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Abstract: Heavy rain deteriorates the video quality of outdoor imaging equipments. In
order to improve video clearness, image-based and sensor-based methods are adopted for
rain detection. In earlier literature, image-based detection methods fall into spatio-based
and temporal-based categories. In this paper, we propose a new image-based method
by exploring spatio-temporal united constraints in a Bayesian framework. In our
framework, rain temporal motion is assumed to be Pathological Motion (PM), which
is more suitable to time-varying character of rain steaks. Temporal displaced frame
discontinuity and spatial Gaussian mixture model are utilized in the whole framework.
Iterated expectation maximization solving method is taken for Gaussian parameters
estimation. Pixels state estimation is finished by an iterated optimization method in Bayesian
probability formulation. The experimental results highlight the advantage of our method in
rain detection.
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1. Introduction

The quality of video captured from outdoor electronic equipments can be heavily degraded by bad
weather such as rain, snow, haze or fog. The degraded video imposes great constraints on a lot of video
applications such as video tracking [1], object recognition [2], event detection [3], scene analysis [4],



Entropy 2014, 16 3303

image registration [5], etc. In order to improve the results of these video processing, recently many
works have focused on degraded video caused by bad weather. Among these works, rain detection has
received much attention. In order to characterize and validate rain detection, many sensor-based and
vision-based methods have been applied [6]. The sensor-based methods often use different frequency
selection, scanning modes, and the application of radar for rain detection [7]. However, the application
of rain detection is limited by the cost of sensors. On the contrary, vision-based method presents wider
application. A lot of image processing and computer vision methods pave the way for rain detection
and removal.

In previous reported image-based methods, the physical property and image spatial-temporal
characters of rain were applied efficiently. In order to characterize the photometry of rain, Garg [8]
proposed a stochastic model based on the physical property of rain. Since different adjustments of
camera (i.e., exposure velocity, focus distance, etc.) can improve the visual effects of the rain-containing
video, Garg [9] presented a method based on the adjustment of camera parameters. As a pioneering
work, Garg [10] also proposed a realistic rain rendering technique. A rain distribution database can also
be downloaded from his web site. A median filter method was proposed by Hase [11], which makes use
of the temporal property of rain steaks. Zhang [12] extended this method by k-means clustering involving
chromatic constrains. Brewer and Liu [13] combined the aspect ratio and the orientation of rain streaks
into the rain detection, which efficiently reduce false detection. Barnum et al. [14,15] proposed a global
appearance model to formulate rain in the frequency domain. Moreover, a image-based processing
method was proposed by Kang [16], which implements rain removal by an image decomposition way
based on morphological component analysis (MCA) [17,18]. In Kang’s method, image noise removal
method (i.e., bilateral filter, K-SVD dictionary train algorithm, etc.) [19–24] was used to highlight the
advantage of the MCA-based algorithm. In order to improve the accuracy of the detection of rain streaks,
histogram of orientation of rain (HOS) was applied in Bossu’s proposal [25]. Gaussian uniform mixture
model and expectation maximization (EM) algorithm [26] were adopted in Bossu’s algorithm.

Totally, the state-of-the-art techniques on rain processing fall within two categories. Spatial
techniques consist of one category. These techniques make full use of image spatial correlation, such
as [16]. Rain steaks in image/video are regarded as high frequency information. Hence, the goal of
spatio-based method is try to remove image high frequency information containing rain steaks. To some
extent, this is similar to some image denoise technique. The other category contains temporal-based
rain streaks processing methods. Obviously, temporal redundant information is applied for rain or
snow detection. Such as [8,12,15], neighboring frames are incorporated into the whole detection
framework according to the characteristics of rain steaks in temporal field. However, both spatial
and temporal methods rely on image/video spatial and temporal redundancy. Inspired by [27,28], we
build a Bayesian framework to formulate rain or snow detection, which involves long-term temporal
constraints and prior distribution of rain or snow. In order to characterize rain detection, we try to
harmonize the spatial and temporal considerations into our new Bayesian framework to make full
use of the image/video redundant information. Spatial interpolation, temporal relevant information
copy or spatio-temporal reconstruction is undertaken for rain removal under the guidance of a rain
detection mask. The determination of rain detection state is attained by Bayesian maximum a posteriori
(MAP) solution.
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In this paper, the motion character of rain or snow is assumed to be Pathological Motion (PM), which
is introduced in [27,28]. Before presenting the details of our method, we would like to summarize the
novel contribution of our paper, which include:

(1) formulation of a Bayesian probabilistic framework that derives an estimation of pixel state field
from the maximum a posteriori (MAP) solution;

(2) integration of spatial and temporal likelihood as well as MRF prior into the Bayesian framework;

(3) comparative analysis of our Bayesian method with previous method.

The remainder of this paper is organized as follows. The algorithm is formulated in Section 2. The
experimental results are shown in Section 3. Section 4 concludes the paper.

2. Description of Algorithm

In this section, we present our algorithm that exploits Bayesian framework to formulate rain detection.
For the convenience of notation, we use In(x) to denote the illumination of the current video frame, where
n is the frame number and x is image index.

Table 1. Frame Temporal Discontinuity Mapping Table

s(x) t(x) l(x) s(x) t(x) l(x)

0 0, 0, 0, 0 0 8 1, 0, 0, 0 0
1 0, 0, 0, 1 0 9 1, 0, 0, 1 0
2 0, 0, 1, 0 0 10 1, 0, 1, 0 0
3 0, 0, 1, 1 1 11 1, 0, 1, 1 1
4 0, 1, 0, 0 0 12 1, 1, 0, 0 1
5 0, 1, 0, 1 0 13 1, 1, 0, 1 1
6 0, 1, 1, 0 1 14 1, 1, 1, 0 1
7 0, 1, 1, 1 1 15 1, 1, 1, 1 1

2.1. Temporal Discontinuity Description

We use a label field, l(x), to denote the pixel’s state. l(x) = 1 means that the current pixel belongs to
rain streaks. On the contrary, l(x) = 0 refers to non-rain region for pixel x. Under the heuristics of [28], a
temporal window of five frames, (In−2(x), In−1(x), In(x), In+1(x) and In+2(x)), is adopted in our algorithm.
The displaced frame difference (DFD) between neighboring frames is used as the measure of temporal
discontinuity in the five frame window. DFDs are defined as ∆n−2(x), ∆n−1(x), ∆n+1(x) and ∆n+2(x). A
binary Temporal Discontinuity Field (TDF), (t(x) = [tn−2(x), tn−1(x), tn+1(x), tn+2(x)]), is obtained from
the four DFDs. TDF is defined as follows

tk(x) =

 1 i f ∆k(x) > δt

0 otherwise

k ∈ {n − 2, n − 1, n + 1, n + 2}

(1)
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where δt is a threshold for DFDs. Obviously, there are sixteen possibilities for the four TDFs. A state
field s(x) is defined to describe all of the possibilities. Each s(x) is directly mapped to a value of l(x)
(Table 1). Effectively, our mapping table is different from Corrigan’s [28] for rain detection. If rain
streaks exist in frame n, the absolute values of the DFD between neighboring frames will be large.

2.2. Spatial Distribution of Rain Streaks

In light of [25], the feature of rain streaks spatial distribution has shed light on rain steaks detection
problem. In the proposed algorithm, a Gaussian-uniform mixture distribution is adopted for the
orientation of gradient. We use Gx and Gy to represent the horizontal and vertical gradient of pixel.
Therefore, the orientation of gradient, θ, is denoted with θ = tan−1 Gy

Gx
. The distribution ψ(θ) of θ is

defined as follows
ψ(θ) ∝ ΠN(θ|µ, σ) + (1 − Π)U (θ) (2)

where N(·) is a Gaussian distribution with mean µ and standard deviation σ. U (θ) denotes a
uniform distribution.

2.3. Probabilistic Formulation Framework

A Bayesian framework is built to estimate unknown variable, s(x), from the posterior
P(s(x)|∆n(x), θn(x)). For the convenience of notation, the four DFDs have been grouped into a vector
valued function ∆n(x), where ∆n(x) = [∆n−2(x),∆n−1(x),∆n+1(x),∆n+2(x)].

The posterior is factorized in a Bayesian fashion as follows

P(s|∆n, θn) ∝ P(∆n, θn|s)P(s)/P(∆n, θn)

∝ P(∆n, θn|s)P(s)

∝ P(∆n|s) · P(θn|s) · P(s)

(3)

where the pixel index x has been excluded for clarity. In Equation (3), s(x) is considered as a random
variable. However, the values of l(x) can then be determined from the estimate of s(x) according to
Table 1. There are two likelihoods associated with the framework, P(∆n|s) and P(θn|s). P(∆n|s) is the
temporal likelihood, which can be computed by the DFDs. P(θn|s) is the spatial likelihood, which can be
obtained by the spatial distribution of orientation of gradient ψ(θ). For the convenience of computation,
it is assumed that P(∆n|s) and P(θn|s) are statistically independent. Obviously, this posterior probability
is determined by the temporal likelihood, the spatial likelihood, and the prior. The temporal likelihood
depends on DFDs computation. Under the heuristic of [28], the probabilistic formulation of the temporal
likelihood is shown in the following section. The spatial likelihood is formulated with a mixture Gaussian
gradient orientation distribution. An EM method is employed for solving model parameters in the spatial
probability model. A Gaussian MRF is used as image prior. The detailed introductions of the temporal
likelihood, the spatial likelihood and the prior are demonstrated in the following section.
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2.4. Temporal and Spatial Likelihood

The temporal likelihood is formulated as follows,

P(∆n|s) ∝ exp −
∑

k

{
∆n[k]2

2σ2
e

(1 − t[k]) +
α2

k

2
t[k]}

k ∈ {n − 2, n − 1, n + 1, n + 2}

(4)

where ∆n is DFD after motion compensation, σ2
e is the variance of the model error, and α acts as a

threshold on temporal discontinuities. σ2
e is determined by estimating the variance of the DFDs when

s(x) = 0. For the purpose of clarity, the determination of threshold α is omitted, as more details can be
found in [28].

The spatial likelihood P(θ|s) represents the gradient orientation distribution over rain regions. Based
on the introduction of Section 2.2, we built a formulation of spatial likelihood P(θ|s), which is given by

P(θn|s(x)) ∝ P(θn|l(x))

∝
N(θ|µ, σ)∏

N(θ|µ, σ) + (1 −
∏

)U (θ)

(5)

where µ and σ are unknown random variables (i.e., model parameters of orientation of gradient for rain
streaks). Before solving posterior probability P(s|∆n, θn), µ and σ need to be estimated. An expectation
maximization (EM) [26] is adopted to estimate model parameters µ and σ. Given a computed gradient
angle θi, the kth expectation is given by

ẑi
k =

(1 − Π̂k−1)U (θi)
Π̂k−1N(θi|µ̂k−1, σ̂k−1) + (1 − Π̂k−1)U (θi)

(6)

The maximization step is given by

µ̂k =

∑N
i=1(1 − ẑk

i )θiyi∑N
i=1(1 − ẑk

i )yi

(σ̂k)2 =

∑N
i=1(1 − ẑk

i )(θi − µ̂
k)2yi∑N

i=1(1 − ẑk
i )yi

Π̂k =

∑N
i=1(1 − ẑk

i )yi∑N
i=1 yi

(7)

where for a given θ, yi samples are adopted. The selection of initial value and testimony of convergence
are shown in [25].

2.5. Prior P(s) The prior formulation used in Bayesian framework is

P(s(x)) ∝ P(l(x)) (8)
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The selection of prior model is very import to final results in a Bayesian framework. To maintain spatial
and edge consistency, we apply Markov Random Field (MRF) [29], which asserts that the conditional
probability of a pixel only depends on its neighbors. In this paper, we use a Gaussian MRF to model
P(l(x)), which is characterized by the following local conditional probability density function

P(l(x)) ∝
1

Z(x)
exp{−

‖I(x) − N(x)‖2Gσ

h2 } (9)

where the normalized factor Z(i) is given by

Z(x) =
∑
x∈N

exp{−
‖I(x) − N(x)‖2Gσ

h2 } (10)

where N(·) denotes neighborhood pixel centered on pixel x. ‖I(x) − N(x)‖2Gσ
is the L2 norm of the

difference of I(x) and N(x), weighted against a Gaussian Gσ. The parameter h controls the decay of
exponential function. In [28], penalty term is introduced into prior expression to improve the accuracy
of PM detection. Nevertheless, the incorporation of penalty term cannot produce better results in our
case. Therefore, to avoid redundant computation, penalty term has not been adopted.

2.6. MAP Solving

An estimate for l(x) is found by finding the MAP estimate of s(x) using the Iterated Conditional
Modes (ICM) algorithm [30]. The ICM algorithm gives a sub-optimal estimate of s(x). The converged
estimate represents a local optimization in the posterior formulation. Importantly, a good initialization
of unknown random variables is necessary to ensure that the converged result is close to the global
optimization. A multi-resolution scheme is incorporated into the algorithm. Using multi-resolution
allows faster convergence for the state field s(x). The final result is more likely to converge to the
global maximum. A hierarchical pyramid [31] of differing resolution is conducted (Figure 1). At the
bottom level of the pyramid, the resolution was down-sampled by a factor of two in each dimension. The
algorithm proceeds by initializing random variables at the coarsest level of the pyramid. An estimate of
s(x) at the coarsest level (four levels are used) is obtained from the probabilistic framework, and the new
estimate is then used to initializing the framework at level below. This process continues until s(x) has
been estimated at full resolution. Notably, before solving l(x), the EM solving described in Equations 6
and 7 need to be finished for solving spatial likelihood in the posterior expression.

Figure 1. image hierarchical pyramid.
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3. Experiments

To justify our proposed algorithm, we compared our method with [25] and [8]. In our implementation
of [25], the Gaussian mixture model [32] and an approximated histogram of orientation of rain streaks
are adopted. The character of neighboring frames of rain steaks is applied in [8]’s implementation. To
evaluate the accuracy of the detection algorithm, the test video sequences contain illumination variations,
camera motions, moving objects, etc. In our proposed algorithm, temporal and spatial constraints
are unified into a maximum a posteriori (MAP) computation. The assumption of temporal domain is
pathological motion, and the assumption of spatial domain is consistency of gradient orientation. All
constraints are organized into the final estimation of unknown variables. The implemented algorithm
was developed with Microsoft Visual Studio 2010 and OpenCV 2.3. The hardware configuration is
composed of Intel Core(TM) i5-4200 (1.6 GHz) and 4 GB RAM. The operation system is Windows 7.
Under these configurations, the average processing speed of our proposed method is about 8 images per
second for 720×480 resolution sequences, whereas the methods of [25] and [8] are close to 5 images per
second. That is, we get a higher processing speed due to simplified motion estimation and ICM solving.
In addition to the benefit of speed, we also show the experimental results of subjective and objective
assessments in following paragraph.

Figure 2a is the original video frame. Figure 2e is the detection mask obtained by
method [25]. Figure 2b is the rain-removal frame using the detection mask of Figure 2e. Figure 2f
is the detection mask obtained by method [8]. Figure 2c is the rain-removal frame using the detection
mask of Figure 2f. Figure 2g is the detection mask obtained by our proposed method. Figure 2d is the
rain-removal frame using the detection mask of Figure 2g. From Figure 2 to Figure 6, it can be seen
that our result shows better rationality comparing with [25], [8]. Especially, the superior advantage is
demonstrated in Figures 3–6. In addition to the subjective test, an objective test is also given to show the
comparison of detection accuracy in Figure 7. Figure 7a is a non-rain image. Figure 7b is a synthetic
image with added rain by using image editing software. Figure 7c is the ground truth of the detection
mask. Figure 7d is our detection mask. Figure 7e and Figure 7f are the results of [25] and [8].

We use the numbers of detected rain pixels to feature detection accuracy which is based on the
comparison between ground truth and test results. For our method, 176, 699 pixels are detected as
rain, whereas 7366 and 9564 are detected using [25] and [8]. Therefore, our proposed algorithm has
both higher detection accuracy and higher speed. In this objective test, false detection rate is not been
considered, because rain detection is more important than non-rain detection in our image processing
application. Totally, these experimental examples showcase the benefits of our algorithm. In fact,
image/video spatial and temporal constraints are applied in [25] and [8], respectively. However, spatial
distribution and temporal motion of rain streaks are equally important for rain detection. The methods
of [25] and [8] built the framework of rain detection based respectively on spatial and temporal analysis.
In contrast, we harmonize a temporal constraint and the spatial distribution of gradient of orientation into
our Bayesian probabilistic framework. In order to make full use of image self-similarity and maintain
image smoothness across or within the edge, as well as to strengthen the correlation of neighboring
pixels, a transformed MRF is utilized in the Bayesian framework. Therefore, comparing with previous
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method, our method enables superior detection by combining spatial and temporal constraints, both
subjectively and objectively.

Figure 2. (a) original video frame. (b) rain removal result based on [25]. (c) rain removal
result based on [8]. (d) rain removal result based on proposed detection algorithm. (e) [25]’s
detection mask. (f) [8]’s detection mask. (g) our detection mask.

(a) (b) (c)

(d) (e) (f)

Figure 3. (a) original video frame. (b) rain removal result based on [25]. (c) rain removal
result based on [8]. (d) rain removal result based on proposed detection algorithm. (e) [25]’s
detection mask. (f) [8]’s detection mask. (g) our detection mask.

(a) (b) (c)

(d) (e) (f)
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Figure 4. (a) original video frame. (b) rain removal result based on [25]. (c) rain removal
result based on [8]. (d) rain removal result based on proposed detection algorithm. (e) [25]’s
detection mask. (f) [8]’s detection mask. (g) our detection mask.

(a) (b) (c)

(d) (e) (f)

Figure 5. (a) original video frame. (b) rain removal result based on [25]. (c) rain removal
result based on [8]. (d) rain removal result based on proposed detection algorithm. (e) [25]’s
detection mask. (f) [8]’s detection mask. (g) our detection mask.

(a) (b) (c)

(d) (e) (f)
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Figure 6. (a) original video frame. (b) rain removal result based on [25]. (c) rain removal
result based on [8]. (d) rain removal result based on proposed detection algorithm. (e) [25]’s
detection mask. (f) [8]’s detection mask. (g) our detection mask.

(a) (b) (c)

(d) (e) (f)

Figure 7. (a) original image. (b) synthetic image with added rain. (c) the ground truth of
rain mask. (d) our detection mask. (e) [25]’s detection mask. (f) [8]’s detection mask.

(a) (b) (c)

(d) (e) (f)
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4. Conclusions

In this paper, we developed a Bayesian probabilistic approach to solve the rain streaks detection
problem. We differ from previous method in a number of aspects, i.e., (1) we built a Bayesian framework
for detection, (2) we introduced spatial and temporal likelihood and MRF prior, (3) we used EM
algorithm for parameter estimation. To sum up, our algorithm has implemented rain detection under
a probabilistic framework, and compares favorably with previous method.
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