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Abstract: Obstructive sleep apnea (OSA) is an independent cardiovascular risk factor to 

which autonomic nervous dysfunction has been reported to be an important contributor. 

Ninety subjects recruited from the sleep center of a single medical center were divided into 

four groups: normal snoring subjects without OSA (apnea hypopnea index, AHI < 5,  

n = 11), mild OSA (5 ≤ AHI < 15, n = 10), moderate OSA (15 ≤ AHI < 30, n = 24), and 

severe OSA (AHI ≥ 30, n = 45). Demographic (i.e., age, gender), anthropometric (i.e., body 

mass index, neck circumference), and polysomnographic (PSG) data were recorded and 

compared among the different groups. For each subject, R-R intervals (RRI) from 10 segments 

of 10-minute electrocardiogram recordings during non-rapid eye movement sleep at stage 

N2 were acquired and analyzed for heart rate variability (HRV) and sample entropy using 

multiscale entropy index (MEI) that was divided into small scale (MEISS, scale 1–5) and 
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large scale (MEILS, scale 6–10). Our results not only demonstrated that MEISS could 

successfully distinguish normal snoring subjects and those with mild OSA from those with 

moderate and severe disease, but also revealed good correlation between MEISS and AHI 

with Spearman correlation analysis (r = −0.684, p < 0.001). Therefore, using the two 

parameters of EEG and ECG, MEISS may serve as a simple preliminary screening tool for 

assessing the severity of OSA before proceeding to PSG analysis. 

Keywords: multiscale entropy; scale factor; obstructive sleep dyspnea; polysomnography; 

heart rate variability 

 

1. Introduction 

Obstructive sleep apnea (OSA), which is a disease condition characterized by a reduction or cessation 

of airflow through the upper respiratory tract due to soft tissue obstruction during sleep [1], has been 

found to be an independent cardiovascular risk factor [2] that predisposes to the development of 

hypertension, congestive heart failure, myocardial infarction, coronary artery disease, stroke and 

neurocognitive deficits [2–6]. One of the important contributors has been reported to be autonomic 

nervous dysfunction arising from chronic OSA-induced sympathetic stimulation [7]. 

Heart rate variability (HRV) [7] and sample entropy for nonlinear measurement of HRV [8] have 

been found to correlate with physiological and pathological findings and, therefore, are thought to reflect 

sympathetic activity or respiratory physiological control mechanisms. Using R-R intervals on 

electrocardiogram (ECG) during sleep, Al-Angari et al. applied sample entropy to the analysis of HRV 

complexity in subjects with OSA and in those without [9]. The results of that study demonstrated not 

only a reduced parasympathetic activity and decreased sample entropy, but also an imbalance between 

sympathetic and parasympathetic modulation in subjects with OSA compared with those without [9]. 

Although that study revealed the associations of OSA with autonomic nervous activities and complexity 

of physiological signals, the impact of the severity of the disease on these physiological parameters has 

not been investigated.  

Consistently, other previous studies have not only shown that the physiological signals of human 

body are affected by multiple temporal and spatial scales and exhibit properties of complexity 

fluctuation, but also demonstrated that the fluctuation of the complexity of physiological signals can be 

analyzed to assess the health status of an individual [10,11]. Therefore, the aim of the present study is to 

investigate the relationship between OSA and the complexity of HRV to identify the predictive value of 

the latter in assessing the severity of the former. Accordingly, study subjects were divided into four 

groups: Normal snoring, mild OSA, moderate OSA, and severe OSA. Data on RRI were acquired from 

ECG for 10 min from each subject during the stage of non-rapid eye movement (NREM) sleep. 

Autonomic nervous function of subjects with different severity of OSA was evaluated through HRV 

analysis using multiscale entropy method to take into account the fluctuation in complexity of the 

acquired signals. 
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2. Methods 

2.1. Study Population 

Between December 2010 and February 2012, 113 subjects were recruited from the Kaohsiung Chang 

Gung Memorial Hospital Sleep Center. Of the 113 subjects, 102 were patients with established diagnosis 

of OSA, whereas 11 were subjects with snoring, but without OSA. Twenty-three subjects in the OSA 

group with previous history of continuous positive airway pressure (CPAP) therapy, surgical treatment 

for OSA, serious central sleep apnea, extremely poor sleep quality, diabetes mellitus (type 1 and type 2), 

hypertension or other cardiovascular disease, psychiatric disorder, alcohol dependency and/or other 

substance abuse, chronic obstructive pulmonary disease, chemotherapy or immunosuppressive therapy 

within 3 months, or known malignancy were excluded because of potential influence of these diseases 

on HRV [12,13], resulting in 79 subjects with OSA who were eligible for the present study. 

Demographic (i.e., age, gender), anthropometric (i.e., body mass index (BMI), neck circumference), and 

polysomnographic (PSG) data were recorded and analyzed for all recruited subjects. This study was 

reviewed and approved by the Institutional Review Board of Chang Gung Memorial Hospital. Each 

patient signed an informed consent. 

2.2. Data Collection from Polysomnography (PSG), Definitions, and Patient Grouping 

Polysomnography (PSG) is a multi-channel digital recording system (Sandman SD32+TM Digital 

Amplifier, Embla, CO, USA) comprising an electroencephalogram (EEG), electrocardiogram (ECG), 

electrooculogram (EOG), electromyogram (EMG), oxygen saturation sensor, and respiratory airflow 

detector for recording different physiological signals during the sleeping period. Apnea is defined as 

cessation of airflow for at least 10 s, while hypopnea is defined as a reduction of airflow of at least 50% 

with concomitant decrease in arterial oxygenation over 3% or/and the occurrence of arousal [14]. Apnea 

hypopnea index (AHI), which is the number of episodes of apnea and hypopnea per hour, was used to 

divided the recruited subjects with OSA into three groups according to disease severity: Mild OSA  

(5 ≤ AHI < 15), moderate OSA (15 ≤ AHI < 30) and severe OSA (AHI ≥ 30) [14]. In the present study, 

another group of subjects without OSA (AHI < 5) was included for comparison. 

Data acquisition for the current study started at 11 p.m. and lasted until 6 a.m.. All tested subjects 

were asked to refrain from consumption of sedatives and alcohol- or/and caffeine-containing beverages 

at least 48 h before examination. Each participant was required to complete a questionnaire including 

basic demographic and anthropometric information, medical history, and an informed consent for the 

present study after detailed explanation by the principal investigator. PSG was performed by an 

experienced technician at the Sleep Center to harvest data on RRI and relevant physiological 

information. For each subject, ECG signals from 10 segments of 10-minute uninterrupted sleep at stage 

N2 were analyzed and the mean value was taken for subsequent computation. Sleep efficiency is defined 

as the number of minutes of sleep divided by the number of minutes in bed. Moreover, to compare the 

severity of OSA among different groups, the parameter of lowest arterial oxygen saturation (LSaO2), 

which objectively reflects the severity of OSA [15], was adopted in the current study to abolish the 

potential individual differences in the level of physiological tolerance and adaptation to the degree of 
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hypoxia before arousal that may contribute to sleep fragmentation. Besides, the percentage of sleep that 

each subject spent at each stage was recorded and compared. 

2.3. Heart Rate Variability and Multiscale Entropy Index (MEI) Analysis 

Elsenbruch et al. have previously studied the sympathetic tone during waking and sleep in healthy 

human subjects and demonstrated that sympathetic tone during the rapid eye movement (REM) stage 

was higher, whereas that during the non-rapid eye movement (NREM) stage was lower compared with 

that in the awake state [16]. In the present study, 10-minute segments of ECG recordings were acquired 

during NREM sleep for analyzing the time elapsed between two R waves (i.e., R-R interval [RRI]) which 

then used fast-Fourier transform (FFT) to obtain the distribution of different frequency powers in the 

frequency domain. Total power was defined as the frequency band of 0–0.4 Hz. Very low frequency 

power (VLF), low frequency power (LF), and high frequency power (HF) were defined as frequencies of 

<0.04Hz, 0.04–0.15 Hz, and 0.15–0.4 Hz, respectively. Normalized LF power (nLF) was calculated by 

LF/(Total Power − VLF), while normalized HF (nHF) was computed by HF/(Total Power − VLF) [7,17]. 

Previous studies have shown that nLF is an indicator of sympathetic activity, while nHF represents 

parasympathetic and vagal activity [18–23]. The ratio of LF/HF, therefore, represents the activity of the 

sympathetic relative to that of the parasympathetic system and reflects the status of overall autonomic 

control [24]. Hence, nLF, nHF, and LF/HF were used for comparison of autonomic activities among the 

four groups of subjects in the current study.  

Multiscale Entropy (MSE), which was first proposed by Costa et al. [10], is a method for analyzing 

the complexity of nonlinear and non-stationary signals in finite length time series. It consists of two 

main procedures, namely coarse-graining and calculation of sample entropy for each coarse-grained time 

series. First, the computation of sample entropy (SE) comprises:  

(1) Define the data series x(n) with length N and the two parameters of m and r (where  

m = Embedded dimension of the vector; r = tolerance) 

(2) Define N – m + 1 vectors, each of size m, composed as follows:  

um(i) = {xi, xi + 1,…, xi + m − 1}, 1 ≤ i ≤ N – m + 1 (1) 

(3) Define d[um(i), um(j)] as the maximum value: d[um(i), um(j)] = max{|xi + k − xj + k|: 0 ≤ k ≤ m − 1}(i ≠ j). 

Calculate the number of d[um(i), um(j)] within distance r and calculate the ratio of the number to 

the total N – m for each value of i ≤ N − m + 1 and an average to all points is defined as: 
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Multiple coarse-grained time series are constructed by averaging the data points within non-overlapping 

windows of increasing length, τ (i.e., the scale factor), as follows:  

( )

( 1) 1

1 j

j ii j
y x

ττ
= − τ+
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τ , 1 ≤ j ≤ 

N

τ
  (5)

Thus, the length of each coarse-grained time series is N/τ. Sample entropy is then computed for each 

new coarse-grained time series { ( )
jy τ }, and plotted as a function of the scale factor [8]. On analyzing 

ECG signals using the MSE algorithm, Costa et al. reported the association of sample entropy of small 

time scale (τ = 1–5) with parasympathetic nervous activity and respiratory modulation [11]. Accordingly, 

the present study analyzed ECG signals by dividing the multiscale entropy index (MEI) into small scale 

(MEISS, scale 1–5) (6) and large scale (MEILS, scale 6–10) (7) using the MSE approach for  

comparison [11,25–28]: 
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2.4. Statistical Analysis 

The SPSS software (Version 14.0, SPSS Inc., Chicago, IL, USA) was adopted for all statistical analyses. 

The data were presented as median, interquartile range (IQR). The continuous and categorical variables 

between the groups were compared using a Mann-Whitney U test. The correlation between the MEISS and 

the AHI was expressed using Spearman correlation. A p < 0.05 was considered statistically significant.  

3. Results 

3.1. Study Subjects 

There was no significant difference in age, sleep efficiency, RRI, and heart rate among the four groups 

(Table 1). The body-mass index of subjects with severe OSA was significantly higher than that of normal 

snoring subjects and those with mild OSA. Besides, the neck circumference and breathing frequency in 

individuals with severe OSA was larger than those in the other three groups. Moreover, LSaO2 decreased 

with an increase in severity of OSA. On the other hand, analysis of the breathing frequency among the 

four groups demonstrated significant reduction in patients with severe OSA compared with that of 

subjects with normal snoring, mild, and moderate OSA, although there was no notable difference among 

the latter three groups. This may be due to the remarkable increase in frequency of apnea and hypopnea 

in patients with severe OSA compared with the other three groups. In terms of sleep staging, although 

there was no difference in the percentage of sleep at stages N1 and N2 in normal snoring subjects as well 

as those with mild and moderate OSA, substantial increase in percentage of sleep at stage N1 was noted 

in patients with severe OSA with concomitant reduction of sleep at stage N2 which may reflect the 

occurrence of frequent awakenings [29]. 
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Table 1. Summary of demographic, anthropometric, and sleep-related characteristics of 

study subjects. 

Characteristics 
Normal Snoring 

(n = 11) 

Mild OSA 

(n = 10) 

Moderate OSA 

(n = 24) 

Severe OSA 

(n = 45) 

Gender (men/women) 7/4 8/2 14/10 43/2 

Age (years) 41 (50.0–36.0) 45.5 (64.0–35.5) 48.5 (59.7–48.5) 46 (56.0–41.0) 

Body mass index  

(BMI, kg/m2) 
24.4 (25.0–22.1) ‡ 23.5 (28.0–22.0) ‡ 26.5 (30.57–22.62) 26.8 (29.3–25.6) 

Neck circumference (cm) 36 (37.5–33.0) ‡ 37 (39.0–34.7) 36.5 (40.7–34.2) 40 (42.0–37.6) † 

Sleep efficiency (%) 88.6 (92.6–63.1) 75.2 (93.0–63.1) 83.7 (91.4–79.7) 85.2 (89.4–75.0) 

LSaO2 (%) 93 (95–87) * 89.5 (91–82) 83 (84–76) 70 (82–59) † 

AHI (per hour) 2.4 (2.7–1.8) ₤ 8.9 (10.3–5.8) 21.1 (26.9–18.3) 49.9 (67.3–38.8) † 

Breathing Frequency (Hz) 0.216 (0.225–0.208) ‡ 0.223 (0.230–0.208) 0.215 (0.222–0.201) 0.143 (0.159–0.128) † 

RR interval(ms) 1005 (1147–892) 1018 (1133–942) 986 (1058–930) 977 (1017–905) 

HR(beats/min) 59.7 (67.2–52.3) 58.9 (63.8–52.9) 60.8 (64.4–56.7) 61.4 (66.3–58.9) 

Sleep 

Stage 

Stage N1 (%) 32.3 (43.7–10.2) ‡ 32.1 (34.7–17.8) 29.2 (44.4–23.3) 61.9 (76.7–40.5) † 

Stage N2 (%) 50.7 (59.7–39) ‡ 49.1 (58.5–45.4) 47.9 (55.8–35.3) 18.5 (40.0–7.8) † 

Stage N3 (%) 0.9 (12.5–0.6) ‡ 0 (6.9–0) 0.5 (5.4–0) 0 (0.6–0) 

REM (%) 16.5 (23.7–13.7) 17.7 (24.2–10.8) 18.6 (21.9–16.6) 16.1 (19.9–14.1) 

Presentation of all data as median (interquartile range). HR: Heart Rate; AHI: Apnea hypopnea index; OSA: 

Obstructive sleep apnea; LSaO2: Lowest arterial oxygen saturation; REM: Rapid eye movement; Simple 

snoring: AHI < 5; Mild OSA: 5 ≤ AHI < 15; Moderate OSA: 15 ≤ AHI < 30; Severe OSA: AHI ≥ 30;  

* p < 0.05 vs. Moderate and Severe OSA; ‡ p < 0.05 vs. Severe OSA; † p < 0.05 vs. Mild and Moderate OSA; 

p < 0.05 vs. Moderate OSA; ₤ p < 0.05 vs. Mild, Moderate and Severe OSA. 

3.2. Frequency Domain Analysis of Heart Rate Variability 

HRV as reflected in RRI was analyzed by using different frequency powers in the frequency domain. 

The results showed that nLF and LF/HF were significantly increased in subjects with severe OSA 

compared to the normal snoring individuals and those with mild and moderate OSA. A trend of elevation 

in nLF and LF/HF with an increase in severity of OSA could also be discerned. On the other hand, nHF 

in the severe OSA group was significantly lower than that in the other three groups. Again, nHF tended 

to decrease with an aggravation of the disease (Table 2). 

Table 2. Power spectrum of heart rate variability in four groups of study subjects. 

Parameter Normal Snoring Mild OSA Moderate OSA Severe OSA 

nLF 0.36 (0.46–0.29) 0.38 (0.56–0.24) 0.45 (0.53–0.36) 0.56 (0.61–0.43) * 
nHF 0.57 (0.65–0.38) ‡ 0.47 (0.72–0.35) ¶ 0.37 (0.50–0.30) 0.29 (0.41–0.24) 

LF/HF 0.63 (1.24–0.44) † 0.91 (1.59–0.33) 1.13 (1.55–0.73) 1.74 (2.51–1.06) * 

Presentation of all data as median (interquartile range). nLF: Normalized low frequency power; nHF: 

Normalized high frequency power; LF/HF: Ratio of low frequency power to high frequency power; * p < 0.05 

vs. Normal Snoring and Mild, Moderate OSA; ‡ p < 0.05 vs. Moderate and Severe OSA; † p < 0.05 vs. Moderate 

OSA; p < 0.05 vs. severe OSA. 
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3.3. Multiscale Entropy Index for Groups 

The results of MSE analysis of RRI in the study subjects is shown in Figure 1 that demonstrated a 

reduction in sample entropy with an increase in severity of OSA when plotted against the scale factor (τ) 

(Figure 1). Sample entropy of normal snoring subjects and those with mild OSA was higher than that of 

those with moderate and severe OSA (p < 0.05) for scale 1 to 3, while sample entropy of the normal 

snoring subjects and those with mild OSA was still significantly higher than that of patients with severe 

OSA for scale 4 to 5. On the other hand, no significant difference was noted in sample entropy among 

the four groups for large scale (i.e., τ = 6–10). 

 

Figure 1. Multiscale entropy (MSE) analysis of R-R interval (RRI) time series showing 

changes in sample entropy among four groups of study subjects with different scale factors. 

Symbols represent the mean values of entropy for each group, and bar represent the standard 

error (SE = SD/ n , n = total number of subjects). * p < 0.05: normal snoring and mild OSA 

groups vs. moderate and severe OSA groups; † p < 0.05: normal snoring and mild OSA 

groups vs. severe OSA group. 

The current study analyzed ECG signals by dividing the multiscale entropy index (MEI) into small 

scale (MEISS, scale 1–5) (2) and large scale (MEILS, scale 6–10) (3) using the MSE approach for 

comparison. The results demonstrated that MEISS of normal snoring subjects and those with mild OSA 

was significantly higher than that of individuals with moderate and severe OSA (p < 0.05), whereas no 

remarkable difference was noted in MEILS among the four groups (Table 3). Moreover, boxplots of MSE 

of the four groups of study subjects from scale 1 to scale 5 and MEISS were analyzed (Figure 2). The 

results showed that subjects with normal snoring and mild OSA could be distinguished from those with 

moderate and severe OSA from scale 1 to 3, while the discrimination was less prominent for scale 4 and 5. 

On the other hand, the MEISS of individuals with normal snoring and mild OSA could be distinguished 

from those with moderate and severe disease. 

Presentation of all data as median (interquartile range). MEISS: Multiscale entropy index with small 

scale; MEILS: Multiscale entropy index with large scale; * p < 0.05 vs. Moderate and Severe OSA. 

To investigate the overall correlation between MEISS and AHI, Spearman correlation analysis was 

performed that showed highly significant negative association (r = −0.684, p < 0.001; Figure 3a). Without 
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taking AHI into consideration, remarkably significant negative association was also noted between MEISS 

and the number of apnea episodes per hour in the testing subjects (r = −0.724, p < 0.001; Figure 3b). 

Table 3. Multiscale entropy index (MEI) of four groups of subjects with different severity 

of obstructive sleep apnea (OSA). 

Parameter Normal Snoring Mild OSA Moderate OSA Severe OSA 

MEISS 9.13 (9.89–8.24) * 9.17 (9.55–8.69) * 8.32 (8.88–6.84) 7.02 (8.55–5.35) 
MEILS 9.43 (10.40–8.66) 9.19 (10.36–8.78) 9.15 (10.21–8.20) 8.37 (9.68–7.12) 

Presentation of all data as median (interquartile range). MEISS: Multiscale entropy index with small scale; 

MEILS: Multiscale entropy index with large scale; *p<0.05 vs. Moderate and Severe OSA. 

 

Figure 2. Boxplots of multiscale entropy (MSE) of four groups of study subjects from scale 1 

to scale 5 and multiscale entropy index with small scale (MEISS). Normal: Normal snoring 

subjects; Mild, Moderate, Severe: Patients with mild, moderate, and severe obstructive sleep 

apnea, respectively. 

 

Figure 3. Spearman correlation between multiscale entropy index with small scale (MEISS) 

and (a) apnea hypopnea index (AHI); (b) number of apnea episodes per hour. 
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4. Discussion 

Previous studies on RRI in patients with sleep disordered breathing have reported significant 

differences in HRV parameters and sample entropy between subjects with OSA and those without [9,30]. 

Contradictory results were noted in one of the studies that demonstrated significant difference in sample 

entropy between patients with mild and severe OSA, but failed to show significant differences between 

patients with severe OSA and subjects without OSA [30]. One explanation for the paradoxical finding 

may be the use of ECG signals during REM and NREM sleep for comparison without taking into account 

the different stages of sleep [30] that has been reported to affect autonomic nervous activities [16,31,32]. 

For a more accurate assessment, the present study decomposed sleep into different stages (i.e., N1-N3) 

and chose N2 for analysis because of sporadic distribution of stage N1 and usually short duration of 

stage N3. Ten-minute segments of ECG signals were adopted after taking into consideration the frequent 

awakenings of subjects with OSA. The elevation in nLF and reduction in nHF with subsequent increase 

in the LF/HF ratio (Table 2) in patients with severe OSA compared with the other three groups signifies 

an enhancement of sympathetic activity, a suppression of parasympathetic activity, and an autonomic 

imbalance with progression of OSA [33–35] (Table 2). The findings are consistent with those of previous 

studies suggesting a positive association between OSA and sympathetic nervous activity [9,30,36,37]. 

On the other hand, the increase in percentage of sleep at N1 stage in patients with severe OSA may 

reflect frequent awakenings and poor sleep quality [29]. Indeed, the resulting sleep fragmentation and 

autonomic dysfunction have been reported to contribute to increased oxidative stress, elevated blood 

pressure, and sympathetic activation in patients with OSA [34,38,39]. 

Accordingly, a previous study has proposed the use of small time scale (i.e., τ = 1–5) sample entropy 

as a respiratory and autonomic functional index [11]. Although another study has shown a significantly 

reduced sample entropy in subjects with OSA compared with those without [30], that study did not 

analyze the complexity of physiological signals on different time scales. To fill this gap, the present 

study utilized the MSE method for analyzing signal complexity taking into account the different time 

scales [10]. Our results demonstrated a suppression of MEISS in patients with moderate and severe OSA 

compared to that in the normal snoring subjects and in those with mild disease, suggesting a reduction 

in physiological complexity with an increase in severity of OSA (Table 3, Figure 3). In addition to 

reinforcing the previous finding of an association of sample entropy on small time scale with 

parasympathetic activity and respiratory modulation [11,40], our results further validate MEISS as a tool 

for assessing the impact of OSA on respiratory and autonomic functions. 

The present study has its limitations. First, due to different disease severity, there was a discrepancy 

in the number of subjects in each group for comparison. Second, some patients with severe OSA were 

excluded from this study because of the poor sleep quality that precluded the acquisition of continuous 

10-minute ECG signals at a single sleep stage for satisfactory HRV and MSE analysis. Third, HRV at 

other stages of sleep was not studied because of difficulty in adequate data harvesting from subjects with 

OSA as mentioned above. Fourth, although we demonstrated a significant negative correlation between 

MEISS and AHI (Figure 3a) as well as that between MEISS and the number of apnea episodes per hour 

(Figure 3b), we could not establish a clinically significant cuff-off values between MEISS and different 

degrees of OSA severity due to the limited sample size of the present study. Finally, although previous 

studies on the relationship between breathing disorders and HRV also did not take into consideration the 
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frequency band of LF power [32–34], a reduction of breathing frequency might confound the findings 

of elevated LF power when frequency ranges are fixed.  

5. Conclusions 

MSE analysis of RRI from segments of 10-minute continuous ECG recording during NREM sleep at 

stage N2 not only demonstrated that MEISS could successfully distinguish normal snoring subjects and 

those with mild OSA from those with moderate and severe disease (Figure 3), but also revealed good 

correlation between MEISS and AHI. Therefore, utilizing the two parameters of EEG and ECG, MEISS 

may serve as a simple preliminary screening tool for evaluation of the severity of OSA before proceeding 

to PSG analysis. 
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