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Abstract: We propose a new geometric verification method in image retrieval—Hierarchical 

Geometry Verification via Maximum Entropy Saliency (HGV)—which aims at filtering  

the redundant matches and remaining the information of retrieval target in images which is 

partly out of the salient regions with hierarchical saliency and also fully exploring the 

geometric context of all visual words in images. First of all, we obtain hierarchical salient 

regions of a query image based on the maximum entropy principle and label visual features 

with salient tags. The tags added to the feature descriptors are used to compute the saliency 

matching score, and the scores are regarded as the weight information in the geometry 

verification step. Second we define a spatial pattern as a triangle composed of three 

matched features and evaluate the similarity between every two spatial patterns. Finally, 

we sum all spatial matching scores with weights to generate the final ranking list. 

Experiment results prove that Hierarchical Geometry Verification based on Maximum 

Entropy Saliency can not only improve retrieval accuracy, but also reduce the time 

consumption of the full retrieval. 
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1. Introduction 

In recent years, Content Based Image Retrieval (CBIR), which allows users to describe query 

information through image themselves, has become one of a hot research field in machine vision. The 

CBIR system usually generates a feature vector to represent the content of an image. Given a query 

image, its feature vector is first computed and then compared to the stored feature vectors of images in 

the image database [1–4]. The biggest core problem of CBIR is how to automatically obtain effective 

descriptions of image contents. When users query a sample image in CBIR systems, they usually 

expect the retrieval candidate images to be relevant to the visual content of the query image. For an 

image, some parts in the salient region of the image are more prominent than other parts because they 

can quickly attract the attention of the observers [5]. Hence, salient information is adopted to improve 

retrieval performance [6–10].  

Current CBIR applications based on the saliency model usually detect a single salient region. 

Although a query image in the single salient region could filter the redundant matches, the retrieval 

target may be located anywhere in the query image. When the part of the retrieval target in images is 

out of the salient regions, common image retrieval methods based on a saliency model might ignore 

some retrieval contents. This would affect the retrieval performance, as shown in Figure 1(b), where 

the retrieval target, the ―starbucks‖ tag, is out of the salient region. 

Figure 1. Saliency example of the query image. (a) Original image. (b) Salient region.  

(c–e) Hierarchical salient regions. The first line on the right hand of the arrow shows the 

saliency model only detects single salient region; The second line on the right arrow denotes 

the hierarchical saliency model. 

(a)

(b)

(c) (d) (e)
 

Based on this point, we investigate the advantage of using hierarchical saliency to enhance retrieval 

results. The underlying idea is that the hierarchical saliency regions not only locate the most prominent 

region, but also retain some image information which is out of the salient regions. As shown in Figure 1, 

we record the hierarchical saliency information in feature descriptors. On the one hand, this can 

increase the discriminative power of the image features; on the other hand, this hierarchical saliency 

information also records the distribution information of image features, and with this distribution 

information, the geometrical relationship between query image and the retrieval image can be 

examined in the geometric verification stage.  
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Most of the large-scale image retrieval methods rely on the Bag-of-Words (BOW) model [11]. 

However it suffers from visual word ambiguity and quantization errors, therefore many false matches 

between images are caused. Those unavoidable problems greatly affect retrieval performance. 

To tackle these problems, many geometric verification methods are applied to eliminate false 

matches [12–20]. Many of them are local geometric verification methods [12,15]. Jegou et al. 

introduced weak geometric consistency (WGC) [13], by supposing the scale and rotation variation of 

correct local matches are the same, so the obvious peaks occurring in the case of different scales and 

angles can filter out false local matches. Zhao et al. enhanced the WGC scheme [16] by supposing the 

correct matches, would be those which had achieved consistent translation transformation. However 

these are strong assumptions and can only work under uniform transformations between the query 

image and candidate image. To solve this problem, Xie et al. utilized the local similarity characteristic 

of deformations, and measured the pairwise geometric similarity of matched features [17]. The local 

geometric verification methods can only verify the spatial consistency of features within some local 

areas in images; however they will affect retrieval performance when there is geometric inconsistency 

among local areas. Therefore, global geometric verification methods such as Ransac [18] and Hough [19] 

are needed, but they are computationally expensive, and thus are only applied to the top images in the 

initial ranking list. In order to solve the problem of computational cost, Sai et al. proposed Location 

Geometric Similarity Scoring (LGSS) to estimate the geometric similarity using the distance ratio in 

mobile visual searches [20]. 

In order to improve the geometric context among local features and inspired by [20], we propose a 

novel geometric verification method. Compared to LGSS, more points are utilized to build an accurate 

spatial relationship between the matched features. We introduce a triangle spatial pattern (TSP) to 

describe the spatial layout of any three points. Similarity between two triangle patterns is measured 

based on homothetic triangle theory. Afterwards, the geometric consistency between query image and 

a candidate image results from how many similar TSPs there are between these image pairs.  

We propose Hierarchical Geometry Verification based on Maximum Entropy Saliency (HGV) in 

image retrieval. The contributions of this paper are in two aspects. First, we propose an algorithm of 

hierarchical saliency based on the GBVS saliency map [21] and maximum entropy criteria. It can filter 

the redundancy matches and retain the information of partial retrieval targets in images when the 

retrieval target is partly out of the salient regions. In this stage, salient areas tags are computed and 

plugged into visual feature descriptors. Second, we design a novel efficient geometric verification 

method, which describes the spatial layout of any three points and similarity between two triangle 

patterns is measured based on homothetic triangle theory. It is hoped that the problem of getting highly 

relevant result lists with speeded up retrieval times will be resolved by our proposed method. 

2. The Image Retrieval Framework with Hierarchical Salient Regions Based on Maximum Entropy 

Inspired by analyzing visual saliency, this paper extends the image retrieval method based on visual 

saliency information. We propose to use hierarchical salient regions tags based on the maximum 

entropy principle. In our image retrieval architecture, retrieval objects of candidate images are not only 

from one single salient region but from multi-level regions, which could greatly increase the relevance 

of final retrieval results. The framework of our method is illustrated in Figure 2. Given a query image, 
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first we extract SIFT features [19] and obtain the hierarchical salient regions based on two-dimensional 

maximum entropy [22], then saliency tags of visual features are obtained by salient region that the 

visual features are located in. Initial retrieval results are obtained based on the BOW retrieval model [11]. 

In the geometry verification stage, the initial retrieval list is re-indexed by a new designed spatial 

pattern scheme weighted by saliency matching results.  

Figure 2. Retrieval framework. 

 

3. Hierarchical Saliency Generation Based on Maximum Entropy Principle 

Image segmentation based on thresholds, such as global threshold [23], adaptive threshold [24],  

the best threshold [25] and entropy method [26] are widely used. In this paper, the two-dimensional 

maximum entropy principal [22] is applied to segment a saliency map image.  

Various kinds of saliency models have been proposed [27–31]. Meanwhile many review articles 

also refer to these saliency algorithms. In this paper we choose to use the GBVS algorithm [21] for 

saliency map calculations after considering both accuracy and algorithmic complexity. 

First of all, the saliency map is generated by GBVS algorithm, and we consider the saliency map as 

a grey image and detect multi-level salient regions in it according to the region’s saliency level. A two- 

dimensional histogram of pixel distribution between the image pixels and the surrounding 

neighborhood is built. Then the optimal threshold to divide the image into object region and 

background region is obtained by the maximum entropy criterion. In order to extract multi-level salient 

regions, we further segment background region by adjusting segmentation threshold. Figure 3 shows 

the computation process example of a four-level hierarchical salient region. 

Given a 𝑀 × 𝑁 image 𝑓 𝑥, 𝑦 (𝑥 ≤ 𝑀, 𝑦 ≤ 𝑁), a smooth image 𝑔 𝑥, 𝑦  is generated by using 

each pixel values in the image and the average pixel values of 8-neighborhood. All grey values are 

quantized into 𝐺 levels: 0,1, … , 𝐺 − 1. We define the joint pixel distribution probability of each pixel 

in the original image and in the smoothed image. 

𝑝 𝑖, 𝑗 =
𝑟(𝑖, 𝑗)

𝑇
, 𝑖, 𝑗 = 0,1, … , 𝐺 − 1

 

(1) 
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where 𝑇 = 𝑀 × 𝑁  and 𝑟(𝑖, 𝑗)  represents the number of pixels with grey value 𝑖  and average 

neighborhood pixel grey value 𝑗. That results in a two-dimensional histogram as shown in Figure 3. 

Figure 3. The process of computing four-level hierarchical salient regions based on 

maximum entropy principal. (a) Original Image; (b) Saliency map generated by GBVS;  

(c) Two-dimensional pixel distribution histogram of saliency map image; (d) Four-level 

hierarchical salient regions. 

 

As shown in Figure 4, any two-dimensional vector (𝑠, 𝑡) is used as segmentation threshold. Region 

A and B represent background and object region, respectively. Region C and D represent edge region 

and noise region respectively. We approximate region C and D to 0, because edge and noise pixels are 

in the minority and are far away from the diagonal. Therefore we could use a single threshold vector to 

divide an input image into object region and background region. 

Figure 4. The two-dimensional histogram. 

0

f(x,y)

g(x,y)

D B

CA

s G-1

G-1

t

 

Here we introduce two-dimensional entropy principle to compute the best threshold. A discrete 

two-dimensional entropy is defined as:  

𝐻 = −  𝑝𝑖,𝑗 𝑙𝑜𝑔𝑝𝑖,𝑗
𝑗𝑖

 (2) 

where 𝑝𝑖,𝑗  is joint probability density, defined in Equation (1).  

Usually the background region and the objective region have different probability distribution as: 
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𝑃𝐴 =   𝑝𝑖,𝑗

𝑡−1

𝑗 =0

, 𝑃o =

𝑠−1

𝑖=0

  𝑝𝑖,𝑗

𝐺−1

𝑗 =𝑡

𝐺−1

𝑖=𝑠  

(3) 

Therefore the entropy of background is:  

𝐻𝐴(𝑠, 𝑡) = −  
𝑝𝑖,𝑗

𝑃𝐴
𝑙𝑜𝑔⁡(

𝑝𝑖,𝑗
𝑃𝐴

 )

𝑡−1

𝑗 =0

𝑠−1

𝑖=0

 (4) 

The entropy of the object is: 

𝐻𝑜(𝑠, 𝑡) = −   
𝑝𝑖,𝑗

𝑃𝑜
𝑙𝑜𝑔⁡(

𝑝𝑖,𝑗
𝑃𝑜

 )

𝐺−1

𝑗 =𝑡

𝐺−1

𝑖=𝑠

 (5) 

The sum of the entropy of the whole image [22] is: 

𝛷 𝑠, 𝑡 = 𝐻𝐴 𝑠, 𝑡 + 𝐻𝑜 𝑠, 𝑡 = 𝑙𝑜𝑔 𝑃𝐴 1 − 𝑃𝐴  +
𝐻𝐴

𝑃𝐴
+

𝐻𝐿 − 𝐻𝐴

1 − 𝑃𝐴
 (6) 

where 𝑃𝐴  presents the probability of the background region, 𝐻𝐴  represents the entropy of the 

background region and 𝐻𝐿 shows the entropy of the whole image. The best threshold  𝑠∗, 𝑡∗  based 

on maximum entropy principle must satisfy: 

 𝑠∗, 𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑠,𝑡){Φ} (7) 

After obtaining the segmentation threshold of the salient map, the usual saliency schemes in image 

retrieval extract object regions as a query image. However when the retrieval object of a candidate 

image is located outside the salient region, this approach tends to lose the retrieved information and could 

even affect the retrieval accuracy. Therefore we propose the concept of hierarchical salient regions to 

rectify this error. 

We investigate the adoption of multi-level salient regions and create salient matching principal by 

the criterion that more significant area the features are located in, the higher salient matching score 

they can get. Therefore, for the first step, we need to extract multiple saliency levels. After applying 

two-dimensional maximum entropy to the original saliency map, the input image could be segmented 

into a single object region and a background region. As normal retrieval methods only concentrate on 

the retrieved content inside the object region and neglect the background information, this paper 

focuses on compensating retrieving background content in order to give higher coverage of the 

retrieval results. 

After extracting the salient target by the two-dimensional maximum entropy principal, if we need to 

extract 𝑙 salient levels, we should again compute 𝑙 − 1 salient levels in the background. This would 

spend too much time on so many 𝑙 − 1 iterations, consequently we apply another simple approach to 

solve this problem, as shown in Figure 5. 

In the saliency map of the query image, amounts of nearly black pixels usually exist in the 

background and are distributed in the（0,0）bin around the two-dimensional histogram. They are not 

very helpful for image retrieval due to the insignificant information they contain, so we discard the 

region where the pixels are close to black pixels. 
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Figure 5. An example of a hierarchical salient area. 
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We average the interval (0, 𝑠) and (0, 𝑡) into 𝑙 scopes to extract these sub-regions, and discard 

the most insignificant regions where the grey value 𝑓(𝑥, 𝑦) is in range of 0 to s/𝑙 and the average 

neighborhood pixel grey value 𝑔(𝑥, 𝑦) is in range of 0 to t/𝑙. Together with the object region B, 𝑙 

hierarchical salient regions are determined. 

4. Geometric Verification Based on Hierarchical Salient Regions and Triangle Spatial Pattern 

In this section, we introduce the hierarchical salient regions and spatial features which are used  

in geometric verification in a large-scale database. First, the initial retrieval list is obtained based on  

the BOW model. Each visual word has an entry in the index that contains the list of images in which 

the visual word appears. Additional, we also record the geometric information: the image ID, 

X-coordinate, Y-coordinate and hierarchical saliency tag. The structure of the inverted file is shown in 

Figure 6.  

We combine the salient tags and visual features to enrich the descriptor content. After the retrieval 

step, query image has an initial retrieval result list. 

Figure 6. Inverted file structure for index. The image ID means where the visual word. 

appears, the location information(X,Y) and hierarchical saliency tag are recorded by each 

indexed features. 
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4.1. Triangle Spatial Pattern (TSP) 

After SIFT quantization, matched features between two images can be obtained. However the 

retrieval results are usually polluted by parts of false matches due to quantization errors and visual word 

ambiguity. Hence, geometry verification is used as a geometric verification step to verify initial 

retrieval results list. In this paper, we propose to take spatial distribution of matched features into account.  

The key idea of our triangle spatial pattern (TSP) is the spatial relationship of SIFT features for 

spatial consistency verification. We design a spatial pattern as a triangle made up of every three SIFT 

feature points and examine the similarity of two TSPs by their similarity ratio. 

For instance, given an image with N features, (𝑖 = 1,2, … , 𝑁), The triangle spatial pattern of the three 

feature points  𝑓𝑦 , 𝑓𝑥 , 𝑓𝑧 , is defined as: 𝑇𝑆𝑃 𝑓𝑦 ,𝑓𝑥 ,𝑓𝑧 = (𝐴𝑛𝑔 𝑓𝑦 ,𝑓𝑥 ,𝑓𝑧 , 𝑑𝑖𝑠𝑡 𝑓𝑦 ,𝑓𝑧 ), 1 ≤ 𝑥, 𝑦, 𝑧 ≤ 𝑁, as 

shown in Figure 7. 

Figure 7. The attribute of spatial features. 

 

The angle information is quantized as: 

𝐴𝑛𝑔 𝑓𝑦 ,𝑓𝑥 ,𝑓𝑧 =
𝑑𝑖𝑠𝑡(𝑓𝑥 , 𝑓𝑦)2 + 𝑑𝑖𝑠𝑡(𝑓𝑥 , 𝑓𝑧)2 − 𝑑𝑖𝑠𝑡(𝑓𝑦 , 𝑓𝑧)2

2 × 𝑑𝑖𝑠𝑡 𝑓𝑥 , 𝑓𝑦 × 𝑑𝑖𝑠𝑡(𝑓𝑥 , 𝑓𝑧)
 (8)  

where 𝑑𝑖𝑠𝑡(, ) corresponds to the Euclidean distance of two feature points. 

If there are m matched visual features within a certain salient level, the number of TSPs in this level  

is 𝑁 = 𝐶𝑚
3 . If the number of matched visual features in a certain level is less than three, TSP matching 

is not applicable to it. Therefore, match scores of TSP in this saliency level is zero. 

4.2. Geometric Verification with Hierarchical Salient Regions and TSP 

In geometric verification, we first calculate TSP matching scores in every single salient level.  

Then the geometric scores between query image and candidate images are obtained by summing all 

TSP matching scores weighted by saliency level scores. 

Since there is an underlying assumption that the candidate image and query image share some 

similar parts, or in other words, share some features with consistent geometry, we could compare the 

number of similar TSPs between images to generate a more accurate retrieval list.  

In the geometry verification step, we consider both saliency attributes and spatial relationships 

represented as TSP. We denote a query image as Iq and a candidate image as Id. 𝑄 = (𝑞𝑓1
, 𝑞𝑓2

, … , 𝑞𝑓𝐾
) 

and 𝐷 = (𝑑𝑓
1′ , 𝑑𝑓

2′ , … , 𝑑𝑓
𝐾′ ) represent the feature sets in the query image and the candidate image 
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respectively. We get the matched feature-pair as 𝑀 𝑞, 𝑑 =  (𝑞𝑓𝑖
, 𝑑𝑓

𝑖′
) 𝑞𝑓𝑖

∈ 𝑄, 𝑑𝑓
𝑖′

∈ 𝐷 , where 𝑓𝑖  

and 𝑓𝑖 ′  denote the features in the query image and candidate image. 

4.3. Matching TSPs 

We firstly measure the similarity degree of angles in TSPq and TSPd:  

𝑆 𝐴𝑛𝑔𝑞 ,𝐴𝑛𝑔 𝑑 =

 
 
 

 
 

 

𝐴𝑛𝑔(𝑞𝑓𝑦 , 𝑞𝑓𝑥 , 𝑞𝑓𝑧 )

𝐴𝑛𝑔(𝑑𝑓𝑦 ′ , 𝑑𝑓𝑥′ , 𝑑𝑓𝑧′ )
, 𝐴𝑛𝑔(𝑑𝑓

𝑦 ′ , 𝑑𝑓
𝑥′ , 𝑑𝑓

𝑧′ ) ≠ 0

0, 𝐴𝑛𝑔  𝑞𝑓𝑦 , 𝑞𝑓𝑥 , 𝑞𝑓𝑧 ≠ 0, 𝐴𝑛𝑔(𝑑𝑓
𝑦 ′ , 𝑑𝑓

𝑥′ , 𝑑𝑓
𝑧′ ) = 0

1, 𝐴𝑛𝑔  𝑞𝑓𝑦 , 𝑞𝑓𝑥 , 𝑞𝑓𝑧 = 𝐴𝑛𝑔(𝑑𝑓
𝑦 ′ , 𝑑𝑓

𝑥′ , 𝑑𝑓
𝑧′ ) = 0

 

 
(𝑞𝑓𝑥 , 𝑑𝑓

𝑥′ ) ∈ 𝑀(𝑞, 𝑑)

(𝑞𝑓𝑦 , 𝑑𝑓
𝑦 ′ ) ∈ 𝑀(𝑞, 𝑑)

(𝑞𝑓𝑧 , 𝑑𝑓
𝑧′ ) ∈ 𝑀(𝑞, 𝑑)

 
 
 

 
 

 

(9)  

𝑆 𝐴𝑛𝑔𝑞 ,𝐴𝑛𝑔 𝑑  is computed as the angle cosine ratio between TSPq and TSPd. However, there are two 

exceptions: when the numerator and the denominator are both zero, 𝑆 𝐴𝑛𝑔𝑞 ,𝐴𝑛𝑔 𝑑  is equal to 1. 

Otherwise, the value of 𝑆 𝐴𝑛𝑔𝑞 ,𝐴𝑛𝑔 𝑑  is zero. Furthermore, we compute the distance ratio of the 

opposite side. Obviously, the distance ratio is proportional to the scale transformation factor. We 

compute edge similarity as: 

𝑆 𝑒𝑑𝑔𝑒 𝑞 ,𝑒𝑑𝑔𝑒 𝑑 =  𝑙𝑜𝑔⁡(
𝑑𝑖𝑠𝑡(𝑞𝑓𝑦 , 𝑞𝑓𝑧 )

𝑑𝑖𝑠𝑡(𝑑𝑓𝑦 ′ , 𝑑𝑓𝑧′ )
)   𝑆 𝐴𝑛𝑔𝑞 ,𝐴𝑛𝑔𝑑 − 1 < 𝜀   (10)  

where  𝑆 𝐴𝑛𝑔𝑞 ,𝐴𝑛𝑔𝑑 − 1 < 𝜀 represents the angle component of TSPp and TSPd should satisfy the 

similarity relationship. We build a histogram of the distance ratio 𝑆 𝑒𝑑𝑔𝑒 𝑞 ,𝑒𝑑𝑔𝑒 𝑑 : 

𝐶 𝛼 =  𝐻𝑖𝑠𝑡(𝑎 ≤ 𝑍 ≤ 𝑎 + 𝑏)

𝑍∈𝑆 𝑒𝑑𝑔𝑒 𝑞 ,𝑒𝑑𝑔𝑒 𝑑 

 
(11)  

𝐻𝑖𝑠𝑡(, ) is the indicator function, and 𝑎 corresponds to the scale ratio difference. We implement 

Equation (11) as the histogram with the interval 𝑏. 𝐶 𝛼  represents the height of the a-th bin. 

𝑆𝑐𝑜𝑟𝑒𝑇𝑆𝑃 = 𝑚𝑎𝑥𝑎𝐶(𝑎) (12)  

The maximum value of 𝐶 in all histogram bins is used as the TSPs matching score. This score is also 

used as the matching scores of a certain saliency level in geometric verification.  

4.4. Re-Rank Score of a Candidate Image 

Finally, the re-rank score of candidate image Id is calculated by weighting TSPs matching score  

with saliency matching score 𝑊𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝑙𝑒𝑣𝑒𝑙 . Assume there are 𝑙-level salient regions in the query 

image, so the final re-rank score of a candidate image is computed as: 

𝐹𝑖𝑛𝑎𝑆𝑐𝑜𝑟𝑒𝐼𝑑 =  𝑊𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝑙𝑒𝑣𝑒𝑙  𝑙𝑒𝑣𝑒𝑙 ∗ 𝑆𝑐𝑜𝑟𝑒(𝑙𝑒𝑣𝑒𝑙 ,𝑇𝑆𝑃)

𝑙

𝑙𝑒𝑣𝑒𝑙 =1
 (13)  

where 𝑊𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝑙𝑒𝑣𝑒𝑙  means the saliency weight and 𝑆𝑐𝑜𝑟𝑒(𝑙𝑒𝑣𝑒𝑙 ,𝑇𝑆𝑃) represents matching score of 

TSPs in the level-th saliency level: 
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𝑊𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦𝑙𝑒𝑣𝑒𝑙  𝑙𝑒𝑣𝑒𝑙 =
𝑙

𝑙𝑒𝑣𝑒𝑙
∗

1

 𝑠𝑙
𝑠=1  

(14)  

where 𝑙 shows the number of hierarchical salient level in section 3, 𝑙𝑒𝑣𝑒𝑙 represents the level-th 

salient region. 

5. Experimental Section  

The evaluation of our hierarchical geometric verification based on maximum entropy saliency is 

based on the two important factors in image retrieval: retrieval accuracy and search time in the 

geometric verification stage.  

5.1. Datasets 

We first evaluate the relationship between the saliency level value 𝑙 and retrieval performance by 

adjusting the level value. By doing so, we could get the level value with the best retrieval performance.  

In experiments, we use traditional a BOW retrieval model [11] and TSP without saliency in Section 4.2 

as contrasts. The experiments are evaluated on a publicly available image retrieval datasets: DupImage [32]. 

We add some relevant images from Flickr [33], and crawled ten thousand images from the dataset [34] 

as distracters. In our experiments, the top 1000 initial retrieval images are verified in the geometry 

verification stage.  

5.2. Experiment Preparations 

Our method is based on the traditional BOW retrieval model, and we adopt SIFT features as visual 

features for local image representation. Key points are detected with the Difference-of-Gaussian 

detector, and 128-dimensional SIFT descriptors are extracted accordingly. Meanwhile location 

information of the key points is recorded as a part of visual features. Before feature extraction, large 

images are scaled to no larger than 500 × 500. We apply the hierarchical visual vocabulary tree 

approach for visual word generation [35] as our baseline. We use a vocabulary of 100 K visual words.  

We experimented with different sizes (both larger and smaller) of visual word vocabularies in our 

dataset, and found it is the best choice. We use an inverted file structure to index the images.  

As illustrated in Figure 6, each visual word is linked with a list of indexed features that are quantized. 

Each indexed feature records the ID of the image, feature location, and hierarchical saliency tag. 

5.3. Evaluation Protocol 

We evaluate the performance of our method by the mAP criteria [36] and perform the experiments 

on a server with 3.20 GHz CPU and 8 GB memory running MatlabR2012a. In the following 

evaluation, we select 100 representative images from each group of datasets as our queries, and 

compute each average mAP and take the mean value over all queries. 

The mAP criteria is computed as: 

𝑚𝐴𝑃 =
 

𝑖

𝑟𝑎𝑛𝑘 (𝑖)

𝑛
𝑖=1

𝑛
 (15)  

where n represents the number of positive retrieval images in database with given query image, 
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𝑟𝑎𝑛𝑘(𝑖) is the rank value of the 𝑖-th positive retrieval image in the final retrieval results. 

5.4. Evaluation for Level in Hierarchical Saliency 

The performance of our approach related to the different level values is shown in Figure 8. 

Meanwhile the average time cost per query of all approaches in geometry verification is also represented.  

Figure 8. Comparison of mAP curve for different methods. 

 

In the geometric verification step, the factor level works to cast geometric consistency constraints 

on the relative spatial positions between matched features. We also need to evaluate its value impact 

on retrieval performance so as to select the optimal value. Intuitively, the mAP achieves the best result 

when the level is 2. By analyzing the influence of saliency level to retrieval performance, we can 

conclude that the higher we set the saliency level, the more segmented regions and the more remained 

features are computed. Since our geometric verification method mainly relies on the detection of SIFT 

features, the impact of SIFT matching errors in geometric verification between query and retrieved 

images is illustrated in Figure 9. It is observed that, with the increasing of salient regions, the mAP 

performance first rises, and then gradually drops after the level reaches 2. The reason is the saliency 

method could discard the useless features which are located in the most insignificant regions. It avoids 

the distraction of false matched features for the geometric verification method and improves the 

retrieval accuracy by these useful features. However when part of the retrieval target in images is out 

of the salient regions, the less salient regions there are, the more retrieving content would be ignored, 

and this would affect the retrieval accuracy. Hence, the hierarchical saliency is considered to retain the 

whole information of the retrieval object. As shown in Figure 8, the mAP achieves the best result when 

level is 2, which represents that two saliency levels could persist in the fairly complete information of 

retrieval objects and also could filter the more redundant matches, but as the level increases, the mAP 

performance gradually drops after the level reaches 2. The reason might be that the more hierarchical 

saliency regions we use, the more redundant matches would be computed that will eventually affect 

the retrieval accuracy. Meanwhile, when computing the matching scores of TSPs in hierarchical salient 

regions, the larger the saliency level is set, the more time will be consumed through all levels of the 

hierarchical saliency regions. 
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Figure 9. Example of matched pairs between query image and retrieval image. (a) Query 

image; (b) Retrieval image. In fact, the matched pair between feature 3 in Figure 9(a) and 

feature 3' in Figure 9(b) is false. We propose the geometric verification method with three 

features. With this method, it will not compute the geometric similar scores containing 

matched pair (3, 3') by judging whether the angles are similar in the triangle pattern. 

 

5.5. Hierarchical Saliency’s Effect in Image Retrieval 

We select the appropriate salient level in Section 5.4 by considering both retrieval precision and  

time consumption. In performance comparison experiments, we select 𝑙𝑒𝑣𝑒𝑙 = 2, when the mAP is 

better than other saliency levels. HGV is compared to the traditional BOW retrieval model [11] 

introduced in Section 5.3 and the TSP without any hierarchical saliency in Section 4.2. Figure 10 

shows the mAP comparison in six groups of the DupImage database for the three methods. 

Comparison in time consumption is denoted in Table 1. The examples of the six groups are illustrated 

in Figure 11. 

Figure 10. Comparison of mAP for three methods. 

 

Table 1. Comparison of time consuming for four methods in common case. 

Method 
Features exaction 

(query image) [s] 
Retrieval [s] 

Per retrieval image 

Geometric verification [ms] 
Total time [s] 

BOW 0.1903 0.0053 - 0.2043 

TSP 0.1903 0.0053 8.9869 9.1825 

HGV (level = 2) 1.0406 0.0053 0.6186 1.6645 
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Figure 11. Retrieval examples of six groups [32–33]. 

 

From the comparison results, it can be concluded that our method not only improves retrieval 

precision, but also reduces the time consumed in the geometric verification step. TSP improves the 

retrieval precision due to the introduction of spatial layout of visual features. It fills the spatial 

information which the traditional BOW model lacks due to the quantization visual words. After that, 

the hierarchical saliency mechanism is taken into consideration. When the retrieval object in a salient 

region is incomplete or some retrieval objects are located in background regions, the hierarchical 

saliency method can keep the retrieval object information. From Table 1, we can see, the time 

consumed in geometric verification step has been reduced (from TSP’s 8.9869 ms to 0.6186), because 

we discard the features which are located in the most insignificant region, so that the less features are 

computed in the geometric verification step, which speeds up retrieval process while improving the 

retrieval accuracy. 

Figure 12 shows the final retrieval result of HGV and other methods. The retrieval results 

containing large changes in color, scale and rotation demonstrate the effectiveness of our method in 

complex image transformation. 

Figure 12. Retrieval results of different methods (All images are from datasets [32–34]). 

(a) BOW; (b) LGSS; (c) WGC; (d) LGC; (e) TSP; (f) HGV (level = 2).  
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Figure 12. Cont. 

 

5.6. Hierarchical Saliency’s Effect on Other Geometry Verification Methods 

Finally, we perform some other geometry verification methods like LGSS [20], WGC [13]  

and LGC [17] to verify the effectiveness of HGV. The parameters of the comparison methods are based 

on the relevant papers. 

From the previous comparison results, it can be concluded that hierarchical saliency method is  

a common approach to improve the precision in image retrieval as denoted in Figure 14. The lower 

part shows the mAP performance of all retrieval methods without adding any saliency; with the 

addition of hierarchical saliency, the mAP performance is improved, as illustrated in the upper part. 

In Figure 13, the traditional BOW retrieval method quantified visual words may reduce the 

discriminative power of the local features and do not capture the spatial relationship among local 

features, thus leading to many false matched pairs and affecting the retrieval performance. Therefore, 

our method applies a multi-point spatial layout to compute the geometric consistency. It can reduce the 

probability of misjudgment of matched features compared to the LGSS method [20] due to the 

instability of computing matched features with two point encoding. WGC has strong assumptions and 

can only work under uniform transformations between the query image and candidate images. LGC 

couldn’t make the best of the local similar characteristic of deformations due to the high size of visual 

words (10
5
) and this results in calculating the transformation matrix less accurately. It is also affects 

the retrieval accuracy. 

Table 2 shows the average query time per image for these methods. We can see that the 

performance of WGC, LGSS and LGC. Compared to WGC (0.2258 ms), LGSS (0.3660 ms) has to 

calculate the distance ratio instead of simple addition and subtraction of two points, and LGC (0.6597 ms) 

has to additionally calculate the local geometric similarity. Due to the introduction of hierarchical 

saliency, many redundant matched features are discarded, which reduces the geometric verification 

computations of LGSS (0.3127 ms) and LGC (0.6358 ms), but the geometric verification computation 

of WGC (0.2285 ms) with hierarchical saliency is increased, because the time consumed in searching 

matched features with the same hierarchical saliency tag is more than through using less feature points 

in WGC. 
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Figure 13. Comparison of mAP with other geometric verification methods. 

 

Table 2. Comparison of time consumption for other geometric verification methods. 

Method Per retrieval image Geometric verification [ms] 

LGSS 0.3660 

LGSS + hierachical saliency (level = 2) 

WGC 

WGC + hierachical saliency (level = 2) 

LGC 

LGC + hierachical saliency (level = 2) 

0.3127 

0.2285 

0.2789 

0.6597 

0.6358 

Figure 14. Comparison of mAP for different methods. 

 

6. Conclusions 

We investigate the Hierarchical Geometry Verification based on Maximum Entropy Saliency in 

image retrieval. Most state-of-the-art image retrieval methods based on the BOW model ignore the 

spatial relationships among local features, thus decreasing retrieval precision. In this paper, we define a 

triangle spatial pattern to describe the spatial layout of visual features to verify the features’ geometric 

relationships in the geometric verification step. However, this consumes more time due to the high 

computing complexity. Therefore, we introduce the Hierarchical Saliency based on Maximum Entropy 

mechanism to reduce the number of features involved in each segmented region for geometry 

verification. To filter the redundant matched features and retain the useful visual features, only 
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matched features in some more saliency levels are kept to be evaluated, which can increase the 

retrieval speed and improve the retrieval accuracy. In our experiment, our method outperforms 

state-of-art methods in retrieval accuracy such as LGSS, WGC and LGC, and take less time in 

geometric verification. However, when the complete part of retrieval object is located in a less 

prominent area, too many hierarchical saliency regions would destroy the integrity of the retrieval 

object while ignoring the positive match. In our future work, we will study a new object contour 

preserving method to distill the hierarchical saliency region. Hopefully, it will be helpful to increase 

retrieval performance.  
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