# Characterization of Complex Fractionated Atrial Electrograms by Sample Entropy: An International Multi-Center Study

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

**Figure 1.**Block diagram of the new methodology proposed, from the raw atrial electrograms (A-EGM) input signal preprocessing stage, up to the classification results.

#### 2.1. Sample Entropy

#### SampEn m and r Parameter Optimization

#### 2.2. Validation

#### 2.3. Experimental Dataset

- C0: Non-fractionated A-EGM.
- C1: Fractionated A-EGM with periodic activity.
- C2: A mixture of periodic fractionated and periodic non-fractionated A-EGM.
- C3: High frequency A-EGM with continuous activity. No regular activation can be seen.

#### 2.3.1. German Database

**Figure 2.**One signal from each fractionation level, ranging from C0 (top) to C3 (bottom). Original raw signals after baseline wander removal. (

**A**) German (GE) database and (

**B**) Czech (CZ) database.

#### 2.3.2. Czech Database

#### 2.3.3. Mixed Database

## 3. Experiments and Results

**Table 1.**Selection criteria value (SCV), AUC and sample entropy (SampEn) parameters $(m,r)$ obtained for the training subset using the optimization scheme described. Sensitivity (Se) and specificity (Sp) values are shown for the corresponding $(m,r)$ parameters in each row. The K-fold column refers to each of the folds considered from 1–10.

K-fold | SCV | AUC (%) | m | r | Sp (%) | Se (%) |
---|---|---|---|---|---|---|

1 | 1.278 | 88.6 | 4 | 0.65 | 85.1 | 76.4 |

2 | 1.299 | 90.9 | 8 | 0.65 | 80.6 | 78.7 |

3 | 1.331 | 89.2 | 4 | 0.65 | 88.1 | 76.4 |

4 | 1.380 | 90.9 | 4 | 0.65 | 91.0 | 77.5 |

5 | 1.195 | 89.1 | 4 | 0.65 | 86.6 | 78.7 |

6 | 1.161 | 91.2 | 8 | 0.65 | 88.1 | 76.4 |

7 | 1.140 | 88.3 | 4 | 0.65 | 88.1 | 75.3 |

8 | 1.266 | 84.7 | 2 | 0.65 | 89.6 | 77.5 |

9 | 1.238 | 90.0 | 4 | 0.65 | 83.6 | 79.8 |

10 | 1.295 | 88.5 | 4 | 0.65 | 85.7 | 77.8 |

**Table 2.**SampEn statistics for the fractionated/non-fractionated (F/NF) A-EGM for $m=4,r=0.65$. DB stands for database. Results are summarized using mean and median SampEn values, standard deviation (SD), confidence intervals (CI), AUC, sensitivity (Se), specificity (Sp) and the p-value of the Mann–Whitney statistical test.

DB | class | mean | median | SD | 95% CI | AUC (%) | Se (%) | Sp (%) | p |
---|---|---|---|---|---|---|---|---|---|

BT | NF | 0.054 | 0.049 | 0.003 | [0.047,0.061] | 89.3 | 86.9 | 77.5 | 0.001 |

F | 0.115 | 0.108 | 0.005 | [0.105,0.125] | 89.3 | 86.9 | 77.5 | 0.001 | |

CZ | NF | 0.050 | 0.050 | 0.003 | [0.044,0.055] | 88.7 | 79.5 | 89.1 | 0.001 |

F | 0.090 | 0.086 | 0.003 | [0.083,0.097] | 88.7 | 79.5 | 89.1 | 0.001 | |

GE | NF | 0.043 | 0.023 | 0.003 | [0.038,0.048] | 93.4 | 94.5 | 82.9 | 0.001 |

F | 0.137 | 0.134 | 0.003 | [0.130,0.143] | 93.4 | 94.5 | 82.9 | 0.001 |

**Table 3.**SampEn statistics for the F/NF A-EGM for individual parameters $(m,r)$ optimized individually on the CZ and GE databases. DB stands for database and params for parameters $(m,r)$. Results are summarized using mean and median values, standard deviation (SD), confidence intervals (CI), area under ROC (AUC), sensitivity (Se), specificity (Sp) and the Mann–Whitney statistical probability (p).

DB | Class | params | mean | median | SD | 95% CI | AUC (%) | Se (%) | Sp (%) | p |
---|---|---|---|---|---|---|---|---|---|---|

CZ | NF | (5,0.15) | 0.120 | 0.131 | 0.007 | [0.106,0.133] | 90.9 | 82.0 | 79.2 | 0.001 |

F | 0.224 | 0.227 | 0.008 | [0.208,0.240] | 90.9 | 82.0 | 79.2 | 0.001 | ||

GE | NF | (4,0.15) | 0.202 | 0.162 | 0.011 | [0.180,0.225] | 88.5 | 87.8 | 78.5 | 0.001 |

F | 0.452 | 0.454 | 0.008 | [0.437,0.468] | 88.5 | 87.8 | 78.5 | 0.001 |

**Figure 3.**Boxplot distribution of the SampEn values computed to the initially-optimized parameters for individual levels of fractionation, $(m,r)=$(4,0.65). (

**A**) The BT database. (

**B**) The GE database. (

**C**) The CZ database.

**Figure 4.**Boxplot distribution of the SampEn values computed with the individual optimized parameters for each of the levels of fractionation present in each database. (

**A**) The GE database (4,0.15). (

**B**) The CZ database (5,0.15).

DB | Class | mean | median | 95% CI |
---|---|---|---|---|

BT | C0 | 0.032 | 0.021 | [0.020, 0.045] |

C1 | 0.065 | 0.061 | [0.058, 0.072] | |

C2 | 0.102 | 0.097 | [0.093, 0.111] | |

C3 | 0.149 | 0.138 | [0.127, 0.172] | |

CZ | C0 | 0.029 | 0.028 | [0.024, 0.035] |

C1 | 0.061 | 0.058 | [0.055, 0.066] | |

C2 | 0.082 | 0.083 | [0.075, 0.088] | |

C3 | 0.113 | 0.114 | [0.100, 0.125] | |

GE | C0 | 0.030 | 0.014 | [0.024, 0.036] |

C1 | 0.070 | 0.064 | [0.062, 0.077] | |

C2 | 0.119 | 0.115 | [0.113, 0.125] | |

C3 | 0.186 | 0.187 | [0.176, 0.196] |

**Figure 5.**Comparison between both algorithms used for a specific patient undergoing radio frequency ablation (RFA) of atrial fibrillation (AF). SampEn with optimized parameters ($m=4,r=0.65$) (bottom) and CFEMean (St. Jude Medical) measurements mapped on a 3D model of heart tissue. The blue color in both measures reveals areas with a higher level of complexity of complex fractionated atrial electrograms (CFAEs). (

**A**) 3D atrial topographical map, whole mapped area, frontal view. (

**B**) A detail of the area around the pulmonary vein.

## 4. Discussion

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Haïssaguerre, M.; Jaïs, P.; Shah, D.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New Eng. J. Med.
**1998**, 339, 659–666. [Google Scholar] [CrossRef] [PubMed] - Nademanee, K.; Schwab, M.; Porath, J.; Abbo, A. How to perform electrogram-guided atrial fibrillation ablation. Heart Rhythm
**2006**, 3, 981–984. [Google Scholar] [CrossRef] [PubMed] - Porter, M.; Spear, W.; Akar, J.; Helms, R.; Brysiewicz, N.; Santucci, P.; Wilber, D. Prospective Study of Atrial Fibrillation Termination During Ablation Guided by Automated Detection of Fractionated Electrograms. J. Cardiovasc. Electrophysiol.
**2008**, 19, 613–620. [Google Scholar] [CrossRef] [PubMed] - Haïssaguerre, M.; Hocini, M.; Sanders, P.; Takahashi, Y.; Rotter, M.; Sacher, F.; Rostock, T.; Hsu, L.; Jonsson, A.; OŃeill, M.; et al. Localized Sources Maintaining Atrial Fibrillation Organized by Prior Ablation. Circulation
**2006**, 113, 616–625. [Google Scholar] [CrossRef] [PubMed] - Schmitt, C.; Ndrepepa, G.; Weber, S.; Schmieder, S.; Weyerbrock, S.; Schneider, M.; Karch, M.; Deisenhofer, I.; Schreieck, J.; Zrenner, B.; et al. Biatrial multisite mapping of atrial premature complexes triggering onset of atrial fibrillation. Am. J. Cardiol.
**2002**, 89, 1381–1387. [Google Scholar] [CrossRef] - Ndrepepa, G.; Karch, M.; Schneider, M.; Weyerbrock, S.; Schreieck, J.; Deisenhofer, I.; Zrenner, B.; Schomig, A.; Schmitt, C. Characterization of Paroxysmal and Persistent Atrial Fibrillation in the Human Left Atrium During Initiation and Sustained Episodes. J. Cardiovas. Electrophysiol.
**2002**, 13, 525–532. [Google Scholar] [CrossRef] - Nademanee, K.; McKenzie, J.; Kosar, E.; Schwab, M.; Sunsaneewitayakul, B.; Vasavakul, T.; Khunnawat, C.; Ngarmukos, T. A new approach for catheter ablation of atrial fibrillation: Mapping of the electrophysiologic substrate. J. Am. Coll. Cardiol.
**2004**, 43, 2044–2053. [Google Scholar] [CrossRef] [PubMed] - Oral, H.; Chugh, A.; Good, E.; Wimmer, A.; Dey, S.; Gadeela, N.; Sankaran, S.; Crawford, T.; Sarrazin, J.; Kuhne, M.; et al. Radiofrequency Catheter Ablation of Chronic Atrial Fibrillation Guided by Complex Electrograms. Circulation
**2007**, 115, 2606–2612. [Google Scholar] [CrossRef] [PubMed] - Kumagai, K. Patterns of activation in human atrial fibrillation. Heart Rhythm
**2007**, 4, 7–12. [Google Scholar] [CrossRef] [PubMed] - Mainardi, L.; Corino, V.; Lombardi, L.; Tondo, C.; Mantica, M.; Lombardi, F.; Cerutti, S. Assessment of the dynamics of atrial signals and local atrial period series during atrial fibrillation: effects of isoproterenol administration. BioMed. Eng. Online
**2004**, 3, 37. [Google Scholar] [CrossRef] [PubMed] - Ravelli, F.; Faes, L.; Sandrini, L.; Gaita, F.; Antolini, R.; Scaglione, M.; Nollo, G. Wave Similarity Mapping Shows the Spatiotemporal Distribution of Fibrillatory Wave Complexity in the Human Right Atrium During Paroxysmal and Chronic Atrial Fibrillation. J. Cardiovasc. Electrophysiol.
**2005**, 16, 1071–1076. [Google Scholar] [CrossRef] [PubMed] - Ng, J.; Goldberger, J. Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms. J. Cardiovasc. Electrophysiol.
**2007**, 18, 680–685. [Google Scholar] [CrossRef] [PubMed] - Takahashi, Y.; O’Neill, M.; Hocini, M.; Dubois, R.; Matsuo, S.; Knecht, S.; Mahapatra, S.; Lim, K.; Jaïs, P.; Jonsson, A.; et al. Characterization of Electrograms Associated With Termination of Chronic Atrial Fibrillation by Catheter Ablation. J. Am. Coll. Cardiol.
**2008**, 51, 1003–1010. [Google Scholar] [CrossRef] [PubMed] - Kr̎emen, V.; Lhotská, L.; C̆ihák, R.; Vanc̆ura, V.; Kautzner, J.; Wichterle, D. A new approach to automated assessment of endocardial electrograms fractionation in human left atrium during atrial fibrillation. Physiol. Meas.
**2008**, 29, 1371–1381. [Google Scholar] [CrossRef] [PubMed] - Ciaccio, E.; Biviano, A.; Whang, W.; Gambhir, A.; Garan, H. Different characteristics of complex fractionated atrial electrograms in acute paroxysmal versus long-standing persistent atrial fibrillation. Heart Rhythm
**2010**, 7, 1207–1215. [Google Scholar] [CrossRef] [PubMed] - Lin, Y.; Lo, M.; Lin, C.; Chang, S.; Lo, L.; Hu, Y.; Chao, T.; Li, C.; Chang, Y.; Hsieh, W.; et al. Nonlinear Analysis of Fibrillatory Electrogram Similarity to Optimize the Detection of Complex Fractionated Electrograms During Persistent Atrial Fibrillation. J. Cardiovasc. Electrophysiol.
**2013**, 24, 280–289. [Google Scholar] [CrossRef] [PubMed] - Ng, J.; Borodyanskiy, A.; Chang, E.; Villuendas, R.; Dibs, S.; Kadish, A.; Goldberger, J. Measuring the complexity of atrial fibrillation electrograms. J. Cardiovasc. Electrophysiol.
**2010**, 21, 649–655. [Google Scholar] [CrossRef] [PubMed] - Ganesan, A.; Kuklik, P.; Lau, D.; Brooks, A.; Baumert, M.; Lim, W.; Thanigaimani, S.; Nayyar, S.; Mahajan, R.; Kalman, J.; et al. Bipolar Electrogram Shannon Entropy at Sites of Rotational Activation: Implications for Ablation of Atrial Fibrillation. Circ. Arrhythm. Electrophysiol.
**2013**, 6, 48–57. [Google Scholar] [CrossRef] [PubMed] - Jacquemet, V.; Henriquez, C. Genesis of complex fractionated atrial electrograms in zones of slow conduction: A computer model of microfibrosis. Heart Rhythm
**2009**, 6, 803–810. [Google Scholar] [CrossRef] [PubMed] - Jadidi, A.; Duncan, E.; Miyazaki, S.; Lellouche, N.; Shah, A.; Forclaz, A.; Nault, I.; Wright, M.; Rivard, L.; Liu, X.; et al. Functional Nature of Electrogram Fractionation Demonstrated by Left Atrial High-Density Mapping. Circ. Arrhythm. Electrophysiol.
**2012**, 5, 32–42. [Google Scholar] [CrossRef] [PubMed] - Ferrario, M.; Signorini, M.; Magenes, G.; Cerutti, S. Comparison of entropy-based regularity estimators: Application to the fetal heart rate signal for the identification of fetal distress. Biomed. Eng. IEEE Trans.
**2006**, 53, 119–125. [Google Scholar] [CrossRef] [PubMed] - Lewis, M.; Short, A. Sample entropy of electrocardiographic RR and QT time-series data during rest and exercise. Physiol. Meas.
**2007**, 28, 731–744. [Google Scholar] [CrossRef] [PubMed] - Al-Angari, H.; Sahakian, A. Use of Sample Entropy Approach to Study Heart Rate Variability in Obstructive Sleep Apnea Syndrome. IEEE Trans. Biomed. Eng.
**2007**, 54, 1900–1904. [Google Scholar] [CrossRef] [PubMed] - Lake, D.; Richman, J.; Griffin, M.; Moorman, J. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol.
**2002**, 283, 789–797. [Google Scholar] [CrossRef] [PubMed] - Cervigón, R.; Moreno, J.; Reilly, R.; Millet, J.; Pérez-Villacastín, J.; Castells, F. Entropy measurements in paroxysmal and persistent atrial fibrillation. Physiol. Meas.
**2010**, 31, 1011. [Google Scholar] [CrossRef] [PubMed] - Alcaraz, R.; Rieta, J. The application of nonlinear metrics to assess organization differences in short recordings of paroxysmal and persistent atrial fibrillation. Physiol. Meas.
**2010**, 31, 115–130. [Google Scholar] [CrossRef] [PubMed] - Orozco-Duque, A.; Novak, D.; Kremen, V.; Bustamante, J. Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation. Physiol. Meas.
**2015**, 11, 2269–2284. [Google Scholar] [CrossRef] [PubMed] - Ugarte, J.P.; Orozco-Duque, A.; Tobón, C.; Kremen, V.; Novak, D.; Saiz, J.; Oesterlein, T.; Schmitt, C.; Luik, A.; Bustamante, J. Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model. PLoS ONE
**2014**, 12. [Google Scholar] [CrossRef] [PubMed] - Richman, J.; Moorman, J. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart. Circ. Physiol.
**2000**, 278, 2039–2049. [Google Scholar] - Stiles, M.K.; Brooks, A.G.; John, B.; Wilson, L.; Kuklik, P.; Dimitri, H.; Lau, D.H.; Roberts-Thomson, R.L.; Mackenzie, L.; Willoughby, S.; et al. The effect of electrogram duration on quantification of complex fractionated atrial electrograms and dominant frequency. J. Cardiovasc. Electrophysiol.
**2008**, 19, 252–258. [Google Scholar] [CrossRef] [PubMed] - Verma, A.; Novak, P.; Macle, L.; Whaley, B.; Beardsall, M.; Wulffhart, Z.; Khaykin, Y. A prospective, multicenter evaluation of ablating complex fractionated electrograms (CFEs) during atrial fibrillation (AF) identified by an automated mapping algorithm: Acute effects on {AF} and efficacy as an adjuvant strategy. Heart Rhythm
**2008**, 5, 198–205. [Google Scholar] [CrossRef] [PubMed] - Schilling, C.; Keller, M.; Scherr, D.; Oesterlein, T.; Haissaguerre, M.; Schmitt, C.; Dossel, O.; Luik, A. Fuzzy decision tree to classify complex fractionated atrial electrograms. Biomed. Tech.
**2015**, 60, 244–255. [Google Scholar] [CrossRef] [PubMed] - García-González, M.; Fernández-Chimeno, M.; Ramos-Castro, J. Errors in the Estimation of Approximate Entropy and Other Recurrence–Plot–Derived Indices Due to the Finite Resolution of RR Time Series. Biomed. Eng. IEEE Trans.
**2009**, 56, 345–351. [Google Scholar] [CrossRef] [PubMed] - Konings, K.; Kirchhof, C.; Smeets, J.; Wellens, H.; Penn, O.; Allessie, M. High-density mapping of electrically induced atrial fibrillation in humans. Circulation
**1994**, 89, 1665–1680. [Google Scholar] [CrossRef] [PubMed] - Schilling, C. Analysis of Atrial Electrograms; KIT Scientific Publishing: Karlsruhe, Germany, 2012. [Google Scholar]
- Pincus, S.M.; Goldberger, A.L. Physiological time-series analysis: What does regularity quantify? Am. J. Physiol.
**1994**, 266, 1643–1656. [Google Scholar] - Lake, D.; Moorman, J. Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. Heart Circ. Physiol.
**2011**, 300, 319–325. [Google Scholar] [CrossRef] [PubMed] - Hoekstra, B.; Diks, C.; Allessie, M.; DeGoede, J. Nonlinear analysis of epicardial atrial electrograms of electrically induced atrial fibrillation in man. J. Cardiovasc. Electrophysiol.
**1995**, 6, 419–440. [Google Scholar] [CrossRef] [PubMed]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cirugeda–Roldán, E.; Novak, D.; Kremen, V.; Cuesta–Frau, D.; Keller, M.; Luik, A.; Srutova, M.
Characterization of Complex Fractionated Atrial Electrograms by Sample Entropy: An International Multi-Center Study. *Entropy* **2015**, *17*, 7493-7509.
https://doi.org/10.3390/e17117493

**AMA Style**

Cirugeda–Roldán E, Novak D, Kremen V, Cuesta–Frau D, Keller M, Luik A, Srutova M.
Characterization of Complex Fractionated Atrial Electrograms by Sample Entropy: An International Multi-Center Study. *Entropy*. 2015; 17(11):7493-7509.
https://doi.org/10.3390/e17117493

**Chicago/Turabian Style**

Cirugeda–Roldán, Eva, Daniel Novak, Vaclav Kremen, David Cuesta–Frau, Matthias Keller, Armin Luik, and Martina Srutova.
2015. "Characterization of Complex Fractionated Atrial Electrograms by Sample Entropy: An International Multi-Center Study" *Entropy* 17, no. 11: 7493-7509.
https://doi.org/10.3390/e17117493