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Abstract: Partial discharge (PD) detection can effectively achieve the status maintenance of 

XLPE (Cross Linked Polyethylene) cable, so it is the direction of the development of 

equipment maintenance in power systems. At present, a main method of PD detection is the 

broadband electromagnetic coupling with a high-frequency current transformer (HFCT). 

Due to the strong electromagnetic interference (EMI) generated among the mass amount of 

cables in a tunnel and the impedance mismatching of HFCT and the data acquisition 

equipment, the features of the pulse current generated by PD are often submerged in the 

background noise. The conventional method for the stationary signal analysis cannot analyze 

the PD signal, which is transient and non-stationary. Although the algorithm of Shannon 

wavelet singular entropy (SWSE) can be used to analyze the PD signal at some level, its 

precision and anti-interference capability of PD feature extraction are still insufficient. For 

the above problem, a novel method named Renyi wavelet packet singular entropy (RWPSE) 

is proposed and applied to the PD feature extraction on power cables. Taking a three-level 

system as an example, we analyze the statistical properties of Renyi entropy and the intrinsic 

correlation with Shannon entropy under different values of  . At the same time, discrete 

wavelet packet transform (DWPT) is taken instead of discrete wavelet transform (DWT), 

and Renyi entropy is combined to construct the RWPSE algorithm. Taking the grounding 

current signal from the shielding layer of XLPE cable as the research object, which includes 

the current pulse feature of PD, the effectiveness of the novel method is tested. The 
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theoretical analysis and experimental results show that compared to SWSE, RWPSE can not 

only improve the feature extraction accuracy for PD, but also can suppress EMI effectively. 

Keywords: wavelet packet transformation; Renyi entropy; partial discharge; feature extraction 

 

1. Introduction 

The internal partial discharge (PD) of XLPE cable refers to a phenomenon of discharge that takes 

place in the insulating structure of XLPE cable in a power system. The discharge can do damage to the 

insulating structure in the nearby area. If the PD exists for a long time, it may decrease the major 

electrical insulation level and eventually lead to insulation breakdown of the cable. The sampling of the 

PD signal mainly uses the broadband electromagnetic coupling method in which a high frequency 

current transformer (HFCT) is used to sample the pulse current from the cable shielding layer to the 

ground when PD takes place. The research suggests that due to the electromagnetic interference caused 

by the mass amount of cables in the tunnel, with the impedance mismatching between HFCT and the 

data acquisition equipment, the signal features (mainly between 1 MHz and 30 MHz) of the pulse current 

produced by PD are often submerged by background noise, and the detection results processed by 

software and hardware are still not good enough. If we can propose a method that can extract the signal 

feature of PD under strong background noise, it will promote the technological development of the fault 

diagnosis of XLPE cable. 

As an analysis method of a non-stationary signal, Shannon wavelet singular entropy (SWSE) has been 

applied in transient signal feature extraction gradually, and some interesting results have been  

obtained [1]. However, the study shows that the accuracy of transient feature extraction with SWSE 

mainly depends on the meticulousness of frequency resolution by wavelet transform (WT) for the 

measured signal. Due to the corresponding frequency-band unevenness of the WT scale and the growth 

of frequency resolution roughness with a decrease in the WT scale, as several high frequency 

components of the signal are divided into the same frequency band, SWSE will decrease more than the 

expected value, which can result in the inaccuracy of PD detection. Therefore, [2] makes a clinical 

diagnosis on the basis of magnetic resonance brain images via the discrete wavelet packet transform 

(DWPT) with Tsallis entropy and a generalized support vector machine. For bearing fault diagnosis, 

DWPT and Shannon entropy are applied to obtain an accurate result [3]. By combining DWPT with 

sample entropy, a diagnosis has been applied for non-fluent voices [4]. The works in [5–8] present a 

voice feature extraction method using DWPT. In [9,10], DWPT is applied to extract the signal feature 

of an electric power system. In [11,12], a combination method is proposed to improve the ability of 

recognizing power quality disturbances based on wavelet packet entropies. 

Consideringthe short durationand low energy of the pulse current caused by PD and electromagnetic 

interference (EMI), in this paper, based on the combination of DWPT and Renyi entropy, a novel method 

using Renyi wavelet packet singular entropy (RWPSE) is proposed, and it is applied to the PD feature 

extraction. The effectiveness of the method is also proven by theoretical analysis and experiments. 
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2. Shannon Wavelet Singular Entropy 

2.1. The Definition of Shannon Wavelet Singular Entropy 

SWSE is the combination of discrete wavelet transform (DWT), singular value decomposition (SVD) 

and Shannon entropy [13]. 

The algorithm procedure is listed as follows: 
(1) On the assumption that the measured signal  x n  is decomposed into S layers with DWT, then 

we get S wavelet coefficients (or reconstructed signals). A sliding window is set upon the wavelet 
coefficients   , 1, , , 1, ,iD d k k L i S     to form a matrix; L is the length of original data; the width of 

the sliding window is 2 w L  ; the slide factor is 1 w  . Therefore, the matrix that is constituted by 
the data sequence in the sliding window during the period    1 ~m w m    is:  
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 (1)

where 1,2, ,m M   is the sliding number of the sliding window,   /M L w   . 

(2) According to SVD theory,  , ,W m w   is deformed as follows: 

 , ,W m w U V    (2)

where   1, 2, , , min ,
s

s g g S w    of diagonal matrix   is singular value, and 
1 2

0
g

       [14]. 

(3) At last, the calculation of SWSE during    1 ~m w m    is regarded as: 
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
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2.2. The Limitation of Shannon Wavelet Singular Entropy 

DWT is the basis of SWSE besides Shannon entropy. After, the measured signal  x n  is decomposed 

and reconstructed in each frequency band, and the frequency band of single-branch reconstructed signals 
 iD k  and  iA k  is: 
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i i
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  (4)

where sf  is the sampling frequency.  
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For convenience,  mA n  is expressed as  1mD n , so    
1

1

m

i
i

x n D n




 . With the resolution increase 

of DWT, The low frequency component is refined by the frequency divider continually, except the high 

frequency component. 

From Equation (4) and when the main components of the signal are concentrated in the high frequency 

band, this will influence the accuracy of the SWSE calculation, as the DWT resolution on the high 

frequency band is too rough, and the most high-frequency components that have a similar frequency are 

in the same scale, which is proven as follows. 
On the assumption that the i-th branch reconstructed single  iD n  contains ik  different frequency 

components, so: 
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 (5)

i  is the singular value of the i-th branch reconstructed signal  iD n ; 
ik  is the singular value of the 

j-th frequency components in  iD n ;  mp i is simplified as ip . 

In accordance with the correlation properties of reconstructed signals through DWT, the stronger the 

dependency of the reconstructed signal on the neighbor nodes, the more similar the frequency 

components are. When the reconstructed signals of nodes are approximately in accord, the corresponding 

singular value will be close to zero. On the contrary, if the frequency components of reconstructed 

signals on nodes have a great difference, the singular value of the main diagonal will  

increase correspondingly. 

According to Equation (3), the SWSE is calculated as: 

 WS 1
1

, , ln
m

S E m i i
i

W p p p p


   (6)

From Equations (4) and (6), the conventional SWSE does not perform detailed statistics on ik  

different frequency components of  iD n ; therefore, the frequency component of each reconstructed 

signal is so complicated, that the sum of its singular value is greater than the singular value corresponding 

to  iD n  without frequency sub-dividing, which is 
1

( )
ik

i i
j

p q j


 , and ( )iq j  is simplified as ijq . The 

calculating process of all frequency components with the SWSE algorithm is listed as follows. 
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Compared to Equation (6), Equation (7) has an extra part 1

1 1

, i

m
iki

i SWSE
i m
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non-negativity of Shannon entropy, when 1
WS

1

, 0iiki
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m
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 
 , 

   
1WS 11 1 1 WS 1, , , , , , , ,

mS E k m mk S E mW q q q q W p p     (8)

From the above analysis, when a reconstructed signal contains the multi-frequency components after 

DWT, its SWSE is smaller than the expected value of all frequency components. This shows that the 

extent of detail of the partition for the frequency band by DWT has an influence on the accuracy of the 

description for signal complexity with SWSE. Therefore, if all of the frequency components of the 

measured signal can be assigned to the frequency band corresponding to certain wavelet scales, the 

complexity description will be the most accurate. However, the DWT frequency bands are not evenly 

segmented, and the roughness of the frequency band partition will increase with the scale reducing. 

When multiple high-frequency components of the measured signal are assigned to the same frequency 

band, SWSE is smaller than the expected value. When the measured signal contains complex frequency 

components in the high frequency band, especially a transient signal, SWSE cannot characterize the 

signal complexity accurately. 

3. Renyi Wavelet Packet Singular Entropy  

3.1. The Definition of Renyi Entropy 

Renyi entropy is an extension of Shannon entropy. Renyi entropy is equivalent to Shannon when 

1  . In many cases, the Renyi entropy has better statistical properties than the Shannon entropy when 

1  . Renyi entropy is defined as follows [15]. 
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3.2. The Statistical Properties of Renyi Entropy 

The selection of  plays an important role in the statistical properties of Renyi entropy. Taking a 

three-level system as the analysis object, according to Equation (9), the statistical results are calculated, 

and the corresponding relation between Renyi entropy with   and the probability distribution are shown 

in Figure 1a–d. According to Figure 1a–d, when 0   and 0  , with the increase of  , the statistical 

range of Renyi entropy will expand for the system state of a small probability event, and the statistical 

sensitivity of the small probability event will reduce correspondingly. On the contrary, with the decrease 

of  , the statistical range of the small probability event is reduced, and the statistical sensitivity is 

increased. When 1  , Renyi entropy is in accord with Shannon entropy. Because 
1

ln
n

SE i i
i

W p p


  , 

when 0ip  , the value of the Shannon entropy may be missing, as shown in Figure 2. At this point, the 

Shannon entropy statistics will fail. Therefore, ln 0i ip p   is usually defined when 0ip  . 

For a signal containing transient (or complex high frequency) components, the components of the 

signal are characterized by low energy, and there is a small probability event relative to the background 

noise. Considering this, Renyi entropy can get better results in extracting the signal feature with the 

appropriate  . 
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(c) (d) 

Figure 1. Relation between Renyi entropy with different values of   and the probability 

distribution: (a) 0.1  ; (b) 0.5  ; (c) 0.99  ; (d) 2  . 

 

Figure 2. Relation between Shannon entropy and the probability distribution. 

3.3. The Definition of Renyi Wavelet Packet Singular Entropy 

From Section 2.2, the high-frequency resolution roughness of DWT is the basic reason causing the 

inaccuracy of the signal complexity description with SWSE. Therefore, we introduce DWPT to improve 

the high-frequency resolution. The discrete wavelet packet recursive decomposition is listed as follows. 
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Where  h x  is a high-pass filter,  g x  is a low-pass filter and  ,i kd x  is the reconstructed signal of the 

node k on the layer i by DWPT, and the discrete wavelet packet decomposition is to divide each  
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sub-band into two parts and transmit them to the lower levels until each sub-band corresponds to a 

frequency component of the signal, as shown in Figure 3. 

 

Figure 3. Framework of discrete wavelet packet transform (DWPT). 

From Figure 3, DWPT is to divide the frequency band i into the 2i  sub-frequency band, so as to 

improve the resolution of the low and high frequency. Compared to DWT, a closer analysis is operated 

in the frequency domain, which overcomes the DWT’s limitations of the high-frequency resolution 

roughness. In view of the above analysis, DWPT and Renyi entropy are introduced instead of DWT and 

Shannon entropy, and the RWPSE algorithm is proposed as follows. 
(1) By using DWPT, the signal  x n  is decomposed and reconstructed on the m layer, and the S 

branch reconstructed signals are obtained to build the matrix   , 1, , , 1, ,L S iD d k k L i S     ; L is 

the length of  x n . A sliding window is defined as  , ,W m w   on L SD  ; w is the window width;   is 

the sliding factor. 
(2) According to the SVD theory, the SVD of  , ,W m w   is defined as follows. 

 , ,W m w U V    (11)

In Equation (11), the main diagonal elements of the matrix  ,   1,2, , , min ,s s g g M w    are 

the singular values of  , ,W m w  , and 1 2 0g      . 

(3) RWPSE is calculated during    1 ~m w m    according to Equation (12). 
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4. The Application of RWPSE in PD Detection 

4.1. The Collection of the PD Signal of a Cable Using HFCT 

When PD occurs in XLPE cable (Table 1), a high-frequency pulse current will be generated and flows 

from the high potential of the cable core to the low potential of the metal sheath and passes to the ground 

through the cross-connection box or ground wire. Therefore, HFCT (bandwidth 0.1~100 MHz) is 

connected to a cross-connection box or ground wire, and the pulse current signal can be collected based 

on the principle of electromagnetic coupling and stored in acquisition equipment through coaxial cable. 

The PD detection process is shown in Figure 4. 

Table 1. Specification of the cable. 

Model Cable core 
Cross-sectional 

area 
Insulation 

layer 
Metal sheath 

The voltage 
rating 

YJLW03 Copper splicing wire 800 mm² XLPE Aluminum 127 kV/220 kV 
 

 
(a) 

(b) 

Figure 4. Partial discharge (PD) detection process. (a) Working principle diagram of the 

high-frequency current transformer (HFCT); (b) Schematic diagram of the PD detection system. 

As shown in Figure 5, the HFCT is installed on the three-phase ground wire of the cross-connection 

box and is connected to the acquisition terminal APD-120D consisting of the analog to digital (A\D) 

converter module and the data storage through the coaxial cable. The data collection on the spot is shown 

in Figure 6. 
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Figure 5. On-site installation of the HFCT. 

 

Figure 6. Data collection on the spot. 

4.2. The Feature Extraction of the PD Signal with RWPSE 

(1) Using HFCT and data acquisition equipment to collect the PD signal and the sampling frequency 

set at 100 MHz, the original PD signal is shown in Figure 7. 

 

Figure 7. PD signal collected by HFCT. 
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(2) The original signal is decomposed on Scale 3 by using DWPT, the eight reconstructed signals are 

obtained. The corresponding frequency band of reconstructed signals are 0~6.25 MHz, 6.25~12.5 MHz, 

12.5~18.75 MHz, 18.75~25 MHz, 25~31.25 MHz, 31.25~37.5 MHz, 37.5~43.75 MHz, 43.75~50 MHz. 
(3) A sliding window  , ,W m w  , w = 2000 and 5  , is built on the matrix of the reconstructed 

signals. The diagonal matrix   is obtained after SVD is operated in the sliding window; where 

 are the main diagonal elements of  , and 1 2 0g      . 

(4) According to the probability of the occurrence of noise and PD and considering the SNR in the 

original signal,   is set at 0.1 on the basis of the analysis conclusions of Renyi entropy in  
Section 3.2. From Equation (12), RWPSE is calculated during    1 ~m w m   , and the 

corresponding curve is drawn in Figure 8a. Meanwhile, SWSE is calculated and shown in Figure 8b. 

(a) (b) 

Figure 8. Performance comparison of feature extraction between Renyi wavelet packet 

singular entropy (RWPSE) and Shannon wavelet singular entropy (SWSE): (a) RWPSE;  

(b) SWSE. 

From Figure 8, it is known that the feature amplitude of PD extracted by RWPSE is significantly 

higher than SWSE, which shows that RWPSE has a stronger capability to extract the sophisticated 

features of PD. 

In order to test the anti-interference capability of RWPSE, Gaussian white noise is added to the 

original signal. The extraction results of PD using RWPSE and SWSE are respectively shown in  

Figure 9a,b. From Figure 9b, it is known that the PD feature obtained by SWSE is submerged in the 

background noise, where the noise peak is about 0.007 pu, and the peak of the PD feature is about  

0.006 pu. The peak of the PD feature obtained by the RWPSE is 0.013 pu, but the noise peak is only 

about 0.006 pu, which proves that the anti-interference capability of RWPSE is better than SWSE. 
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(a) (b) 

Figure 9. Anti-interference performance comparison between RWPSE and SWSE.  

(a) RWPSE; (b) SWSE. 

4.3. Analysis of Experimental Results 

According to a large amount of historical experimental data using HFCT, we find that the frequency 

band of background noise is about 0~800 kHz, and the frequency band of the PD signal is 1~30 MHz, 

which has an obvious difference in the frequency domain. The PD signal is often submerged in strong 

background noise. Therefore, it is not scientific that the signal amplitude in the time domain is taken as 

a critical standard to judge PD. The proper way is that analyzing reconstructed signals of high-frequency 

judges the probability of PD occurrence. In view of the above, the original signal is decomposed by 

DWT, and reconstructed signals are obtained in different frequency bands. By comparing with  

Figures 7 and 10, a low-frequency reconstructed signal in 0~0.78 MHz is similar to the original signal 

in Figure 7. The high-frequency reconstructed signals in 12.5~18.75 MHz and 25~31.25 MHz are shown 

in Figure 11a,b. From Figure 11, two high-frequency reconstructed signals show an obvious fluctuation 
during 11.6 and 11.8 s , and the signal amplitude is small at all other times, which means that the 

fluctuation of the original during 8 and 8.5 s  is pulse noise, and the suspected PD exists during 11.6 

and 11.8 s . From the above, the conclusion of RWPSE is being proven right. 

 

Figure 10. Low-frequency reconstructed signal in 0~0.78 MHz. 
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(a) (b) 

Figure 11. High-frequency reconstructed signals: (a) in 12.5~18.75 MHz; (b) in 25~31.25 MHz. 

5. Conclusions 

The XLPE cable PD signal obtained by HFCT is easily interfered by EMI and has transient 

characteristics. As a traditional method of transient signal analysis, SWSE can be used to analyze the 

transient signals to a certain extent, but its accuracy and anti-interference capability are influenced by 

the high-frequency resolution roughness of DWT and the statistical properties of Shannon entropy. 

Based on DWPT and Renyi entropy, the RWPSE algorithm is proposed to solve the problem of the 

SWSE theoretically. DWPT improves the resolution on the low and high frequency bands and obtains 

better partial enlargement in the high-frequency band, which overcomes the DWT’s limitations of the  

high-frequency resolution roughness. In the aspect of statistical properties, because of the introduction 

of  , Renyi entropy is more flexible than the Shannon entropy, and it can select the appropriate   for 

the different signal features. Based on the above advantages of the RWPSE, it is applied to the PD feature 

extraction of XLPE cable, and the results are compared to those of SWSE. The experimental results 

show that RWPSE has more advantages in the PD feature extraction and EMI suppression. The next 

work will focus on the intrinsic correlation between the value of   of RWPSE and the accuracy of the 

detection of transient signals. 
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