proof of this degraded case is along the lines of the proof of Theorem 2, and thus,
we omit the proof here. In [12], an achievable rate-equivocation region Rc

i is provided for the
wiretap channel with causal CSI, and it is given by:

Rc
i = {(R, Re) : Re ≤ R,

R ≤ I(K; Y), Re ≤ I(K; Y)− I(K; Z)}, (19)

where the joint probability distribution PKVXYZ(k, v, x, y, z) ofRc
i satisfies:

PKVXYZ(k, v, x, y, z) = PZ|Y(z|y)PY|XV(y|x, v)PX|KV(x|k, v)PK(k)PV(v).

By using (15), it is easy to see that the achievable rate-equivocation region Rc
i is enhanced by

using this noiseless feedback.

3. Examples of the Model of Figure 1

3.1. Gaussian Case of the Model of Figure 1 with Noncausal CSI at the Transmitter

For the Gaussian case of the model of Figure 1 with noncausal CSI at the transmitter, the i-th
time (1 ≤ i ≤ N) channel inputs and outputs are given by:

Yi = Xi + Vi + Z1,i, Zi = Xi + Vi + Z2,i, (20)
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where Vi ∼ N (0, Q), Z1,i ∼ N (0, N1) and Z2,i ∼ N (0, N2). Here, note that Vi, Z1,i and Z2,i are
independent random variables, Xi is independent of Z1,i and Z2,i and 1

N ∑N
i=1 E(X2

i ) ≤ P. The noise
Vi is non-causally known by the transmitter. The following Theorem 3 shows the secrecy capacity of
the Gaussian case of the model of Figure 1 with noncausal CSI at the transmitter.

Theorem 3. For the Gaussian case of the model of Figure 1 with noncausal CSI at the transmitter, the secrecy
capacity Cg f

s is characterized in the following two cases.
Case 1: If N1 ≤ N2, the secrecy capacity Cg f

s is given by:

Cg f
s = max

α
min

 1
2 ln (P+Q+N1)(P+α2Q)

PQ(1−α)2+N(P+α2Q)
− 1

2 ln P+α2Q
P ,

1
2 ln 2πe(P+Q+N1)(N2−N1)

P+Q+N2


= min{1

2
ln(1 +

P
N1

),
1
2

ln
2πe(P + Q + N1)(N2 − N1)

P + Q + N2
}, (21)

where the maximum is achieved when α = P
P+N1

.

Case 2: If N1 > N2, the secrecy capacity Cg f
s is given by:

Cg f
s = min{1

2
ln(1 +

P
N1

),
1
2

ln 2πe(N1 − N2)}. (22)

Remark 3.

If N1 ≤ N2, the relationship of the channel inputs and outputs defined in (20) can be equivalently
characterized by:

Yi = Xi + Vi + Z1,i, Zi = Xi + Vi + Z1,i + Z∗2,i, (23)

where Z∗2,i ∼ N (0, N2−N1), and it is independent of Z1,i. Similar to the determination of the capacity
region of the Gaussian broadcast channel (pp. 117–118 of [17]), the relationship (23) implies that there
exists a Markov chain (Xi, Vi)→ Yi → Zi, i.e., the Gaussian case of the model of Figure 1 reduces to a
degraded model of Figure 1.

Analogously, if N1 > N2, the relationship of the channel inputs and outputs defined in (20) can
be equivalently characterized by:

Yi = Xi + Vi + Z∗1,i + Z2,i, Zi = Xi + Vi + Z2,i, (24)

where Z∗1,i ∼ N (0, N1 − N2), and it is independent of Z2,i, Xi and Vi. The relationship (24) implies
that there exists a Markov chain (Xi, Vi)→ Zi → Yi in the Gaussian case of the model of Figure 1.

Proof. For the direct part of Theorem 3, like [18] and [10], the achievability of Cg f
s is proven by

substituting K = X + αV, X ∼ N (0, P), V ∼ N (0, Q) and the fact that X is independent of V
in Theorem 1; the details of the proof are omitted in this paper. Here, note that the calculation of
I(K; Y) − I(K; V) is exactly the same as that of the dirty paper channel (page 440 of [18]), and it is
easy to see that the maximum of I(K; Y)− I(K; V) is achieved when α = P

P+N1
.

For the converse part of Theorem 3, note that the transmitter-receiver channel is Costa’s dirty
paper channel [18]; thus, the secrecy capacity is upper bounded by the capacity of the dirty paper
channel, i.e., Cg f

s ≤ 1
2 ln(1+ P

N1
). Now, it remains to show Cg f

s ≤ 1
2 ln 2πe(P+Q+N1)(N2−N1)

P+Q+N2
for N1 ≤ N2

and Cg f
s ≤ 1

2 ln 2πe(N1 − N2) for N1 > N2; see the following.

Proof of Cg f
s ≤ 1

2 ln 2πe(P+Q+N1)(N2−N1)
P+Q+N2

for N1 ≤ N2:
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First, note that:

1
N

H(W|ZN)
(a)
≤ 1

N
(I(W; YN |ZN) + δ(Pe))

≤ 1
N

N

∑
i=1

h(Yi|Zi) +
δ(Pe)

N
, (25)

where (a) is from Fano’s inequality. The conditional differential entropy h(Yi|Zi) in (25) is bounded by:

h(Yi|Zi) = h(Yi, Zi)− h(Zi)

= h(Zi|Yi) + h(Yi)− h(Zi)

(1)
= h(Xi + Vi + Z1,i + Z∗2,i|Xi + Vi + Z1,i) + h(Xi + Vi + Z1,i)− h(Xi + Vi + Z1,i + Z∗2,i)

(2)
= h(Z∗2,i) + h(Xi + Vi + Z1,i)− h(Xi + Vi + Z1,i + Z∗2,i)

(3)
≤ h(Z∗2,i) + h(Xi + Vi + Z1,i)−

1
2

ln(e2h(Xi+Vi+Z1,i) + e2h(Z∗2,i))

= h(Z∗2,i) +
1
2

ln(e2h(Xi+Vi+Z1,i))− 1
2

ln(e2h(Xi+Vi+Z1,i) + e2h(Z∗2,i))

(4)
=

1
2

ln(2πe(N2 − N1)) +
1
2

ln
e2h(Xi+Vi+Z1,i)

e2h(Xi+Vi+Z1,i) + 2πe(N2 − N1)

(5)
≤ 1

2
ln(2πe(N2 − N1)) +

1
2

ln
2πe(P + Q + N1)

2πe(P + Q + N1) + 2πe(N2 − N1)

=
1
2

ln
2πe(N2 − N1)(P + Q + N1)

P + Q + N2
, (26)

where (1) is from Definition (23), (2) is from the fact that Z∗2,i is independent of Xi, Vi and Z1,i,

(3) is from the entropy power inequality e2h(Xi+Vi+Z1,i+Z∗2,i) ≥ e2h(Xi+Vi+Z1,i) + e2h(Z∗2,i) (see [19]),
(4) is from the fact that the differential entropy of a Gaussian distributed random variable X is
h(X) = 1

2 ln(2πeD(X)) (here, D(X) is the variance of the Gaussian random variable X) and (5) is

from 1
2 ln e2h(Xi+Vi+Z1,i)

e2h(Xi+Vi+Z1,i)+2πe(N2−N1)
increasing while h(Xi + Vi + Z1,i) is increasing and the fact that

h(Xi + Vi + Z1,i) ≤ 1
2 ln(2πe(P + Q + N1)) (here, note that “=” is achieved if Xi ∼ N (0, P)).

Substituting (26) into (25), we have:

1
N

H(W|ZN) ≤ 1
N

N

∑
i=1

1
2

ln
2πe(N2 − N1)(P + Q + N1)

P + Q + N2
+

δ(Pe)

N

=
1
2

ln
2πe(N2 − N1)(P + Q + N1)

P + Q + N2
+

δ(Pe)

N
. (27)

Substituting Pe ≤ ε into (27) and letting N → ∞, it is easy to see that Cg f
s ≤ 1

2 ln 2πe(P+Q+N1)(N2−N1)
P+Q+N2

for N1 ≤ N2.
Proof of Cg f

s ≤ 1
2 ln 2πe(N1 − N2) for N1 > N2:

For the case N1 > N2, the conditional differential entropy h(Yi|Zi) in (25) can be bounded by:

h(Yi|Zi)
(a)
= h(Xi + Vi + Z∗1,i + Z2,i|Xi + Vi + Z2,i)

(b)
= h(Z∗1,i)

(c)
=

1
2

ln 2πe(N1 − N2), (28)

7907



Entropy 2015, 17, 7900–7925

where (a) is from (24), (b) is from the fact that Z∗1,i is independent of Z2,i, Xi and Vi and (c)
is from the fact that the differential entropy of a Gaussian distributed random variable X is
h(X) = 1

2 ln(2πeD(X)) (here, D(X) is the variance of the Gaussian random variable X). Substituting

(28) and Pe ≤ ε into (25) and letting N → ∞, it is easy to see that Cg f
s ≤ 1

2 ln 2πe(N1 − N2) for
N1 > N2. Thus, the converse part of Theorem 3 is proven. The proof of Theorem 3 is completed.

In [13] (p.2841, Theorem 3), Chia and El Gamal showed that if Y is less noisy than Z (I(X; Y|V) ≥
I(X; Z|V) for every PX|V(x|v)), the secrecy capacity of the wiretap channel with CSI non-causally
known by both the transmitter and the legitimate receiver is given by:

Cs−both = max
p(x|v)

min{I(X; Y|V), I(X; Y|V)− I(X; Z|V) + H(V|Z)}.

Here, the I(X; Z|V)− H(V|Z) in the above Cs−both can be rewritten as follows.

I(X; Z|V)− H(V|Z) = H(Z|V)− H(Z|X, V)− H(V|Z)
= H(V, Z)− H(V)− H(Z|X, V)− H(V, Z) + H(Z)

= H(Z)− H(V)− H(Z|X, V). (29)

Substituting (29) into Cs−both, we have:

Cs−both = max
p(x|v)

min{I(X; Y|V), I(X; Y|V)− H(Z) + H(V) + H(Z|X, V)}. (30)

On the other hand, for Z less noisy than Y (I(X; Z|V) ≥ I(X; Y|V) for every PX|V(x|v)), Chia and
El Gamal provided an achievable secrecy rate (lower bound on the secrecy capacity) for the wiretap
channel with CSI non-causally known by both the transmitter and the legitimate receiver, and it is
given by:

Ci
s−both = max

p(x|v)
min{I(X; Y|V), H(V|Z, X)}. (31)

The following Theorem 4 shows the results on the secrecy capacity of the Gaussian case of the wiretap
channel with CSI non-causally known by both the transmitter and the legitimate receiver.

Theorem 4. For the Gaussian wiretap channel with part of the Gaussian noise non-causally known by both the
transmitter and the legitimate receiver, the secrecy capacity Cg

s−both is characterized by the following two cases.
Case 1: If N1 ≤ N2, the secrecy capacity Cg

s−both is given by:

Cg
s−both = min

{
1
2 ln(1 + P

N1
),

1
2 ln(1 + P

N1
) + 1

2 ln(2πeQ)− 1
2 ln( P+Q+N2

N2
)

}
. (32)

Case 2: If N1 > N2, a lower bound Cgi
s−both on the secrecy capacity Cg

s−both is given by:

Cg
s−both ≥ Cgi

s−both = min{1
2

ln
2πeQN2

Q + N2
,

1
2

ln(1 +
P

N1
)}. (33)

Remark 4.

For the Gaussian case, the conditional mutual information I(X; Y|V) is calculated by using
the fact that when the CSI is known by both the legitimate receiver and the transmitter, it can be
simply subtracted off, which in effect reduces the channel to a Gaussian channel with no CSI, i.e.,
I(X; Y|V) = 1

2 ln(1+ P
N1

). Analogously, we have I(X; Z|V) = 1
2 ln(1+ P

N2
). Then, it is easy to see that

Y is less noisy than Z (I(X; Z|V) ≥ I(X; Y|V) for every PX|V(x|v)), which can be further expressed
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by N1 ≤ N2, and Z is less noisy than Y (I(X; Z|V) ≥ I(X; Y|V) for every PX|V(x|v)), which can be
further expressed by N1 ≥ N2.

Proof. The achievability proof of (32) and (33) is easily obtained by substituting X ∼ N (0, P),
V ∼ N (0, Q) and (20) into (30) and (31), respectively. Now, it remains to prove the converse of
(32); see the following.

The converse part of (32) is based on the converse proof of (30), (see p.2846, Proof of Theorem 2
of [13] and the left bottom and right top of page 2841[13]). However, the converse proof of (30) is for
the discrete memoryless case, and it needs to be further processed for the Gaussian case. Based on
the converse proof of (30) [13] and the fact that N1 ≤ N2, we have the following (34) and (35),

Cg
s−both ≤ 1

N

N

∑
i=1

(I(Xi; Yi|Vi)− I(Xi; Zi|Vi) + h(Vi|Zi))

(1)
=

1
N

N

∑
i=1

(I(Xi; Yi|Vi)− h(Zi) + h(Vi) + h(Zi|Xi, Vi))

(2)
=

1
N

N

∑
i=1

(h(Xi + Z1,i|Vi)− h(Z1,i)− h(Zi) + h(Vi) + h(Z1,i + Z∗2,i))

≤ 1
N

N

∑
i=1

(h(Xi + Z1,i)− h(Z1,i)− h(Zi) + h(Vi) + h(Z1,i + Z∗2,i))

(3)
=

1
N

N

∑
i=1

(h(Xi + Z1,i)−
1
2

ln(2πeN1)− h(Xi + Vi + Z1,i + Z∗2,i) +
1
2

ln(2πeQ)

+
1
2

ln(2πeN2))

(4)
≤ 1

N

N

∑
i=1

(
1
2

ln(e2h(Xi+Z1,i))− 1
2

ln(2πeN1)−
1
2

ln(e2h(Xi+Z1,i) + e2h(Vi+Z∗2,i))

+
1
2

ln(2πeQ) +
1
2

ln(2πeN2))

(5)
=

1
N

N

∑
i=1

(
1
2

ln(e2h(Xi+Z1,i))− 1
2

ln(2πeN1)−
1
2

ln(e2h(Xi+Z1,i) + 2πe(Q + N2 − N1))

+
1
2

ln(2πeQ) +
1
2

ln(2πeN2))

=
1
N

N

∑
i=1

(
1
2

ln
e2h(Xi+Z1,i)

e2h(Xi+Z1,i) + 2πe(Q + N2 − N1)
− 1

2
ln(2πeN1) +

1
2

ln(2πeQ) +
1
2

ln(2πeN2))

(6)
≤ 1

N

N

∑
i=1

(
1
2

ln
2πe(P + N1)

2πe(P + N1) + 2πe(Q + N2 − N1)
− 1

2
ln(2πeN1)

+
1
2

ln(2πeQ) +
1
2

ln(2πeN2))

=
1
2

ln(1 +
P

N1
) +

1
2

ln(2πeQ)− 1
2

ln(
P + Q + N2

N2
), (34)
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and:

Cg
s−both ≤ 1

N

N

∑
i=1

I(Xi; Yi|Vi)

=
1
N

N

∑
i=1

(h(Yi|Vi)− h(Yi|Vi, Xi))

(7)
=

1
N

N

∑
i=1

(h(Xi + Z1,i|Vi)− h(Z1,i))

≤ 1
N

N

∑
i=1

(h(Xi + Z1,i)− h(Z1,i))

(8)
≤ 1

N

N

∑
i=1

(
1
2

ln(2πe(P + N1))−
1
2

ln(2πeN1))

=
1
2

ln(1 +
P

N1
), (35)

where (1) is from (29), (2) is from Definition (23) and Z∗2,i ∼ N (0, N2 − N1), (3) is from the fact that
the differential entropy of a Gaussian distributed random variable X is h(X) = 1

2 ln(2πeD(X)) (here,
D(X) is the variance of the Gaussian random variable X), (4) is from the entropy power inequality
e2h(Xi+Vi+Z1,i+Z2,i) ≥ e2h(Xi+Z1,i) + e2h(Vi+Z2,i) (see [19]), (5) is from h(Vi + Z2,i) =

1
2 ln(2πe(Q + N2)),

(6) is from 1
2 ln e2h(Xi+Z1,i)

e2h(Xi+Z1,i)+2πe(Q+N2)
increasing while h(Xi + Z1,i) is increasing and the fact that

h(Xi + Z1,i) ≤ 1
2 ln(2πe(P + N1)) (here, note that “=” is achieved if Xi ∼ N (0, P)), (7) is from

Definition (23) and (8) is from h(Xi + Z1,i) ≤ 1
2 ln(2πe(P + N1)). Thus, the converse part of (32)

is proven. The proof of Theorem 4 is completed.

Recall that for the degraded Gaussian wiretap channel with noncausal CSI at the transmitter
((X, V) → Y → Z), an achievable secrecy rate (a lower bound on the secrecy capacity) is
provided [10]; see the following Theorem 5.

Theorem 5. For the Gaussian non-feedback model of Figure 1 with the condition that N1 ≤ N2, an achievable
secrecy rate Cgi

s is denoted by:

Cgi
s = max

0≤α≤1
min


1
2 ln (P+N1)(P+α2Q)

α2Q(P+N1)+N1P −
1
2 ln P+α2Q

P ,
1
2 ln (P+N1)(P+α2Q)

α2Q(P+N1)+N1P −
1
2 ln (P+N2)(P+α2Q)

α2QP+N2(P+α2Q)

 .

Proof. The result is directly obtained from [10], and therefore, the proof is omitted here.

Remark 5.

• For the case N1 ≤ N2, the relationship (20) of the channel inputs and outputs can be equivalently
characterized by (23), which implies the Markov chain (X, V)→ Y → Z.

• To the best of the authors’ knowledge, for the case N1 > N2, the bounds on the secrecy capacity
of the Gaussian wiretap channel with noncausal CSI at the transmitter are still unknown.

Finally, note that if the CSI is not available at the legitimate receiver, the wiretapper and the
transmitter and there is no feedback link from the legitimate receiver to the transmitter, the Gaussian
case of the model of Figure 1 (see (20)) reduces to the model of the Gaussian wiretap channel, where
Vi and Z1,i of (20) are the legitimate receiver’s channel noises and Vi and Z2,i are the wiretapper’s
channel noises. From [20], it is easy to see that the secrecy capacity C∗s of the Gaussian wiretap channel
is given by:

C∗s =
1
2

ln
P + Q + N1

Q + N1
− 1

2
ln

P + Q + N2

Q + N2
. (36)
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Comparing Theorem 3 to Theorem 4, we can conclude that if N1 ≤ N2, for given P, N1 and N2,
Cg f

s is larger than Cg
s−both if and only if:

Q ≤ N1(N2 − N1)(P + N1)

N2
1 + N2P

. (37)

For the case that N1 > N2, we find that if N1
2 < N2 < N1, for given P, N1 and N2, Cg f

s is larger than

Cgi
s−both if and only if:

Q ≤ N2(N1 − N2)

2N2 − N1
. (38)

If N2 = N1
2 , Cg f

s is always larger than Cgi
s−both.

If N2 < N1
2 , for given P, N1 and N2, Cg f

s is larger than Cgi
s−both if and only if:

Q ≥ N2(N1 − N2)

2N2 − N1
. (39)

Figure 2. For N1 ≤ N2, the relationships of P−Cg f
s , P−Cg

s−both, P−Cgi
s and P−C∗s for several values

of N1, N2 and Q.

For the case N1 ≤ N2, Figure 2 plots the relationships of P − C∗s , P − Cgi
s , P − Cg f

s and
P− Cg

s−both for several values of N1, N2 and Q. It is easy to see that the noiseless feedback (Cg f
s ), the

CSI sharing scheme (Cg
s−both) and the CSI only available at the transmitter (Cgi

s ) help to enhance the
secrecy capacity C∗s of the Gaussian wiretap channel. Furthermore, we can see that both the noiseless
feedback and the CSI sharing scheme perform better than the CSI only available at the transmitter.
Moreover, when Q is small (Q = 0.1, 0.5), the noiseless feedback performs better than the CSI sharing
scheme, and while Q is increasing (Q = 1), the CSI sharing scheme is beginning to take advantage of
the noiseless feedback.

For the case N1 > N2, the following Figure 3 plots the relationships of P− Cg f
s and P− Cg

s−both
for several values of N1, N2 and Q. Since C∗s = 0 for the case that N1 > N2, both the noiseless feedback
(Cg f

s ) and the CSI sharing scheme (Cgi
s−both) enhance the secrecy capacity C∗s of the Gaussian wiretap

channel. Moreover, we can see that for fixed Q, if the gap between the legitimate receiver’s channel
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noise variance N1 and the wiretapper’s channel noise variance N2 is large, the noiseless feedback
performs better than the CSI sharing scheme, and vice versa.

Figure 3. For N1 > N2, the relationships of P−Cg f
s and P−Cgi

s−both for several values of N1, N2 and Q.

3.2. Binary Case of the Model of Figure 1

In this subsection, we calculate the secrecy capacity of a degraded binary case of the model of
Figure 1 with causal CSI at the transmitter, where “degraded” means that there exists a Markov chain
(X, V)→ Y → Z.

Suppose that the random variable V is uniformly distributed over {0, 1}, i.e., pV(0) = pV(1) = 1
2 .

Meanwhile, the random variables X, Y and Z take values in {0, 1}, and the wiretap channel is a
BSC (binary symmetric channel) with crossover probability q. The transition probability of the main
channel is defined as follows:

When v = 0,

pY|X,V(y|x, v = 0) =

{
1− p, if y = x,
p, otherwise.

(40)

When v = 1,

pY|X,V(y|x, v = 1) =

{
p, if y = x,
1− p, otherwise.

(41)

From Remark 2, we know that the secrecy capacity for the model of Figure 1 with causal CSI at
the transmitter is given by:

C(c f )
s = max

PK(k)PX|K,V(x|k,v)
min{I(K; Y), H(Y|Z)} (42)

and the maximum achievable secrecy rate C(ci)
s of the wiretap channel with causal CSI [12] is given by:

C(ci)
s = max

PK(k)PX|K,V(x|k,v)
(I(K; Y)− I(K; Z)), (43)

where (43) is from (19).
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In addition, from ([13], Theorem 3), we know that the secrecy capacity Cs−both of the wiretap
channel with CSI causally or non-causally at both the transmitter and the legitimate receiver is
given by:

Cs−both = max
PX|V(x|v)

min{I(X; Y|V)− I(X; Z|V) + H(V|Z), I(X; Y|V)}. (44)

It remains to calculate C(c f )
s , C(ci)

s and Cs−both; see the following.
The calculation of C(c f )

s and C(ci)
s :

Let K take values in {0, 1}. The probability of K is defined as follows. pK(0) = α, and
pK(1) = 1− α. Define the conditional probability mass function pX|K,V as follows.

pX|K,V(0|0, 0) = β1, pX|K,V(1|0, 0) = 1− β1, pX|K,V(0|0, 1) = β2, pX|K,V(1|0, 1) = 1− β2,
pX|K,V(0|1, 0) = β3, pX|K,V(1|1, 0) = 1− β3, pX|K,V(0|1, 1) = β4, pX|K,V(1|1, 1) = 1− β4.
The joint probability mass functions pKY is calculated by:

pKY(k, y) = ∑
x,v

pKYXV(k, y, x, v)

= ∑
x,v

pY|XV(y|x, v)pX|K,V(x|k, v)pK(k)pV(v). (45)

Then, we have:
pKY(0, 0) =

α

2
[1− (β1 − β2)(1− 2p)], (46)

pKY(0, 1) =
α

2
[1 + (β1 − β2)(1− 2p)], (47)

pKY(1, 0) =
α

2
[1− (β3 − β4)(1− 2p)], (48)

pKY(1, 1) =
α

2
[1 + (β3 − β4)(1− 2p)]. (49)

By calculating, we have:
C(c f )

s = min{1− h(p), h(q)}, (50)

and:
C(ci)

s = h(p + q− 2pq)− h(p), (51)

where h(x) = −x log x− (1− x) log(1− x) and 0 ≤ x ≤ 1.
The calculation of Cs−both:
Define pX|V(0|0) = α, pX|V(1|0) = 1− α, pX|V(0|1) = β, pX|V(1|1) = 1− β.
By calculating, Cs−both is given by:

Cs−both = min{1− h(p), 1− h(p) + h(p + q− 2pq)} = 1− h(p). (52)

The following Figures 4–6 show C(c f )
s , C(ci)

s and Cs−both for several values of q. Here, note that
the noise of the wiretap channel is increasing while q is increasing. It is easy to see that when q < 0.5,
Cs−both and C(c f )

s are always larger than C(ci)
s , i.e., both the noiseless feedback (the model of this

paper) and the shared CSI [13] help to enhance the security of the wiretap channel with causal CSI at
the transmitter. When q = 0.5, there is no wiretapper in the channel; thus, C(c f )

s = C(ci)
s = Cs−both =

1− h(p).
Moreover, from Figures 4–6, we see that the noiseless feedback performs no better than the

shared CSI. However, when q is large enough (satisfying h(q) ≥ 1− h(p)), the two ways perform
the same.
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Figure 4. The C(c f )
s , C(ci)

s and Cs−both for q = 0.1.

Figure 5. The C(c f )
s , C(ci)

s and Cs−both for q = 0.2.
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Figure 6. The C(c f )
s , C(ci)

s and Cs−both for q = 0.5.

4. Conclusions

In this paper, we study the general wiretap channel with CSI and noiseless feedback, where the
CSI is available at the transmitter in a noncausal or causal manner. Both the capacity-equivocation
region and the secrecy capacity are determined for the noncausal and causal cases, and the results
are further explained via Gaussian and binary examples. For the Gaussian example, we show that
both the noiseless feedback and the CSI sharing scheme [13] help to enhance the security of the
Gaussian wiretap channel. Moreover, we show that in some particular cases, the noiseless feedback
performs even better than the CSI sharing scheme [13]. For the degraded binary example, we also
find that the noiseless feedback enhances the security of the wiretap channel with causal CSI. Unlike
the Gaussian example, we find that the noiseless feedback always performs no better than the CSI
sharing scheme [13].
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Appendix

A. Converse Proof of Theorem 1

Given an achievable (R, Re) pair, we need to show that there exists a joint distribution of the form
PZ|Y(z|y)PY|XV(y|x, v)PX|KV(x|k, v)PKV(k, v), such that,

0 ≤ Re ≤ R, (A.1)

0 ≤ R ≤ I(K; Y)− I(K; V), (A.2)

Re ≤ H(Y|Z). (A.3)

A.1. Proof of (A.1)

Re ≤ lim
N→∞

∆ ≤ lim
N→∞

1
N

H(W) = lim
N→∞

log ‖ W ‖
N

= R.

A.2. Proof of (A.2)

1
N

H(W) =
1
N
(I(W; YN) + H(W|YN))

(a)
≤ 1

N
(I(W; YN) + δ(Pe))

(b)
=

1
N
(I(W; YN)− I(W; VN) + δ(Pe))

(c)
=

1
N

N

∑
i=1

(I(Yi; W, VN
i+1|Yi−1)− I(Vi; W, Yi−1|VN

i+1) + δ(Pe))

(d)
≤ 1

N

N

∑
i=1

(H(Yi)− H(Yi|Yi−1, W, VN
i+1)− H(Vi) + H(Vi|VN

i+1, W, Yi−1) + δ(Pe))

=
1
N

N

∑
i=1

(I(Yi; W, VN
i+1, Yi−1)− I(Vi; W, Yi−1, VN

i+1) + δ(Pe))

(e)
=

1
N

N

∑
i=1

(I(Yi; W, VN
i+1, Yi−1|J = i)− I(Vi; W, Yi−1, VN

i+1|J = i) + δ(Pe))

( f )
= I(YJ ; W, VN

J+1, Y J−1|J)− I(VJ ; W, Y J−1, VN
J+1|J) +

δ(Pe)

N
(g)
≤ I(YJ ; W, VN

J+1, Y J−1, J)− I(VJ ; W, Y J−1, VN
J+1, J) +

δ(Pe)

N
(h)
= I(K; Y)− I(K; V) +

δ(Pe)

N
, (A.4)

where (a) is from Fano’s inequality, (b) is from W is independent of VN , (c) is from Csiszár’s equality:

N

∑
i=1

I(Yi; VN
i+1|Yi−1, W) =

N

∑
i=1

I(Vi; Yi−1|VN
i+1, W), (A.5)

(d) is from Vi being independent of VN
i+1, (e) and (f) are from J being a random variable (uniformly

distributed over [1, N]) and being independent of W, VN and YN , (g) is from VJ being independent of
J and (h) is from the definitions that Y , YJ , V , VJ and K , (W, Y J−1, VN

J+1, J).

By using Pe ≤ ε, ε → 0 as N → ∞, limN→∞
H(W)

N = R and (A.4), it is easy to see that
R ≤ I(K; Y)− I(K; V).
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A.3. Proof of (A.3)

1
N

H(W|ZN)
(1)
≤ 1

N
(I(W; YN |ZN) + δ(Pe))

≤ 1
N

N

∑
i=1

H(Yi|Zi) +
δ(Pe)

N

(2)
=

1
N

N

∑
i=1

H(Yi|Zi, J = i) +
δ(Pe)

N

(3)
≤ H(YJ |ZJ , J) +

δ(Pe)

N
(4)
≤ H(Y|Z) + δ(Pe)

N
, (A.6)

where (1) is from Fano’s inequality, (2) is from J being a random variable (uniformly distributed over
{1, 2, ..., N}) and being independent of YN and ZN , (3) is from J being uniformly distributed over
{1, 2, ..., N} and (4) is from the definitions that Y , YJ , and Z , ZJ .

By using Pe ≤ ε, ε → 0 as N → ∞, limN→∞
H(W|ZN)

N ≥ Re and (A.6), it is easy to see that
Re ≤ H(Y|Z).

The converse proof of Theorem 1 is completed.

B. Direct Proof of Theorem 1

The direct part (achievability) of Theorem 1 is proven by considering the following two cases.

• Case 1: If I(K; Y) − I(K; V) ≥ H(Y|Z), we need to show that (R = I(K; Y) − I(K; V) − ε,
Re = H(Y|Z)) is achievable, where ε→ 0+.

• Case 2: If I(K; Y) − I(K; V) ≤ H(Y|Z), we need to show that (R = I(K; Y) − I(K; V) − ε,
Re = R = I(K; Y)− I(K; V)− ε) is achievable.

The direct proof of Theorem 1 is organized as follows. The balanced coloring lemma introduced
by Ahlswede and Cai is provided in Subsection B.1, and it will be used in the remainder of this
section. The code-book generation is shown in Subsection B.2, and the equivocation analysis is given
in Subsection B.3.

B.1. The Balanced Coloring Lemma

The balanced coloring lemma was first introduced by Ahlswede and Cai; see the following.

Lemma 1. Balanced coloring lemma: For all ε1, ε2, ε3, δ > 0, sufficiently large N and all N-type PY(y), there
exists a γ-coloring c : TN

Y (ε1)→ {1, 2, .., γ} of TN
Y (ε1) such that for all joint N-type PYZ(y, z) with marginal

distribution PZ(z) and
|TN

Y|Z(z
N)|

γ > 2Nε2 , zN ∈ TN
Z (ε3),

|c−1(k)| ≤
|TN

Y|Z(z
N)|(1 + δ)

γ
, (B.1)

for k = 1, 2, ..., γ, where c−1 is the inverse image of c.

Proof. Letting U = const, Lemma 1 is directly from p. 259 of [1], and thus, we omit it here.
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Lemma 1 shows that if yN and zN are joint typical, for given zN , the number of yN ∈ TN
Y|Z(z

N)

for a certain color k (k = 1, 2, ..., γ), which is denoted as |c−1(k)|, is upper bounded by
|TN

Y|Z(z
N)|(1+δ)

γ .
By using Lemma 1, it is easy to see that the typical set TN

Y|Z(z
N) maps into at least:

|TN
Y|Z(z

N)|
|TN

Y|Z(z
N)|(1+δ)

γ

=
γ

1 + δ
(B.2)

colors. On the other hand, the typical set TN
Y|Z(z

N) maps into at most γ colors.

B.2. Code-Book Generation

Fix the joint probability mass function PZ,Y|X,V(z, y|x, v)PX|K,V(x|k, v)PKV(k, v). The message set
W satisfies:

lim
N→∞

log ‖W‖
N

= R = I(K; Y)− I(K; V)− ε. (B.3)

LetW = {1, 2, ..., 2NR}.
The block Markov encoding scheme is used in the direct proof of Theorem 1. The random vectors

KN , VN , XN , YN and ZN consist of n blocks of length N. Let K̃i, Ṽi, Ỹi and Z̃i (1 ≤ i ≤ n) be the
random vectors for block i. Define k̃n = (k̃1, k̃2, ..., k̃n), ṽn = (ṽ1, ṽ2, ..., ṽn), ỹn = (ỹ1, ỹ2, ..., ỹn) and
z̃n = (z̃1, z̃2, ..., z̃n) to be the specific vectors for all blocks. The message Wn for all n blocks is denoted
by Wn = (W1, W2, ..., Wn), where Wi (2 ≤ i ≤ n) is uniformly distributed over the alphabetW , and
Wi is independent of Wj (2 ≤ j ≤ n and j 6= i). Note that w1 does not exist.

Construction of KN :
Gel’fand and Pinsker’s binning and block Markov coding scheme are used in the construction

of KN .

• Construction of KN for Case 1:

For each block, generate 2N(I(K;Y)−ε2,N) (ε2,N → 0) i.i.d. sequences of kN , according to pK(k).
Partition these sequences at random into 2NR = 2N(I(K;Y)−I(K;V)−γ1) bins, such that each bin has
2N(I(K;V)+γ1−ε2,N) sequences. Index each bin by l ∈ {1, 2, ..., 2NR}.
Denote the message wi (2 ≤ i ≤ n) by wi = (wi1, wi2), where wi1 ∈ Wi1 = {1, 2, ..., 2NH(Y|Z)}
and wi2 ∈ Wi2 = {1, 2, ..., 2N(R−H(Y|Z))}. Here, note that Wi1 is independent of Wi2.

In the first block, for a given side information ṽ1, try to find a k̃1, such that (k̃1, ṽ1) ∈ TN
KV(ε). If

multiple sequences exist, randomly choose one for transmission. If there is no such sequence,
declare an encoding error.

For the i-th block (2 ≤ i ≤ n), the transmitter receives the output ỹi−1 of the i− 1-th block; he or
she gives up if ỹi−1 /∈ TN

Y (ε2) (ε2 → 0 as N → ∞). It is easy to see that the probability for giving
up at the i− 1-th block tends to zero as N → ∞. In the case ỹi−1 ∈ TN

Y (ε2), generate a mapping
g f : TN

Y (ε2) → {1, 2, ..., 2NH(Y|Z)}. Define a random variable K∗i by K∗i = g f (Ỹi−1) (2 ≤ i ≤ n),
and it is uniformly distributed over the set Wi1 = {1, 2, ..., 2NH(Y|Z)}. K∗i is independent of
Wi. Reveal the mapping g f to the legitimate receiver, the wiretapper and the transmitter. Then,
since the transmitter gets ỹi−1, he computes k∗i = g f (ỹi−1) ∈ {1, 2, ..., 2NH(Y|Z)}. For a given
wi = (wi1, wi2) (2 ≤ i ≤ n), the transmitter selects a sequence k̃i in the bin (wi1 ⊕ k∗i , wi2) (where
⊕ is the modulo addition over Wi1), such that (k̃i, ṽi) ∈ TN

KV(ε). If multiple sequences in bin
(wi1 ⊕ k∗i , wi2) exist, choose the sequence with the smallest index in the bin. If there is no such
sequence, declare an encoding error. Here, note that since K∗i is independent of Wi = (Wi1, Wi2),
Wi1 ⊕ K∗i is independent of Wi and K∗i . The proof is given as follows.
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Proof. Since:

Pr{K∗i ⊕Wi1 = a} = ∑
k∗i ∈Wi1

Pr{K∗i ⊕Wi1 = a, K∗i = k∗i }

= ∑
k∗i ∈Wi1

Pr{Wi1 = a	 k∗i , K∗i = k∗i }

= ∑
k∗i ∈Wi1

Pr{Wi1 = a	 k∗i }Pr{K∗i = k∗i }

= ∑
k∗i ∈Wi1

1
‖Wi1‖2 =

1
‖Wi1‖

, (B.4)

and:

Pr{K∗i ⊕Wi1 = a, K∗i = k∗i }
= Pr{Wi1 = a	 k∗i , K∗i = k∗i }
= Pr{Wi1 = a	 k∗i }Pr{K∗i = k∗i }

=
1

‖Wi1‖2 , (B.5)

it is easy to see that Pr{K∗i ⊕Wi1 = a, K∗i = k∗i } = Pr{K∗i ⊕Wi1 = a} · Pr{K∗i = k∗i }, which
implies that K∗i ⊕Wi1 is independent of K∗i .

Analogously, we can prove that Pr{K∗i ⊕Wi1 = a, Wi1 = wi1, Wi2 = wi2} = Pr{K∗i ⊕Wi1 = a} ·
Pr{Wi1 = wi1} · Pr{Wi2 = wi2}, which implies that K∗i ⊕Wi1 is independent of Wi = (Wi1, Wi2).
Thus, the proof of Wi1 ⊕ K∗i is independent of Wi, and K∗i is completed.

• Construction of KN for Case 2: The construction of KN for Case 2 is similar to that of Case 1,
except that there is no need to divide wi into two parts. The detail is as follows. For the i-th
block (2 ≤ i ≤ n), if ỹi−1 ∈ TN

Y (ε2), generate a mapping g f : TN
Y (ε2)→W (note that |TN

Y (ε2)| ≥
|W|). Let K∗i = g f (Ỹi−1) (2 ≤ i ≤ n), and it is uniformly distributed over the set W . K∗i is
independent of Wi. Reveal the mapping g f to the legitimate receiver, the wiretapper and the
transmitter. When the transmitter receives the feedback ỹi−1 of the i − 1-th block, he or she
computes k∗i = g f (ỹi−1) ∈ W . For a given transmitted message wi (2 ≤ i ≤ n), the transmitter
selects a codeword k̃i in the bin wi ⊕ k∗i (where ⊕ is the modulo addition over W), such that
(k̃i, ṽi) ∈ TN

KV(ε). If multiple sequences in bin wi ⊕ k∗i exist, select the one with the smallest
index in the bin. If there is no such sequence, declare an encoding error. Here, note that Wi ⊕K∗i
is independent of Wi and K∗i , and the proof is similar to that of Case 1. Thus, we omit the
proof here.

Construction of XN :
In each block, the channel input xN is generated by a pre-fixed discrete memoryless channel with

transition probability PX|K,V(x|k, v). The inputs of the channel are kN and vN , and the output is xN .
Here, note that for Case 1, the random vector K̃i of block i (2 ≤ i ≤ n) is i.i.d.

generated corresponding to the encrypted message (Wi1 ⊕ K∗i , Wi2) and Ṽi (here, Ṽi is also
i.i.d. generated according to the probability mass function PV(v)). Since Ỹi and Z̃i are
generated according to K̃i, Ṽi and the discrete memoryless channel, the only connection between
(Wi, K̃i, Ṽi, Ỹi, Z̃i) of the i-th block and (Wi−1, K̃i−1, Ṽi−1, Ỹi−1, Z̃i−1) of the i − 1-th block is the
secret key K∗i , which is generated by Ỹi−1. As stated above, both the encrypted message
(Wi1 ⊕ K∗i , Wi2) and the real message Wi = (Wi1, Wi2) are independent of K∗i , and thus,
(Wi, K̃i, Ṽi, Ỹi, Z̃i) of the i-th block are independent of (Wi−1, K̃i−1, Ṽi−1, Ỹi−1, Z̃i−1) of the i− 1-th block.
Since (Wi1 ⊕ K∗i , Wi2) and Wi are also independent of Wj and K∗j (2 ≤ i, j ≤ n and j 6= i), it is easy
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to see that (Wi, K̃i, Ṽi, Ỹi, Z̃i) are independent of (Wj, K̃j, Ṽj, Ỹj, Z̃j). Finally, note that (Wi1 ⊕ K∗i , Wi2)

(2 ≤ i ≤ n) is independent of K∗2 (generated by Ỹ1); thus, (Wi, K̃i, Ṽi, Ỹi, Z̃i) are independent of
(K̃1, Ṽ1, Ỹ1, Z̃1).

Analogously, in Case 2, for 2 ≤ i, j ≤ n and j 6= i, the fact that (Wi, K̃i, Ṽi, Ỹi, Z̃i) are independent
of (Wj, K̃j, Ṽj, Ỹj, Z̃j) and (K̃1, Ṽ1, Ỹ1, Z̃1) also holds.

Decoding: For block i (2 ≤ i ≤ n), given a vector ỹi ∈ YN , try to find a sequence k̃i(ŵi1 ⊕
k∗i , ŵi2, ĵ) (Case 1) or k̃i(ŵi ⊕ k∗i , ĵ) (Case 2), such that k̃i and ỹi are joint typical. If there exists a unique
sequence, put out the corresponding index of the bin (ŵi1 ⊕ k∗i , ŵi2) or ŵi ⊕ k∗i . Otherwise, declare a
decoding error. Since the legitimate receiver has k∗i , put out the corresponding ŵi from (ŵi1⊕ k∗i , ŵi2)

or ŵi ⊕ k∗i .

B.3. Proof of Achievability

Here, note that the above encoding-decoding scheme for the achievability proof of Theorem 1
is exactly the same as that in [11], except that the transmitter transmits an “encrypted message” by
using the secret key k∗i . Since the legitimate receiver has k∗i , the decoding scheme for the achievability
proof of Theorem 1 is in fact the same as that in [11]. Hence, we omit the proof of Pe ≤ ε here. It
remains to prove that limN→∞ ∆ ≥ Re; see the following.

• For Case 1, part of the message wi is encrypted by k∗i . In the analysis of the equivocation, we
drop wi2 from wi. Then, the equivocation about wi is equivalent to the equivocation about k∗i .
Since k∗i = g f (ỹi−1), the wiretapper tries to guess k∗i from ỹi−1. Note that for a given z̃i−1 and
sufficiently large N, Pr{ỹi−1 ∈ TN

Y|Z(z̃i−1)} → 1. Thus, the wiretapper can guess ỹi−1 from

the conditional typical set TN
Y|Z(z̃i−1). By using the above Lemma 1 and (B.2), the set TN

Y|Z(z̃i−1)

maps into at least 2NH(Y|Z)
1+δ (here, γ = 2NH(Y|Z)) k∗i (colors). Thus, in the i-th block, the uncertainty

about K∗i is bounded by:

1
N

H(K∗i |Z̃i−1) ≥ H(Y|Z)− log(1 + δ)

N
, (B.6)

Here, note that K∗i is uniformly distributed.
• For Case 2, the alphabet of the secret key k∗i equals the alphabet Wi = {1, 2, ..., 2NR}, and the

encrypted message is denoted by wi ⊕ k∗i . Then, by using the above Lemma 1 and (B.2), the
set TN

Y|Z(z̃i−1) maps into at least 2NR

1+δ (here, γ = 2NR) k∗i (colors). Thus, in the i-th block, the
uncertainty about K∗i is bounded by:

1
N

H(K∗i |Z̃i−1) ≥ R− log(1 + δ)

N
. (B.7)
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Proof of limN→∞ ∆ ≥ Re for Case 1:

∆ =
H(Wn|Zn)

nN
=

∑n
i=2 H(Wi|Wi−1, Zn)

nN
(a)
=

∑n
i=2 H(Wi|Z̃i, Z̃i−1)

nN

≥ ∑n
i=2 H(Wi1|Z̃i, Z̃i−1)

nN

≥ ∑n
i=2 H(Wi1|Z̃i, Z̃i−1, Wi1 ⊕ K∗i )

nN

≥ ∑n
i=2 H(Wi1|Wi2, Z̃i, Z̃i−1, Wi1 ⊕ K∗i )

nN
(b)
=

∑n
i=2 H(Wi1|Wi2, Z̃i−1, Wi1 ⊕ K∗i )

nN
(c)
=

∑n
i=2 H(Wi1|Z̃i−1, Wi1 ⊕ K∗i )

nN

=
∑n

i=2 H(K∗i |Z̃i−1, Wi1 ⊕ K∗i )
nN

(d)
=

∑n
i=2 H(K∗i |Z̃i−1)

nN
(e)
≥ ∑n

i=2(NH(Y|Z)− log(1 + δ))

nN

=
(n− 1)(NH(Y|Z)− log(1 + δ))

nN
, (B.8)

where (a) is from Wi → (Z̃i, Z̃i−1) → (Wi−1, Z̃i−2, Z̃n
i+1) (proven in the remainder of this section), (b)

is from Wi1 → (Wi2, Wi1 ⊕ K∗i , Z̃i−1) → Z̃i (proven in the remainder of this section), (c) is from Wi2
being independent of Z̃i−1, Wi1 ⊕ K∗i and Wi1, (d) follows from the fact that Wi1 ⊕ K∗i is independent
of K∗i , Wi1 and Z̃i−1 and (e) is from (B.6).

Letting N → ∞ and n→ ∞, it is easy to see that:

lim
N→∞

∆ = lim
N→∞

lim
n→∞

H(Wn|Zn)

nN
≥ H(Y|Z) = Re. (B.9)

The proof of limN→∞ ∆ ≥ Re for Case 1 is completed.
Proof of limN→∞ ∆ ≥ Re for Case 2:

∆ =
H(Wn|Zn)

nN
(a)
=

∑n
i=2 H(Wi|Z̃i, Z̃i−1)

nN

≥ ∑n
i=2 H(Wi|Z̃i, Z̃i−1, Wi ⊕ K∗i )

nN
(b)
=

∑n
i=2 H(Wi|Z̃i−1, Wi ⊕ K∗i )

nN

=
∑n

i=2 H(K∗i |Z̃i−1, Wi ⊕ K∗i )
nN

(c)
=

∑n
i=2 H(K∗i |Z̃i−1)

nN
(d)
≥ ∑n

i=2(NR− log(1 + δ))

nN

=
(n− 1)(NR− log(1 + δ))

nN
, (B.10)
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where (a) is from Wi → (Z̃i, Z̃i−1) → (Wi−1, Z̃i−2, Z̃n
i+1) (proven in the remainder of this section), (b)

is from Wi → (Wi ⊕ K∗i , Z̃i−1)→ Z̃i (proven in the remainder of this section), (c) follows from the fact
that Wi ⊕ K∗i is independent of K∗i and Z̃i−1 and (d) is from (B.7).

Letting N → ∞ and n→ ∞, it is easy to see that:

lim
N→∞

∆ = lim
N→∞

lim
n→∞

H(Wn|Zn)

nN
≥ R = Re. (B.11)

The proof of limN→∞ ∆ ≥ Re for Case 2 is completed.
It remains to prove the Markov chains Wi → (Z̃i, Z̃i−1) → (Wi−1, Z̃i−2, Z̃n

i+1) and Wi1 →
(Wi2, Wi1 ⊕ K∗i , Z̃i−1) → Z̃i of the proof of limN→∞ ∆ ≥ Re for Case 1 and Wi → (Z̃i, Z̃i−1) →
(Wi−1, Z̃i−2, Z̃n

i+1), Wi → (Wi ⊕ K∗i , Z̃i−1)→ Z̃i of the proof of limN→∞ ∆ ≥ Re for Case 2.

Proof. Proof of Wi → (Z̃i, Z̃i−1)→ (Wi−1, Z̃i−2, Z̃n
i+1) for Case 1:

For convenience, we denote the probability Pr{V = v} by Pr{v}.
By definition, Wi → (Z̃i, Z̃i−1)→ (Wi−1, Z̃i−2, Z̃n

i+1) holds if and only if:

Pr{wi|z̃i, z̃i−1, wi−1, z̃i−2, z̃n
i+1} = Pr{wi|z̃i, z̃i−1}. (B.12)

Equation (B.12) can be further expressed as:

Pr{wi, z̃i, z̃i−1, wi−1, z̃i−2, z̃n
i+1}

Pr{z̃i, z̃i−1, wi−1, z̃i−2, z̃n
i+1}

=
Pr{wi, z̃i, z̃i−1}

Pr{z̃i, z̃i−1}
. (B.13)

It remains to calculate the joint probabilities in (B.13); see the following.

Pr{wi, z̃i, z̃i−1, wi−1, z̃i−2, z̃n
i+1} = Pr{wi, z̃n}

= ∑̃
vn

∑̃
yn

∑̃
kn

Pr{wi, z̃n, ṽn, ỹn, k̃n}

(a)
= ∑̃

vn
∑̃
yn

∑̃
kn

Pr{wi, z̃i, ṽi, ỹi, k̃i} · Pr{z̃n
i+1, ṽn

i+1, ỹn
i+1, k̃n

i+1}

= ∑
ṽi

∑
ỹi

∑̃
ki

Pr{wi, z̃i, ṽi, ỹi, k̃i} ∑
ṽn

i+1

∑
ỹn

i+1

∑
k̃n

i+1

Pr{z̃n
i+1, ṽn

i+1, ỹn
i+1, k̃n

i+1}

= ∑
ṽi

∑
ỹi

∑̃
ki

Pr{wi, z̃i, ṽi, ỹi, k̃i}Pr{z̃n
i+1}

(b)
= Pr{z̃i+1} · · · ·Pr{z̃n}(∑

ṽi
∑
ỹi

∑̃
ki

Pr{wi, z̃i, ṽi, ỹi, k̃i})

= Pr{z̃i+1} · · · ·Pr{z̃n}(∑
ṽi

∑
ỹi

∑̃
ki

Pr{k̃i|wi, z̃i, ṽi, ỹi}Pr{wi, z̃i, ṽi, ỹi})

(c)
= Pr{z̃i+1} · · · ·Pr{z̃n}(∑

ṽi
∑
ỹi

Pr{wi, z̃i, ṽi, ỹi})

(d)
= Pr{z̃i+1} · · · ·Pr{z̃n}(∑

ṽi
∑
ỹi

Pr{z̃1, ṽ1, ỹ1}
i

∏
j=2

Pr{wj, z̃j, ṽj, ỹj})

= Pr{z̃i+1} · · · ·Pr{z̃n}(∑̃
v1

∑̃
y1

Pr{z̃1, ṽ1, ỹ1})(∑̃
v2

∑̃
y2

Pr{w2, z̃2, ṽ2, ỹ2}) · · · (∑̃
vi

∑̃
yi

Pr{wi, z̃i, ṽi, ỹi})

= Pr{z̃i+1} · · · ·Pr{z̃n}Pr{z̃1}Pr{w2, z̃2} · · · Pr{wi, z̃i}, (B.14)

where (a) is from the fact that (z̃n
i+1, ṽn

i+1, ỹn
i+1, k̃n

i+1) are independent of (wi, z̃i, ṽi, ỹi, k̃i), (b) is from the
fact that Z̃j is independent of Z̃l for all of the i+ 1 ≤ j, l ≤ n and j 6= l, (c) is from the fact that given wi,
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z̃i, ṽi and ỹi, k̃i is uniquely determined, and (d) follows from the fact that (z̃1, ṽ1, ỹ1), (w2, z̃2, ṽ2, ỹ2),
..., (wi, z̃i, ṽi, ỹi) are independent.

Replacing i by i− 1, the joint probability Pr{z̃i, z̃i−1, wi−1, z̃i−2, z̃n
i+1} can be calculated by:

Pr{z̃i, z̃i−1, wi−1, z̃i−2, z̃n
i+1} = Pr{wi−1, z̃n}

(e)
= Pr{z̃i} · · · ·Pr{z̃n}Pr{z̃1}Pr{w2, z̃2} · · · Pr{wi−1, z̃i−1}, (B.15)

where (e) follows from (B.14) (replacing i by i− 1).
Substituting (B.14) and (B.15) into the left-hand side of (B.13), we have:

Pr{wi, z̃i, z̃i−1, wi−1, z̃i−2, z̃n
i+1}

Pr{z̃i, z̃i−1, wi−1, z̃i−2, z̃n
i+1}

=
Pr{wi, z̃i}

Pr{z̃i}
. (B.16)

Next, we need to calculate the right-hand side of (B.13); see the following.

Pr{wi, z̃i, z̃i−1}
(1)
= Pr{wi, z̃i}Pr{z̃i−1}, (B.17)

where (1) is from the fact that Wi and Z̃i are independent of Z̃i−1.
The joint probability Pr{z̃i, z̃i−1} is calculated by:

Pr{z̃i, z̃i−1}
(2)
= Pr{z̃i} · Pr{z̃i−1}, (B.18)

where (1) is from the fact that Z̃i is independent of Z̃i−1.
Substituting (B.17) and (B.18) into the right-hand side of (B.13), we have:

Pr{wi, z̃i, z̃i−1}
Pr{z̃i, z̃i−1}

=
Pr{wi, z̃i}

Pr{z̃i}
. (B.19)

By checking (B.16) and (B.19), the Markov chain Wi → (Z̃i, Z̃i−1) → (Wi−1, Z̃i−2, Z̃n
i+1)

is proven.

Proof. Proof of Wi1 → (Wi2, Wi1 ⊕ K∗i , Z̃i−1)→ Z̃i for Case 1:
By definition, Wi1 → (Wi2, Wi1 ⊕ K∗i , Z̃i−1)→ Z̃i holds if and only if:

Pr{wi1|wi2, wi1 ⊕ k∗i , z̃i−1, z̃i} = Pr{wi1|wi2, wi1 ⊕ k∗i , z̃i−1}. (B.20)

Equation (B.20) can be further expressed as:

Pr{wi1, wi2, wi1 ⊕ k∗i , z̃i−1, z̃i}
Pr{wi2, wi1 ⊕ k∗i , z̃i−1, z̃i}

=
Pr{wi1, wi2, wi1 ⊕ k∗i , z̃i−1}

Pr{wi2, wi1 ⊕ k∗i , z̃i−1}
. (B.21)

It remains to calculate the joint probabilities in (B.21); see the following.

Pr{wi1, wi2, wi1 ⊕ k∗i , z̃i−1, z̃i}
(a)
= Pr{wi1} · Pr{wi2, wi1 ⊕ k∗i , z̃i} · Pr{z̃i−1}, (B.22)

where (a) is from the fact that Wi1 is independent of Wi2, Wi1 ⊕ K∗i , Z̃i and Z̃i−1 and Z̃i−1 is
independent of Wi2, Wi1 ⊕ K∗i , Z̃i.

Similarly, we have:

Pr{wi2, wi1 ⊕ k∗i , z̃i−1, z̃i}
(b)
= Pr{wi2, wi1 ⊕ k∗i , z̃i} · Pr{z̃i−1}, (B.23)
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where (b) is from the fact that Z̃i−1 is independent of Wi2, Wi1 ⊕ K∗i and Z̃i.
Substituting (B.22) and (B.23) into the left-hand side of (B.21), we have:

Pr{wi1, wi2, wi1 ⊕ k∗i , z̃i−1, z̃i}
Pr{wi2, wi1 ⊕ k∗i , z̃i−1, z̃i}

= Pr{wi1}. (B.24)

Next, we need to calculate the right-hand side of (B.21); see the following.

Pr{wi1, wi2, wi1 ⊕ k∗i , z̃i−1}
(c)
= Pr{wi1} · Pr{wi2} · Pr{wi1 ⊕ k∗i } · Pr{z̃i−1}, (B.25)

where (c) is from the fact that Wi1, Wi2, Wi1 ⊕ K∗i and Z̃i−1 are independent.
The joint probability Pr{wi2, wi1 ⊕ k∗i , z̃i−1} is calculated by:

Pr{wi2, wi1 ⊕ k∗i , z̃i−1}
(d)
= Pr{wi2} · Pr{wi1 ⊕ k∗i } · Pr{z̃i−1}, (B.26)

where (d) is from the fact that Wi2, Wi1 ⊕ K∗i and Z̃i−1 are independent.
Substituting (B.25) and (B.26) into the right-hand side of (B.21), we have:

Pr{wi1, wi2, wi1 ⊕ k∗i , z̃i−1}
Pr{wi2, wi1 ⊕ k∗i , z̃i−1}

= Pr{wi1}. (B.27)

By checking (B.24) and (B.27), the Markov chain Wi1 → (Wi2, Wi1⊕K∗i , Z̃i−1)→ Z̃i is proven.

Proof. Proof of Wi → (Z̃i, Z̃i−1)→ (Wi−1, Z̃i−2, Z̃n
i+1) for Case 2:

Letting Wi2 = ∅ and Wi1 = Wi for all 2 ≤ i ≤ n, the proof of Wi → (Z̃i, Z̃i−1) →
(Wi−1, Z̃i−2, Z̃n

i+1) for Case 2 is along the lines of that for Case 1, and therefore, we omit it here.

Proof. Proof of Wi → (Wi ⊕ K∗i , Z̃i−1)→ Z̃i for Case 2:
Letting Wi2 = ∅ and Wi1 = Wi for all 2 ≤ i ≤ n, the proof of Wi → (Wi ⊕ K∗i , Z̃i−1) → Z̃i for

Case 2 is along the lines of that for Case 1, and therefore, we omit it here.

Thus, the direct proof of Theorem 1 is completed.
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