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Abstract: In this paper, the exponentially synchronization in the mean square is investigated
for two different stochastic complex networks with hybrid coupling and time-varying delay
via pinning control. By utilizing the Lyapunov stability theory, stochastic analysis theory,
as well as matrix analysis, the sufficient conditions are derived to guarantee the exponential
synchronization for any initial values through a feedback scheme. The numerical simulation
is provided to show the effectiveness of the theoretical results.
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1. Introduction

Nowadays, the development of society is becoming more and more complicated and networked; thus,
complex networks have emerged and aroused much attention [1]. A complex network is a structure that
is made up of a large set of nodes (also called vertices, oscillators, agents) that are inter-connected to
varying extents by a set of links (also called edges). Complex networks, indeed, are so ubiquitously found
in nature and in the modern world that it is absolutely essential for us to have a thorough understanding
of their dynamical behavior (for example, coupled biological systems, such as neural networks, and
socially-interacting animal species [2]), and complex network synchronization holds particular promise
for applications to many fields (for example, population dynamics [2,3], power systems [4,5] and
automatic control [6]).
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Synchronization is a process in which two or more dynamical systems seek to adjust a
certain prescribed property of their motion to a common behavior in the limit as time tends to
infinity [7]. It is a phenomenon that has been widely investigated since it was discovered
by Pecora and Carroll in 1990 [8]. Many synchronization patterns have been explored (for
example, complete synchronization [9–11], cluster synchronization [12,13], phase synchronization [14],
partial synchronization [15], projective synchronization [16,17]), and synchronization can be achieved
by the use of pinning control [18,19], adaptive control [20–22], intermittent control [23], impulsive
control [24,25], fuzzy control [26], hybrid control [27] or active control [28].

In the study of synchronization, inner synchronization is a synchronous phenomenon within a network
and denotes the behavior of all of the nodes among one complex network becoming synchronous. Many
different cases for inner synchronization have been investigated so far [4–28] On the contrary, outer
synchronization [29,30] is a synchronous phenomenon between networks, that is to say it refers to the
synchronization occurring between two or more coupled complex networks regardless of the occurrence
of inner synchronization, and many phenomena can be explained by outer synchronization in nature, such
as an infectious disease spreading between different communities and different species’ development in
balance [30]. Li et al. first proposed the concept of outer synchronization and derived analytically
a criterion for the synchronization of two networks that have the same topological connectivity in
2007 [30]. Additionally, outer synchronization between two coupled discrete-time networks that have
the same connection topologies was derived analytically [31]. On the other hand, the problem of
generalized outer synchronization between two completely different complex dynamical networks was
investigated in [32]. The outer synchronization between two delay-coupled complex dynamical networks
with nonidentical topological structures and a noise perturbation was regarded in [33]. However, there
still exists the situation that the complex networks cannot achieve synchronization.

Stochastic perturbations and time delays are important considerations when simulating realistic
complex networks, because signals traveling along real physical systems are usually randomly perturbed
by the environmental elements [21]. In fact, signals transmitted between nodes of complex networks
are unavoidably subject to stochastic perturbations from the environment, which may cause information
contained in these signals to be lost [34]; the distance and finite speed of information transmission
between pairs of nodes may cause time delays. Some results have recently appeared on the
synchronization of complex networks with coupling delays [35–37] and stochastic perturbations [38–41].

Because of the complexity of complex networks, pinning control is a technique that applies controllers
to only a small fraction of the nodes in a network, and the technique is important because it greatly
reduces the number of controlled nodes for real-world complex networks (which, in most cases,
is huge). In fact, pinning control can be so effective for some networks that a single pinning
controller is required for synchronization; namely, for complex networks that have either a symmetric
or an asymmetric coupling matrix [18]. Other pinning schemes, on the other hand, are capable of
globally- and exponentially-stabilizing a network into a homogeneous state by using an optimal
combination of the number of pinned nodes and the feedback control gain [19].

Motivated by the above discussions, in this paper, we study the mean square exponential
synchronization of two nonidentical stochastic time-varying delayed complex networks by using
the pinning control method. Some sufficient conditions are derived for mean square exponential



Entropy 2015, 17 6939

synchronization of these networks by applying the Lyapunov–Krasovskii functional method. Our results
will be applicable to many synchronization problems in different fields of science and technology.

The paper is organized as follows. In Section 2, a general model of two different stochastic complex
networks with both time-varying delay dynamical nodes and time-varying delay coupling and some
preliminaries are given. In Section 3, some exponential synchronization criteria for such complex
dynamical networks are established. In Section 4, a numerical example for verifying the effectiveness of
the theoretical results is provided. We conclude the paper in Section 5.

2. Preliminaries

2.1. Notations

Throughout this paper, Rn shall denote the n-dimensional Euclidean space and Rn×n the set of
all n × n real matrices. The superscript T shall denote the transpose of a matrix or a vector; Tr(·)
denotes the trace of the corresponding matrix, AS = (A + AT )/2 and 1n = (1, 1, . . . , 1)T ∈ Rn;
and In denotes the n-dimensional identity matrix. For square matrices M , the notation M > 0

(respectively, < 0) shall mean that M is a positive-definite (respectively, negative-definite)
matrix, and λmax(A) and λmin(A) shall denote the greatest and least eigenvalues of a symmetric
matrix, respectively. Let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration
{Ft}t≥0 that is right continuous with F0 containing all of the P-null sets. C([−τ, 0];Rn)

shall denote the family of continuous functions φ from [−τ, 0] to Rn with the uniform
norm ||φ||2 = sup−τ≤s≤0 φ(s)Tφ(s) and C2

F0
([−τ, 0];Rn) the family of all F0 measurable,

C([−τ, 0];Rn)-valued stochastic variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}, such that∫ 0

−τ E|ξ(s)|
2ds ≤ ∞, where E stands for the correspondent expectation operator with respect to

the given probability measure P .

2.2. Network Model

Consider a complex network consisting of N identical linearly- and diffusively-coupled nodes with
non-delayed and time-varying-delayed linear coupling. Additionally, every node in the network is an
n-dimensional dynamical unit. Then, the network model of the drive system can be denoted as:

dyj(t) =
{
f(t, yj(t), yj(t− τ(t))) +

N∑
k=1

adjsΣys(t) +
N∑
k=1

bdjsΣys(t− τc(t))
}
dt

+ σ(t, yj(t), yj(t− τ(t)), yj(t− τc(t)))dw(t), j = 1, 2, . . . , N, (1)

where yj(t) = (yj1(t), yj2(t), . . . , yjn(t))T ∈ Rn is the state vector of the i-th node of the
network, f(t, yj(t), yj(t − τ(t))) = [f1(t, yj(t), yj(t − τ(t))), f2(t, yj(t), yj(t − τ(t))), . . . , fn(t, yj(t),

yj(t− τ(t)))]T is a continuous vector-valued function and Σ = diag(%1, %2, . . . , %n) is an inner coupling
of the networks that satisfies %k > 0, k = 1, 2, . . . , n. Here,Ad = [adjs] ∈ RN×N andBd = [bdjs] ∈ RN×N

are the outer coupling matrices of the network at time t and t− τc(t), respectively, such that adjs ≥ 0 for
i 6= k, adjj = −

∑M
k=i,k 6=i a

d
js, b

d
js ≥ 0 for i 6= k and bdjj = −

∑M
k=i,k 6=i b

d
js. τ(t) is the inner time-varying

delay satisfying τ ≥ τ(t) ≥ 0, and τc(t) is the coupling time-varying delay satisfying τc ≥ τc(t) ≥ 0.
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Finally, σ(t, yi(t), yj(t− τ(t)), yj(t− τc(t))) ∈ Rn×n, and w(t) = (w1(t), w2(t), . . . , wn(t))T ∈ Rn is a
bounded vector-form Wiener process, satisfying:

Ewk(t) = 0, Ew2
k(t) = 1, Ewk(t)wk(s) = 0 (s 6= t).

Compared to the drive system mentioned, the response complex network is denoted as consisting of
M identical linearly- and diffusively-coupled nodes with non-delayed and time-varying-delayed linear
coupling. Additionally, every node in the network is an n-dimensional dynamical unit:

dxi(t) =
{
f(t, xi(t), xi(t− τ(t))) +

M∑
s=1

arikΣxs(t) +
M∑
s=1

brikΣxs(t− τc(t))
}
dt

+ σ(t, xi(t), xi(t− τ(t)), xi(t− τc(t)))dw(t), i = 1, 2, . . . ,M, (2)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the state vector of the j-th node of the response
network and f(t, xi(t), xi(t−τ(t))) = [f1(t, xi(t), xi(t−τ(t))), f2(t, xi(t), xi(t−τ(t))), . . . , fn(t, xi(t),

xi(t − τ(t)))]T is a continuous vector-valued function. Here, Ar = [arik] ∈ RM×M and
Br = [brik] ∈ RM×M are the outer coupling matrices of the network at time t and t− τc(t), respectively,
such that arik ≥ 0 for i 6= k, arii = −

∑M
k=i,k 6=i a

r
ik, brik ≥ 0 for i 6= k and brii = −

∑M
k=i,k 6=i b

r
ik. In this

paper, Ar and Ad are assumed to be irreducible in the sense that there are no isolated nodes.
The initial conditions associated with (2) are:

yj(s) = ξdj (s), xi(s) = ξri (s), −τ̌ ≤ s ≤ 0, j = 1, 2, . . . , N, i = 1, 2, . . . ,M,

where τ̌ = max{τ(t), τc(t)}, ξdj , ξri ∈ Cb
F0

([−τ̌ , 0],Rn) with the norm ||ξ||2 = sup−τ̌≤s≤0 ξ(s)
T ξ(s).

2.3. Some Definitions, Lemmas and Assumptions

In the following, we present some definitions and lemmas that will be required throughout this paper.

Definition 1. The drive network (2) and the response network (1) are said to be exponentially
synchronized in the mean square if the trivial solutions of Systems (2) and (1) are such that:

M∑
i=1

N∑
j=1

E||xi(t, t0, ξri )− yj(t, t0, ξdj )||2 ≤ Ke−κt,

for some K > 0 and some κ > 0 for any initial data ξri , ξ
d
j ∈ CbF0

([−τ̂ , 0];Rn).

Definition 2. [21] A continuous function f(t, x, y) : [0,+∞] × Rn × Rn → Rn is said to
belong to the function class QUAD, denoted by f ∈ QUAD(P,∆, η, ζ) for some given matrix
Σ = diag{%1, %2, . . . , %n}, if there exists a positive definite diagonal matrix P = diag{p1, p2, . . . , pn},
a diagonal matrix ∆ = diag{δ1, δ2, . . . , δn} and constants η > 0, ζ > 0, such that f(·) satisfies
the condition:

(x− y)TP
(
(f(t, x, z)− f(t, y, w))−∆Σ(x− y)

)
≤ −η(x− y)T (x− y) + ζ(z − w)T (z − w) (3)

for all x, y, z, w ∈ Rn.
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Almost all of the well-known chaotic systems belong to the function class QUAD, such as the Lorenz
system, the Rössler system, the Chen system, the delayed Chua’s circuit, the delayed Hopfield neural
network and the logistic delayed differential system [21,23].

Lemma 1. Consider an n-dimensional stochastic differential equation:

dx(t) = f(t, x(t), x(t− τ))dt+ σ(t, x(t), x(t− τ)))dω(t) (4)

Let C2,1(R+ × Rn;R+) denote the family of all nonnegative functions V (t, x) on R+ × Rn, which are
twice continuously differentiable in x and once differentiable in t. If V ∈ C2,1(R+×Rn;R+), define an
operator LV form R+ × Rn to R by:

LV (t, x) = Vt(t, x) + Vx(t, x)f(t, x, y) +
1

2
Tr[σ(t, x, y)TVxxσ(t, x, y)],

where Vt(t, x) = ∂V (t, x)/∂t, Vx(t, x) = (∂V (t, x)/∂x1, . . . , ∂V (t, x)/∂xn), Vxx(t, x) = (∂
2V (t,x)
∂xixj

)n×n.
If V ∈ C2,1(R+ × Rn;R+), then for any∞ > t > t0 ≥ 0,

EV (t, x(t)) = EV (t0, x(t0)) + E
∫ t

t0

LV (s, x(s))ds

as long as the expectations of the integrals exist [42,43].

The following assumptions will be used throughout this paper for establishing the
synchronization conditions.

H1 τ(t) and τc(t) are bounded and continuously differentiable functions, such that 0 < τ(t) ≤ τ ,
τ̇(t) < τ̄ , 0 < τc(t) ≤ τc and τ̇c(t) < τ̄c. Let ˇ̄τ = max{τ̄ , τ̄c}.

H2 Let σij(t, eij(t), eij(t − τ(t)), eij(t − τc(t))) = σ(t, xi(t), xi(t − τ(t)), xi(t − τc(t))) − σ(t, yj(t),

yj(t − τ(t)), yj(t − τc(t))). Then, there exist positive definite constant matrices Υ1
ij , Υ2

ij and Υ3
ij

for i = 1, 2, . . . ,M and j = 1, 2, . . . , N , such that:

Tr
[
σij(t, eij(t), eij(t− τ(t)), eij(t− τc(t)))TPσij(t, eij(t), eij(t− τ(t)), eij(t− τc(t)))

]
≤eij(t)TΥ1

ijeij(t) + eij(t− τ(t))TΥ2
ijeij(t− τ(t)) + eij(t− τc(t))TΥ3

ijeij(t− τc(t)),
(5)

where eij(t) = xi(t)− yj(t).

Remark 1. The assumptions are common in the literature on stochastic complex networks with
time-varying delay, such as [21,23,27,38–40]. Assumption H1 restricts the time delay, and Assumption
H2 restricts the noise strength. We shall simply write:

Υ1 = diag
{

Υ1
11,Υ

1
21, . . . ,Υ

1
M1,Υ

1
12, . . . ,Υ

1
M2, . . . ,Υ

1
1N , . . . ,Υ

1
MN

}
,

Υ2 = diag
{

Υ2
11,Υ

2
21, . . . ,Υ

2
M1,Υ

2
12, . . . ,Υ

2
M2, . . . ,Υ

2
1N , . . . ,Υ

2
MN

}
,

Υ3 = diag
{

Υ3
11,Υ

3
21, . . . ,Υ

3
M1,Υ

3
12, . . . ,Υ

3
M2, . . . ,Υ

3
1N , . . . ,Υ

3
MN

}
.
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3. Main Result

In the paper, the synchronization between the drive network (1) and the response network (2) will
be investigated. In order to reach the synchronization, some extra controllers are required to add on the
partial nodes of the response system. Without loss of generality, let the first l nodes in the response
system be controlled. Additionally, the response network with a control scheme is given by:

dxi(t) =
{
f(t, xi(t), xi(t− τ(t))) +

M∑
k=1

arikΣxk(t) +
M∑
k=1

brikΣxk(t− τc(t)) + ui(t)
}
dt

+ σi(t, xi(t), xi(t− τ(t)), xi(t− τc(t)))dw(t), i = 1, 2, . . . ,M, (6)

where ui(t) (i = 1, 2, . . . ,M ) are the linear state feedback controllers that are defined by:

ui(t) =

{
− εiΣ(xi(t)− y1(t)), i = 1, 2, . . . , l,

0, i = l + 1, l + 2, . . . ,M,
(7)

where εi > 0 (i = 1, 2, . . . , l) are the control gains, denoted by Ξ = diag{ε1, ε2, . . . , εl, 0, . . . , 0} ∈
RM×M . Define eij(t) = xi(t) − yj(t) (i = 1, 2, . . . ,M , j = 1, 2, . . . , N ) as the synchronization error.
Then, according to the controller (7), the error system is:

deij(t) =
{
f(t, xi(t), xi(t− τ(t)))− f(t, yj(t), yj(t− τ(t))) +

M∑
k=1

arikΣxk(t)

−
N∑
s=1

adjsΣys(t) +
M∑
k=1

brikΣxk(t− τc(t))−
N∑
s=1

bdjsys(t− τc(t))) + ui(t)
}
dt

+
{
σi(t, xi(t), xi(t− τ(t)), xi(t− τc(t)))− σj(t, yj(t), yj(t− τ(t)), yj(t− τc(t)))

}
dw(t),

i = 1, . . . ,M, j = 1, . . . , N. (8)

Remark 2. The pinning controllers (7) are added to a part of the node in response networks by the
information of the first node in drive networks, which is easy to achieve. The drive networks (1) and
response networks (2) reach outer synchronization in the mean square by pinning controllers (7) as long
as error System (8) is globally and exponentially stable in the mean square.

We present the outer synchronization criteria for two stochastic complex networks with
time-varying delay.

Theorem 1. Let Assumptions H1 and H2 be true, and let f ∈ QUAD(P,∆, η, ζ). If there exist α, β,
τ(t) and τc(t), such that:

0 ≤ ˇ̄τ ≤ 1− b+ c

a
, and a > 0 (9)

where:

a = λmin

{
(η − α− β)IMNn − IM ⊗ IN ⊗ (∆Σ)

− (Ad ⊗ IM + IN ⊗ Ar − Ξ⊗ I1
N)S ⊗ (PΣ)− 1

2
Υ1

}
,

b = λmax

{
ζIMNn +

1

2
Υ2

}
,

c = λmax

{
(
1

β
(Bd)T (Bd)⊗ IM +

1

α
IN ⊗ (Br)T (Br))⊗ (PΣ)T (PΣ) +

1

2
Υ3

}
,


(10)
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then the solutions eij(t) (i = 1, 2, . . . ,M , j = 1, 2, . . . , N ) of System (8) are globally and exponentially
stable in the mean square.

Proof. Define the Lyapunov–Krasovskii function:

V (t, e(t)) =
1

2

M∑
i=1

N∑
j=1

eij(t)
TPeij(t).

By Lemma 1, we have:

LV (t, e(t), r) =
M∑
i=1

N∑
j=1

eij(t)
TP
{
f(t, xi(t), xi(t− τ(t)))− f(t, yj(t), yj(t− τ(t)))

+
M∑
k=1

arikΣxk(t)−
N∑
s=1

adjsΣys(t)

+
M∑
k=1

brikΣxk(t− τc(t))−
N∑
s=1

bdjsys(t− τc(t))) + ui(t)
}

+
1

2

M∑
i=1

N∑
j=1

Tr
{
σij(t, eij(t), eij(t− τ(t)), eij(t− τc(t)))T

× Pσij(t, eij(t), eij(t− τ(t)), eij(t− τc(t)))
}

(11)

For simplicity, denote e·j(t) = [eT1j(t), e
T
2j(t), . . . , e

T
Mj(t)]

T ∈ RnM ; ei·(t) =

[eTi1(t), eTi2(t), . . . , eTiN(t)]T ∈ RnN ; e(t) = [eT·1(t), eT·2(t), . . . , eT·N(t)]T ∈ RMNn.
Because f ∈ QUAD(P,∆, η, ζ), we get:

M∑
i=1

N∑
j=1

eij(t)
TP
{
f(t, xi(t), xi(t− τ(t)))− f(t, yj(t), yj(t− τ(t)))

}
≤ −ηeT (t)e(t) + ζeT (t− τ(t))e(t− τ(t)) + eT (t)IM ⊗ IN ⊗ (P∆Σ)e(t)

(12)

From the definitions of Ar (
∑M

k=i a
r
ik = 0), the following equation holds:

M∑
i=1

N∑
j=1

eTij(t)P
M∑
k=1

arikΣxk(t) =
M∑
i=1

N∑
j=1

eijP
M∑
k=1

arikΣ(xk(t)− yj(t))

=
N∑
j=1

eT·j(t)A
r ⊗ (PΣ)e·j(t) = eT (t)IN ⊗ Ar ⊗ (PΣ)e(t) (13)

Similarly,

M∑
i=1

N∑
j=1

eTij(t)P
M∑
k=1

brikΣxk(t− τc(t)) = eT (t)IN ⊗Br ⊗ (PΣ)e(t− τc(t)),

M∑
i=1

N∑
j=1

eTij(t)P
N∑
s=1

adjkΣxs(t) = eT (t)Ad ⊗ IM ⊗ (PΣ)e(t),

M∑
i=1

N∑
j=1

eTij(t)P
N∑
s=1

bdjkΣxs(t− τc(t)) = eT (t)Bd ⊗ IM ⊗ (PΣ)e(t− τc(t)).


(14)
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By using xTy ≤ cxTx+ 1
c
yTy for any x, y ∈ RN and c > 0, we can obtain:

eT (t)IN ⊗Br ⊗ (PΣ)e(t− τc(t))

≤αeT (t)e(t) +
1

α
e(t− τc(t))IN ⊗ (Br)TBr ⊗ (PΣ)T (PΣ)e(t− τc(t))

(15)

and:
eT (t)Bd ⊗ IM ⊗ (PΣ)e(t− τc(t))

≤βeT (t)e(t) +
1

β
eT (t− τc(t))((Bd)TBd ⊗ IM ⊗ (PΣ)T (PΣ))e(t− τc(t))

(16)

where α > 0 and β > 0.
Denote I1

N = diag{1, 0, . . . , 0} ∈ RN×N ; we have:

l∑
i=1

N∑
j=1

eTij(t)Pui(t) = −
l∑

i=1

N∑
j=1

eTij(t)PεiΣei1(t) = −eT (t)Ξ⊗ I1
N ⊗ (PΣ)e(t). (17)

Using Assumption H2, we get:

M∑
i=1

N∑
j=1

Tr
{
σij(t, eij(t), eij(t− τ(t)), eij(t− τc(t)))T

× Pσij(t, eij(t), eij(t− τ(t)), eij(t− τc(t)))
}

≤
M∑
i=1

N∑
j=1

{
eij(t)

TΥ1
ijeij(t) + eij(t− τ(t))TΥ2

ijeij(t− τ(t))

+ eij(t− τc(t))TΥ3
ijeij(t− τc(t))

}
=e(t)TΥ1e(t) + e(t− τ(t))TΥ2e(t− τ(t)) + e(t− τc(t))TΥ3e(t− τc(t)). (18)

Substituting Inequalities (12)–(18) into Equality (11), we have:

LV (t, e(t)) =eT (t)
{

(−η + α + β)IMNn + IM ⊗ IN ⊗ (∆Σ)

+ (Ad ⊗ IM + IN ⊗ Ar − Ξ⊗ I1
N)⊗ (PΣ) +

1

2
Υ1

}
e(t)

+ eT (t− τ(t))
{
ζIMNn +

1

2
Υ2

}
e(t− τ(t))

+ eT (t− τc(t))
{

(
1

β
(Bd)T (Bd)⊗ IM +

1

α
IN ⊗ (Br)T (Br)) (19)

⊗ (PΣ)T (PΣ) +
1

2
Υ3

}
e(t− τc(t)) (20)

By Equation (10), we get:

LV (t) ≤ −aV (t) + bV (t− τ(t)) + cV (t− τc(t)). (21)

Define:
W (t) = eγtV (t)



Entropy 2015, 17 6945

where constant γ > 0 will be decided later, and use Equation (21) to compute the operator:

LW (t) =eγt[γV (t) + LV (t)]

≤eγt[γV (t)− aV (t) + bV (t− τ(t)) + cV (t− τc(t))],

which, after applying the generalized Itô’s formula, gives:

eγtEV (t) = eγt0EV (t0) + E
∫ t

t0

LW (s)ds

for any t > t0 = 0. Hence, we have:

eγtEV (t) ≤ sup
−τ̌≤s≤0

EV (s) + E
∫ t

0

eγs{γV (s)− aV (s)

+ bV (s− τ(s)) + cV (s− τc(s))}ds

≤ sup
−τ̌≤s≤0

EV (s) + (γ − a)

∫ t

0

eγsEV (s)ds

+ beγτ
∫ t

0

eγ(s−τ(s))EV (s− τ(s))ds

+ ceγτc
∫ t

0

eγ(s−τc(s))EV (s− τc(s))ds (22)

which, by using the change of variables s− τ(s) = u, gives:∫ t

0

eγ(s−τ(s))EV (s− τ(s))ds =

∫ t−τ(t)

−τ(0)

eγuEV (u)
du

1− τ̇(t)

≤ τ

1− τ̄
sup
−τ̌≤s≤0

EV (s) +
1

1− τ̄

∫ t

0

eγuEV (u)du (23)

and a further change of variables s− τc(s) = u gives:∫ t

0

es−τc(s)EV (s− τc(s))ds =

∫ t−τc(t)

−τc(0)

eγuEV (u)
du

1− τ̇c(t)

≤ τc
1− τ̄c

sup
−τ̌≤s≤0

EV (s) +
1

1− τ̄c

∫ t

0

eγuEV (u)du. (24)

Substituting Inequalities (23) and (24) into Equality (22), we have:

eγtEV (t) ≤(1 +
bτ

1− τ̄
eγτ +

cτc
1− τ̄c

eγτc) sup
−τ̌≤s≤0

EV (s)

+ (γ − a+
b

1− τ̄
eγτ +

c

1− τ̄c
eγτc)

∫ t

0

eγsEV (s)ds

By Condition (9), this equation:

γ − a+
b

1− τ̄
eγτ +

c

1− τ̄c
eγτc = 0, (25)
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has at least one positive root. Let γ be the smallest positive root of Equation (25). Therefore, we obtain:

EV (t) ≤ (1 +
bτ

1− τ̄
eγτ +

cτc
1− τ̄c

eγτc) sup
−τ̌≤s≤0

EV (s)e−γt,

so that:

E||e(t)||2 ≤ 2

p̂
(1 +

bτ

1− τ̄
eγτ +

cτc
1− τ̄c

eγτc) sup
−τ̌≤s≤0

EV (s)e−γt,

where p̂ = min{p1, p2, . . . , pn}. The proof is hence complete.

Remark 3. Inequality (9) relies on the coupled matrices, the dynamics system, the noise strength and
the time delays. The linear matrix inequality method is inadequate for assessing the stability of the
synchronous solution.

When the time-varying delays are constant (i.e., τ(t) = τ , τc(t) = τc), we obtain the
following corollary:

Corollary 1. Let Assumptions H1 and H2 be true, and let f ∈ QUAD(P,∆, η, ζ). If there exist τ(t) and
τc(t), such that:

b+ c− a < 0,

where:

a =λmin

{
(η − α− β)IMNn − IM ⊗ IN ⊗ (∆Σ)−

(
Ad ⊗ IM + IN ⊗ Ar − Ξ⊗ I1

N

)S ⊗ (PΣ)− 1

2
Υ1

}
,

b =λmax

{
ζIMNn +

1

2
Υ2

}
,

c =λmax

{
(
1

β
(Bd)T (Bd)⊗ IM +

1

α
IN ⊗ (Br)T (Br))⊗ (PΣ)T (PΣ) +

1

2
Υ3

}
,

then the solutions eij(t) (i = 1, 2, . . . ,M , j = 1, 2, . . . , N ) of System (8) are globally and exponentially
stable in the mean square.

When σi(·) = 0, we can get the following corollary:

Corollary 2. Let Assumptions H1 and H2 be true, and let f ∈ QUAD(P,∆, η, ζ). If there exist τ(t) and
τc(t), such that:

0 ≤ ˇ̄τ ≤ 1− ζ + c

a
, and a > 0

where:

a =λmin

{
ηIMNn − IM ⊗ IN ⊗ (∆Σ)−

(
Ad ⊗ IM + IN ⊗ Ar − Ξ⊗ I1

N

)S ⊗ (PΣ)
}
,

c =λmax

{
(
1

β
(Bd)T (Bd)⊗ IM +

1

α
IN ⊗ (Br)T (Br))⊗ (PΣ)T (PΣ)

}
,

then the solutions eij(t) (i = 1, 2, . . . ,M , j = 1, 2, . . . , N ) of System (8) are globally and exponentially
stable in the mean square.

When Ad = Ar = A, Bd = Br = B and σi(·) = 0, we can get the following corollary:
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Corollary 3. Let Assumptions H1 and H2 be true, and let f ∈ QUAD(P,∆, η, ζ). If there exist τ(t) and
τc(t), such that:

0 ≤ ˇ̄τ ≤ 1− ζ + c

a
, and a > 0

where:

a =λmin

{
ηIMNn − IM ⊗ IN ⊗ (∆Σ)−

(
A⊗ IM + IN ⊗ A− Ξ⊗ I1

N

)S ⊗ (PΣ)
}
,

c =λmax

{
(
1

β
BTB ⊗ IM +

1

α
IN ⊗BTB)⊗ (PΣ)T (PΣ)

}
,

then the solutions eij(t) (i = 1, 2, . . . ,M , j = 1, 2, . . . , N ) of System (8) are globally and exponentially
stable in the mean square.

4. Numerical Simulation

In this section, we present some numerical simulation results that validate the theorem of the
previous section.

Consider the 2D chaotic delayed neural network:

ṡ(t) = f(t, s(t), s(t− τ(t))) = −Cs(t) +D tanh(s(t)) + E tanh(s(t− τ(t))), (26)

where τ(t) = 1, C =

[
1 0

0 1

]
, D =

[
2 −0.1

−5 4.5

]
and E =

[
−1.5 −0.1

−0.2 −4

]
.

Taking P = diag{1, 1} and ∆ = diag{5, 11.5}, we have η = 0.15 and ζ = 3.25, so that Condition (3)
is satisfied [21]. Thus:

dxi(t) =
{
f(t, xi(t), xi(t− τ(t))) +

7∑
j=1

arikΣxk(t) +
7∑

k=1

brikΣxk(t− τc(t))− εiΣ(xi(t)− y1(t))
}
dt

+ σi(t, xi(t), xi(t− τ(t)), xi(t− τc(t)))dw(t), i = 1, 2, . . . , 7, (27)

and:

dyi(t) =
{
f(t, yj(t), yj(t− τ(t))) +

5∑
s=1

arjsΣys(t) +
5∑
s=1

brjsΣys(t− τc(t))
}
dt

+ σj(t, yj(t), yj(t− τ(t)), yj(t− τc(t)))dw(t), j = 1, 2, . . . , 5, (28)
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where:

Ar = 203.5999


−4 1 1 1 1

1 −4 1 1 1

1 1 −3 1 0

1 1 1 −4 1

1 1 0 1 −3

 ,

Br =


−4 1 1 1 1

1 −3 1 0 1

1 1 −3 1 0

1 0 1 −2 0

1 1 0 0 −2

 ,

Ad = 212.8970



−6 1 1 1 1 1 1

1 −3 1 1 0 0 0

1 1 −5 1 1 1 0

1 1 1 −6 1 1 1

1 0 1 1 −4 0 1

1 0 1 1 0 −3 0

1 0 0 1 1 0 −3


,

Bd =



−3 1 1 0 1 0 0

1 −5 1 1 1 1 0

1 1 −4 1 0 0 1

0 1 1 −2 0 0 0

1 1 0 0 −4 1 1

0 1 0 0 1 −2 0

0 0 1 0 1 0 −2


,

Ξ = 718.4148diag{1, 1, 0, 0, 0}, τc(t) = 0.01 et

1+et
, σi(t, xi(t), xi(t − τ(t)), xi(t − τc(t))) =

0.01diag{xi1(t) + xi1(t− τ(t)) + xi1(t− τc(t)), xi2(t) + xi2(t− τ(t)) + xi2(t− τc(t))} and σi(t, yi(t),
yi(t − τ(t)), yi(t − τc(t))) = 0.01diag{yi1(t) + yi1(t − τ(t)) + yi1(t − τc(t)), yi2(t) + yi2(t − τ(t)) +

yi2(t− τc(t))}.
Computations then yield τ = 1, τ̄ = 0, τc = 0.01, τ̄c = 0.0025, Υij = 0.01I2 for i = 1, 2, . . . ,M ,

and j = 1, 2. Then, the solutions of Equalities (10) are: a = 5.40, b = 3.26, c = 2.0334; after solving
Equation (25), we obtain γ = 0.016, so that the conditions of Theorem 1 are satisfied.

The initial conditions for this simulation are xij(t0) = −(2i + k) cos(t0), i = 1, 2, . . . , 7,
yjs(t0) = −(2(i + 7) + s) cos(t0), j = 1, 2, . . . , 5, k = 1, 2 and
for all t0 ∈ [−1, 0]. The numerical approximation to the solution of
stochastic differential Equations (27) and (28) are found by the Euler–Maruyama
method [44] with ∆t = 0.001, and the trajectories of the pinning control gains are shown in
Figures 1–3. Figure 4 shows the time evolution of the synchronization errors without pinning control.
One can see that the pinning control directly affects the synchronization of two complex network, which
cannot be reached without pinning control.
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Figure 1. The trajectories of the state variables of xi and yj (i = 1, 2, ..., 7 and j = 1, . . . , 5)
in Systems (27) and (28) under pinning control. The blue lines show the evolution of the
driver systems, and the black lines represent the trajectory of the driver systems in the figure,
as they do for the following figures.
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Figure 2. The time evolution of xi2 and yj2 (i = 1, 2, ..., 7 and j = 1, . . . , 5) in Systems (27)
and (28) under pinning control.
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Figure 3. The time evolution of xi2 and yj2 (i = 1, 2, ..., 7 and j = 1, . . . , 5) in Systems (27)
and (28) under pinning control.
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Figure 4. The time evolution of xi and yj (i = 1, 2, ..., 5) in Systems (27) and (28) without
pinning control.



Entropy 2015, 17 6951

5. Conclusions

In this paper, we investigated the synchronization of two different stochastic complex networks with
hybrid coupling and time-varying delay. Specifically, we achieved global exponential synchronization
in the mean square by applying a pinning control scheme to a small fraction of the nodes and
derived sufficient conditions for the global exponential stability of synchronization in the mean square.
In addition, we considered some numerical examples that have verified the effectiveness of the proposed
techniques. In the future, we will consider the analysis of pinning-controlled networks with switching
topologies and drive-response delays.
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