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Abstract: The aim of this paper is to develop a comprehensive study of the geometry
involved in combining Bregman divergences with pooling operators over closed convex sets
in a discrete probabilistic space. A particular connection we develop leads to an iterative
procedure, which is similar to the alternating projection procedure by Csiszár and Tusnády.
Although such iterative procedures are well studied over much more general spaces than the
one we consider, only a few authors have investigated combining projections with pooling
operators. We aspire to achieve here a comprehensive study of such a combination. Besides,
pooling operators combining the opinions of several rational experts allows us to discuss
possible applications in multi-expert reasoning.
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1. Background

1.1. Introduction

Information geometry has been studied as a powerful tool for tackling various problems. It has been
applied in neuroscience [1], expert systems [2], logistic regression [3], clustering [4] and probabilistic
merging [5]. In this paper, we aim to present a comprehensive study of information geometry over a
discrete probabilistic space in order to provide some specialized tools for researchers working in the area
of multi-expert reasoning.
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In the context of this paper, the domain of information geometry is the Euclidean space RJ , for some
fixed natural number J ≥ 2, where we measure a divergence from one point to another one. A divergence
is, in general asymmetric, a notion of distance, and we will represent it here by an arrow. A divergence
can represent a cost function having various constraints, so many engineering problems correspond to
the minimization of a divergence.

For example, in the areas of neuroscience and expert systems, given evidence v and a training set of
known instances W , we may search for an instance w ∈ W , which is “closest” to the evidence v, so as
to represent it in the given training set W . An illustration is depicted in Figure 1.

Figure 1. An illustration of a divergence.

v w

known instances

A similar pattern of minimization appears also in the areas of clustering and regression. The aim of
the former is to categorize several points into a given number of nodes in such a way that the sum of
divergences from each point to its associated node is minimal. The aim of regression is to predict an
unknown distribution of events based on the previously obtained statistical data by defining a function
whose values minimize a sum of divergences to the data.

While several domains for divergences are considered in the literature, in the current presentation of
information geometry, however, we will confine ourselves to the domain of positive discrete probability
functions DJ , where DJ is the set of all w ∈ RJ restricted by

∑J
j=1wj = 1 and w1 > 0, . . . , wJ > 0.

In our presentation, J ≥ 2 will be always fixed, but otherwise arbitrary.
Although in information geometry, it does not make sense to talk about beliefs, applications in

multi-expert reasoning are often developed from that perspective. It is then argued that rational beliefs
should obey the laws of probability, for example the Dutch book argument by Ramsey and de Finetti [6]
is perhaps the most compelling argument. It is therefore of a particular interest to develop information
geometry over a probabilistic space if we wish to eventually apply it to multi-expert reasoning.

In addition to our restriction to discrete probability functions, we will confine ourselves to a special
type of divergence, called a Bregman divergence [7], which has recently attracted attention in machine
learning and plays a major role in optimization; cf. [3]. A Bregman divergence over a discrete
probabilistic space is defined by a given strictly convex function f : (0, 1)J → R, which is differentiable
over DJ . For any v,w ∈ DJ , the Bregman divergence generated by the function f is given by:

Df (w‖v) = f(w)− f(v)− (w − v) · 5f(v),

where5f(v) is the gradient of f and · denotes the inner (dot) product of two vectors, i.e.,

(w − v) · 5f(v) =
J∑
j=1

(wj − vj)
∂f(v)

∂vj
.

We say that Df (w‖v) is a Bregman divergence from v ∈ DJ to w ∈ DJ . Figure 2 depicts a geometrical
interpretation of a Bregman divergence.
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Figure 2. A Bregman divergence.
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By the first convexity condition applied to the (convex and differentiable) function f (see, e.g., [8]),
Df (w‖v) ≥ 0 with equality holding only if w = v. This is the condition that makes Df (·‖·) a
divergence as defined in information geometry. Note that, since a differentiable convex function is
necessarily continuously differentiable (see [9]), Df (w‖v) is a continuous function. However, note that
this is not sufficient to establish the differentiability of Df .

It is worth mentioning that the restriction w1 > 0, . . . , wJ > 0 for a probability function w that we
have adopted here is important for the definition of a Bregman divergence. Some Bregman divergences
do not have their generating function f differentiable over the whole space of probability functions.
However, it is possible to define the notion of a Bregman divergence even if this condition is left out,
but at the cost of some restrictions on f . We kindly refer the interested reader to [10] for further details.
Nonetheless, the setting developed in [10] uses a rather complicated notation, which could prove to be
impenetrable at first glance if it were adopted in the current paper.

In this paper, we study mainly Bregman divergences Df (·‖·), which are convex, i.e., for all λ ∈ [0, 1]

and all w(1),w(2),v(1),v(2) ∈ DJ :

λDf (w
(1)‖v(1)) + (1− λ)Df (w

(2)‖v(2)) ≥ Df (λw
(1) + (1− λ)w(2)‖λv(1) + (1− λ)v(2)).

Note that if D(·‖·) is a convex function, then D(·‖·) is a convex function also in each argument
separately.

The following are examples of a convex Bregman divergence.

Example 1 (Squared Euclidean Distance). For any J ≥ 2 let f(x) =
∑J

j=1(xj)
2. Then, the divergence:

Df (w‖v) =
J∑
j=1

(wj − vj)2

will be denoted by E2, and exceptionally, this divergence is symmetric.

Example 2 (Kullback–Leibler Divergence). For any J ≥ 2, let f(x) =
∑J

j=1 xj log xj , where log

denotes the natural logarithm. (Note that in the information theory literature, this logarithm is often
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taken with base two. However, this does not affect the results of this paper in any way.) The well-known
divergence:

Df (w‖v) =
J∑
j=1

wj log
wj
vj

will be denoted by KL.

The convexity of the KL-divergence is easy to observe and is well known; see, e.g., [10].

1.2. Projections

For given v ∈ DJ , a Bregman divergence Df (w‖v) is a strictly convex function in the first argument.
This can be easily seen by considering Df (w‖v) = f(w) − f(v) −

∑J
j=1(wj − vj)

∂f(v)
∂vj

where v is
constant. f(v) is therefore constant, as well, and the claim follows, since strict convexity of f is not
affected by adding the linear term −

∑J
j=1(wj − vj)∂f(v)

∂vj
.

Owing to the observation above, if v ∈ DJ is given and W ⊆ DJ is a closed convex nonempty set,
we can define the Df -projection of v into W . It is that unique point w ∈ W that minimizes Df (w‖v)

subject only to w ∈ W . This property is crucial for the applicability of Bregman divergences. Note,
however, that Df (·‖·) is not necessarily convex in its second argument; for a counterexample, consider
the case f(x) =

∑4
j=1(xj)

3.
Perhaps the most useful property that a Df -projection has is the extended Pythagorean property:

Theorem 1 (Extended Pythagorean Property). Let Df be a Bregman divergence. Let w be the
Df -projection of v ∈ DJ into a closed convex nonempty set W ⊆ DJ . Let a ∈ W . Then:

Df (a‖w) +Df (w‖v) ≤ Df (a‖v).

This property, in the case of the Kullback–Leibler divergence, was proven first by Csiszár in [11].
The proof of the generalized theorem above is given in [1,12], where the interested reader can find a
comprehensive study of Bregman divergences within the context of differential geometry. We illustrate
the theorem in Figure 3.

Figure 3. The extended Pythagorean property.
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Notice that the squared Euclidean distance has a special role among all other Bregman divergences.
It is symmetric, and it interprets the extended Pythagorean property “classically” as the relation of the
sizes of the squares constructed on the sides of a triangle.

It is well-known that the Kullback–Leibler divergence is closely connected to the Shannon entropy
defined for any w ∈ DJ by:

H(w) = −
J∑
j=1

wj logwj ,

where log denotes the natural logarithm. The importance of the Shannon entropy is that it could be
described as a measure of the level of disorder, which in the context of information theory, can be
interpreted as a measure of informational content. The higher the entropy of w is, the less information is
carried by w. In some contexts, one can then argue that given several seemingly equally probable choices
of a probability function, one should choose the one that carries the least additional information [13].
Given a closed convex nonempty set W , the most entropic point in W will be denoted by ME(W ).

Now, trying to find the most entropic point in a closed convex nonempty set W ⊆ DJ is, in fact,
equivalent to finding a special KL-projection (the KL-projection of the uniform probability function( 1

J
, . . . ,

1

J︸ ︷︷ ︸
J

)
) since:

arg min
w∈W

J∑
j=1

wj log
wj
1
J

= arg max
w∈W

−
J∑
j=1

wj logwj = ME(W ),

where arg minx∈X f(x) denotes that unique argument x ∈ X , where f has its global minimum, whenever
such a unique point exists. The expression arg max is defined accordingly.

Given the extensive justification of the Shannon entropy in various frameworks (see, e.g., [14,15]),
it is perhaps not surprising that a common method of projecting in probabilistic expert systems is by
means of the KL-projection; see [2,16]. In connection to the Shannon entropy, the KL-divergence is
often referred to as the cross-entropy, and the projecting is called updating.

The above may perhaps be also an appealing reason to use projections in general to “represent” a given
closed convex set of probability functions by a single point, in particular in expert reasoning. Moreover,
recent use of projections by a Bregman divergence has become popular in other contexts; see, e.g., [4].
Remarkably, projections by a Bregman divergence also provide a unifying framework for a variety of
techniques used in expert systems, such as logistic regression; see [3]. It is therefore of particular interest
to investigate the geometry of Bregman divergences.

1.3. Pooling

In this subsection, we introduce probabilistic pooling, which is a method of aggregating several
probability functions. Formally, a pooling operator Pool is defined for each n ≥ 1 as a mapping:

Pool : DJ × . . .× DJ︸ ︷︷ ︸
n

→ DJ .

Recall that J is a fixed natural number greater than or equal to two, which is otherwise arbitrary.
One possibility for choosing a pooling operator is to define one by means of a Bregman divergence.

In particular, given a Bregman divergence Df , w(1), . . . ,w(n) ∈ DJ and a ∈ Dn, we can ask which point
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v ∈ DJ has the least sum of Bregman divergences Df from w(1), . . . ,w(n) weighted by a1, . . . , an,
respectively. It turns out that the resulting probability function is unique, and in each coordinate,
it is simply the weighted arithmetic mean of the corresponding coordinates of w(1), . . . ,w(n) ∈ DJ .
In other words:

arg min
v∈DJ

n∑
i=1

aiDf (w
(i)‖v) =

( n∑
i=1

aiw
(i)
1 , . . . ,

n∑
i=1

aiw
(i)
J

)
. (1)

For a given family A = {an : an ∈ Dn, n = 1, 2, . . .} of weighting vectors, we define the pooling
operator LinOpA by Equation (1) for every a ∈ A. Instead of the right-hand side of Equation (1), we
will simply write LinOpa(w(1), . . . ,w(n)) if a ∈ A. A special choice for A is the family N = {an =

( 1
n
, . . . , 1

n
) : n = 1, 2, . . .}, and the pooling operator LinOpN is well known in the literature as the

LinOp-pooling operator.
The fact that Equation (1) actually holds can be observed by employing the following theorem, which

is folklore in information theory.

Theorem 2 (Parallelogram Theorem). Let Df be a Bregman divergence, w(1), . . . ,w(n),v ∈ DJ and
a ∈ Dn. Then:

n∑
i=1

aiDf (w
(i)‖v) =

n∑
i=1

aiDf (w
(i)‖LinOpa(w(1), . . . ,w(n)))+

+Df (LinOpa(w(1), . . . ,w(n))‖v).

Proof. Let w = LinOpa(w(1), . . . ,w(n)). The equality is easy to observe by:

n∑
i=1

ai

[
f(w(i))− f(v)−

J∑
j=1

(w
(i)
j − vj)

∂f(v)

∂vj

]
=

=
n∑
i=1

ai

[
f(w(i))− f(w)− (w(i) −w) · ∇f(w)

]
+

+
[
f(w)− f(v)−

J∑
j=1

(wj − vj)
∂f(v)

∂vj

]
since

∑n
i=1 ai(w

(i) −w) · ∇f(w) = 0.

SinceDf (w‖v) = 0, only if w = v, and otherwise, it is positive, the unique minimum of the left-hand
side of Equation (1) is at the point v = LinOpa(w(1), . . . ,w(n)).

The situation above can be naturally interpreted in terms of random variables. Assume that X is a
random variable taking values in {w(1), . . . ,w(n)} ⊆ DJ with the probability distribution a ∈ Dn, and
we are given the problem of finding a random variable Y , such that the expected value:

E(Df (X‖Y ))

is minimal. The unique answer to this question is then Y = E(X) =
∑n

i=1 aiw
(i). This underlines

the reason why the LinOpA-pooling operator is so popular in the decision theory literature, where
several experts, each with his own probability function w(i) representing his beliefs, seek to find a single



Entropy 2014, 16 6344

probability function to represent their joint beliefs. The LinOpA-pooling operator simply yields the
expected value as if expert’s beliefs were statistically obtained.

It is certainly interesting that the result above holds for any Bregman divergence, but as is shown
in [17], Theorem 4, it is even more remarkable that Bregman divergences are the only divergences with
such a property. However, we note that in order to establish this claim, a slightly more general setting
was considered and that we have restricted the formulation of the original theorem to the only domain
considered here (0, 1)J :

Theorem 3 (Banerjee, Guo, Wang). Let F : (0, 1)J × (0, 1)J → R be a divergence. Assume that
F (x‖y), ∂

2F (x‖y)
∂xi∂xj

, 1 ≤ i, j ≤ J are all continuous. Let (Ω,P,F) be an arbitrary probability space, and
let G be a sub-σ-algebra of F . For all random variables X taking values in (0, 1)J , if:

arg min
Y ∈G

F (X‖Y ) = E(X|G)

then F (x‖y) = Df (x‖y) for some strictly convex and differentiable function f : (0, 1)J → R.

While in the statistical sense, the LinOpA-pooling operator, whereA is a family of weighting vectors,
seems to be well placed, in the fields of multi-expert reasoning and probabilistic merging, the so-called
LogOpA-pooling operator often appeals more. For every n ≥ 1 and every a ∈ A, it is defined by:

LogOpa(w(1), . . . ,w(n)) =

( ∏n
i=1(w

(i)
1 )ai∑J

j=1

∏n
i=1(w

(i)
j )ai

, . . . ,

∏n
i=1(w

(i)
J )ai∑J

j=1

∏n
i=1(w

(i)
j )ai

)
.

If w(1), . . . ,w(n) are considered to be beliefs of n-experts, respectively, then the LogOpA-pooling
operator appears to favor agreement over the expected value. For instance, consider the following
example from utility theory. Say that Eleanor and George are looking for a film to watch and they have
three options, A, B and C. Eleanor hates Movie A and under no circumstances would agree to watch it,
while George absolutely loves it. Now, consider that the situation with respect to Film C is swapped:
George hates it, while Eleanor would prefer to see it. They both consider Movie B uninteresting, but
are willing to see it. The following probability functions could represent the preferences of Eleanor and
George towards Movies A, B and C: (0, 0.1, 0.9) and (0.9, 0.1, 0), respectively. Moreover, we value
the opinions of both of them equally, i.e., A = N . Now, while the LinOpN -pooling operator gives
inconclusive (0.45, 0.1, 0.45) by the LogOpN -pooling operator (in the literature, this operator is simply
known as the LogOp-pooling operator), we obtain (0, 1, 0). If we take the advice, then Eleanor and
George should see the only film that is acceptable for both of them.

The example above illustrates why taking products rather than the arithmetic mean is popular
when considering utilities. However, recently, the LogOpN -pooling operator attracted attention also
in multi-expert probabilistic reasoning; a prominent example here is the social entropy process by
Wilmers [18]. An intriguing idea that originates in the social entropy process is to swap the direction of
the Kullback–Leibler projections and establish the corresponding conjugated KL-projection of w ∈ DJ

into V ⊆ DJ as arg minv∈V KL(w‖v) (it is easy to check that KL(·‖·) is strictly convex in its second
argument) and the conjugated parallelogram theorem [10]:
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Theorem 4. Let w(1), . . . ,w(n),v ∈ DJ and a ∈ Dn. Then:

n∑
i=1

ai KL(v‖w(i)) =
n∑
i=1

ai KL(LogOpa(w(1), . . . ,w(n))‖w(i))+

+ KL(v‖LogOpa(w(1), . . . ,w(n))).

Proof. Let w = LogOpa(w(1), . . . ,w(n)). First note that:

n∑
i=1

ai

J∑
j=1

vj log
vj

w
(i)
j

=
J∑
j=1

vj log
vj∏n

i=1(w
(i)
j )ai

.

Now:
J∑
j=1

vj log
vj∏n

i=1(w
(i)
j )ai

=
J∑
j=1

vj log
vj
wj
−

−
( J∑
j=1

vj

)
log
( J∑
j=1

n∏
i=1

(w
(i)
j )ai

)
=

=
J∑
j=1

vj log
vj
wj

+
n∑
i=1

ai

J∑
j=1

wj log
wj

w
(i)
j

,

where we have used the fact that
∑J

j=1 vj = 1.

As a consequence, for given w(1), . . . ,w(n) ∈ DJ , we get:

arg min
v∈DJ

n∑
i=1

ai KL(v‖w(i)) = LogOpa(w(1), . . . ,w(n)).

Therefore, the LogOpA-pooling operator can be naturally interpreted in information geometry. The
question now arises as to whether this can be done with some other Bregman divergences. We will
investigate this later.

The reader perhaps wonders which are the main practical differences in using different pooling
operators. The LinOpA-pooling operator, for example, satisfies the marginalization property, that is
the values on the coordinates of the resulting probability function depend only on the corresponding
coordinates of the probability functions that are pooled. The LogOpA-pooling operator does not have
this property. On the other hand, the LogOpA-pooling operator, unlike the LinOpA-pooling operator, is
externally Bayesian. That is the order in which we combine pooling and Bayesian updating is irrelevant.
See [19] for more details.

We, however, do not seek any conclusive answer as to which pooling operator to use in any particular
context. In this paper, we only aim to provide geometric tools that can be used in multi-expert reasoning.
For elaborate work on pooling operators, we refer to the literature, e.g., [19] for a survey, [20] for
a classical problem of the relationship between pooling and probabilistic independence or [18] for a
modern account on LinOpN and LogOpN -pooling operators in probabilistic knowledge merging.
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2. Projections and Pooling Combined

2.1. Averaging Projective Procedures

While the geometry of projections and the theory of pooling operators have been extensively studied
in the literature (see the previous section), much less attention, however, was been devoted to the
combination of them. A detailed study of this problem and a comprehensive analysis of the geometry
involved is the main aim of this paper.

The central geometrical notion connecting projections and pooling in this paper is an averaging
projective procedure F , which consists of a family of mappings F[W1,...,Wn] : DJ → DJ , where
sets W1, . . . ,Wn ⊆ DJ are closed convex and nonempty. A particular F is given by a family of
strictly convex functions dv, v ∈ DJ and a pooling operator Pool and is defined by the following
two-stage process.

1. For an argument v ∈ DJ , put w(i) = arg minw∈Wi
dv(w), 1 ≤ i ≤ n.

2. Set F[W1,...,Wn](v) = Pool(w(1), . . . ,w(n)).

For instance, the function dv(·) can be Df (·‖v) for some Bregman divergence Df and in such a
particular case F[W1,...,Wn](v) first Df -projects the argument v into each of W1, . . . ,Wn, and then,
it “averages” the resulting probability functions by a pooling operator Pool. Hence, the name: an
averaging projective procedure. An illustration of F is depicted in Figure 4.

Figure 4. An illustration of an averaging projective procedure F .

W1 W2
F[W1,W2]w(1) w(2)

v

Note that W1, . . . ,Wn play dual roles in the definition above, which may perhaps appear clumsy.
When they are fixed, F[W1,...,Wn] is a mapping DJ → DJ . However, the option to consider them also as
variables will be the key to our following investigation and to the applicability of an averaging projective
procedure in multi-expert reasoning, where W1, . . . ,Wn will represent the respective knowledge of
n experts. A straightforward interpretation is that the first stage simplifies sets to single probability
functions, which then are being merged to a final social belief function of the college of experts.

With regard to previous research, the cases of dv(·) being KL(·‖v) and KL(v‖·) with Pool be taken
to the LinOpA-pooling operator and the LogOpA-pooling operator, respectively, were introduced and
investigated by Matúš in [21]. The idea of combining the projections by means of the squared Euclidean
distance E2 with the LinOpA-pooling operator was first introduced by Predd et al. in [22].

Example 3. In the definition of an averaging projective procedure, take dv to be KL(·‖v) and Pool to
be the LinOpN -pooling operator. Now, F is the mapping DJ → DJ for every n ≥ 1 and all closed
convex nonempty sets W1, . . . ,Wn ⊆ DJ given by F[W1,...,Wn](v) above.
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In particular, take J = 3, n = 2, W1 = {(x, 1
2
− x, 1

2
), 1

10
≤ x ≤ 2

5
}, W2 = {(x, 1

4
, 3

4
− x), 1

10
≤

x ≤ 13
20
} and v = (1

3
, 1

6
, 1

2
). Then, the KL-projection of v into W1 is actually v itself, since v ∈ W1 and

the KL-projection of v into W2 is ( 3
10
, 1

4
, 9

20
). Therefore:

F[W1,W2](v) = LinOp( 1
2
, 1
2

)

((1

3
,
1

6
,
1

2

)
,
( 3

10
,
1

4
,

9

20

))
=
( 1

3
+ 3

10

2
,

1
6

+ 1
4

2
,

1
2

+ 9
20

2

)
.

2.2. Obdurate Operators

In this section, we approach averaging projective procedures using the framework of probabilistic
knowledge merging as defined in [5]. A probabilistic merging operator:

∆ : P(DJ)× . . .× P(DJ)︸ ︷︷ ︸
n

→ P(DJ),

is a mapping that maps a finite collection of closed convex nonempty subsets of DJ , say W1, . . . ,Wn,
to a single closed convex nonempty subset of DJ . In the area of multi-expert reasoning, we can perhaps
interpret ∆(W1, . . . ,Wn) as a representation of W1, . . . ,Wn, which themselves individually represent
knowledge bases of n experts.

A merging operator O is obdurate if, for every n ≥ 1 and any W1, . . . ,Wn ⊆ DJ , we have that
O(W1, . . . ,Wn) = {F[W1,...,Wn](v)}, where v is some fixed argument and F is an averaging projective
procedure. Note that this operator always produces a singleton. Obdurate processes thus first represent
sets as single probability functions, and then, they pool them by a pooling operator.

Although this may sound like a fairly restrictive setting, many existing natural probabilistic merging
operators are of this form. The prominent example is the merging operator of Kern-Isberner and Rödder
(KIRP) [23]. In this particular case, v is the uniform probability function, dv(·) is KL(·‖v) and Pool

is given by:

Pool(w(1), . . . ,w(n)) =
( n∑
k=1

H(w(k))∑n
i=1H(w(n))

w
(k)
1 , . . . ,

n∑
k=1

H(w(k))∑n
i=1H(w(n))

w
(k)
J

)
.

Recall that H(w(i)) is the Shannon entropy of w(i), which is, in fact, the most entropic point in Wi.
In [23], Kern-Isberner and Rödder argue that W1, . . . ,Wn ⊆ DJ can by considered as marginal

probabilities in a subset U ⊆ DJ+n, such that every probability function v ∈ U marginalizes to a
DJ -probability function belonging to one and only one set Wi. Since then, the point which KIRP

produces is, in fact, the DJ -marginal of the most entropic point in U , following the justification of the
Shannon entropy, they conclude that such a point is a natural interpretation of W1, . . . ,Wn by a single
probability function. KIRP thus maps the uniform probability function to the DJ -marginal of the most
entropic point in U . To date, KIRP has received much attention in the area of probabilistic knowledge
merging.

However, any obdurate merging operator seems to be challenged by its violation of the
following principle.

(CP) Consistency Principle. Let ∆ be a probabilistic merging operator. Then, we say that ∆ satisfies
the consistency principle if, for every n ≥ 1 and all W1, . . . ,Wn ⊆ DJ :
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n⋂
i=1

Wi 6= ∅ implies ∆(W1, . . . ,Wn) ⊆
n⋂
i=1

Wi.

(CP) can be interpreted as saying that if the knowledge bases of a set of experts are collectively consistent,
then the merged knowledge base should not consist of anything else than what the experts agree on.

This principle often falls under the following philosophical criticism. One might imagine a situation
where several experts consider a large set of probability functions as admissible, while one believes in
a single probability function. Although this one is consistent with the beliefs of the rest of the group,
one might argue that it is not justified to merge the knowledge of the whole group into that single
probability function.

More rigorously, Williamson [24] introduces a particular interpretation of the epistemological status
of an expert’s knowledge base, which he calls “granting”. He rejects (CP), as several experts may grant
the same piece of knowledge for inconsistent reasons.

On the other hand, Adamčík and Wilmers in [5] assume that the way in which the knowledge was
obtained is considered irrelevant, and each expert has incorporated all of his relevant knowledge into
what he is declaring, contrary to Williamson’s granting. This is sometimes referred to as the principle
of total evidence [25] or the Watts assumption [26]. They argue that, although overall knowledge of any
human expert can never be fully formalized, as a formalization is always an abstraction from reality, the
principle of total evidence needs to be imposed in order to avoid confusion in any discussion related to
methods of representing the collective knowledge of experts. Otherwise, there would be an inexhaustible
supply of invalid arguments produced by a philosophical opponent challenging one’s reasoning using
implicit background information, which is not included in the formal representation of a knowledge
base.

However, in this paper, we do not wish to probe further into this philosophical argument, and instead,
we present the following rather surprising theorem, which appeared for the first time in [10].

Theorem 5. There is no obdurate merging operator O that satisfies the consistency principle (CP).

Proof. Suppose that J ≥ 3. Let d be the function to minimize from the definition of O, where, for
simplicity, we suppress the constant superscript. Let v ∈ DJ be the unique minimizer of d over some
sufficiently large closed convex subset W of DJ . Let w,u ∈ W be such that d(v) < d(w) < d(u) and
w = λv + (1− λ)u for some 0 < λ < 1 (in particular, w is a linear combination of v and u).

Let s ∈ W be such that d(v) < d(s) < d(w) and s is not a linear combination of v and u. Then,
there is s′, such that s′ = λs + (1− λ)w for some 0 < λ ≤ 1, and d is strictly increasing along the line
from s′ to w. This is because d is strictly convex and d(s) < d(w). Note that if J = 2, then s would be
always a linear combination of v and u. Moreover, for sufficiently large W ⊆ D3, we can always choose
w, u, s and s′ in W as above.

Now, we show that d is also strictly increasing along the line from s′ to u. Assume this is not the case.
Then, by the same argument as before, there is s′′, such that d(s′′) < d(s′). Due to the construction, the
line from v to s′′ intersects the line from s′ to w; let us denote the point of intersection as r. Since d is
strictly increasing along the line from s′ to w, we have that d(r) > d(s′) > d(s′′) > d(v). This, however,
contradicts the convexity of d. The situation is depicted in Figure 5.



Entropy 2014, 16 6349

Figure 5. The situation in the proof of Theorem 5.
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s s′
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s′′

W ⊆ DJ

Now, assume that W1 = {λv + (1 − λ)w : λ ∈ [0, 1]}, W2 = {λs′ + (1 − λ)w : λ ∈ [0, 1]},
V1 = {λv + (1 − λ)u : λ ∈ [0, 1]} and V2 = {λs′ + (1 − λ)u : λ ∈ [0, 1]}. Since v minimizes d and
along the lines from s′ to w and from s′ to u, the function d is strictly increasing, we have that:

O(W1,W2) = {Pool(v, s′)} = O(V1, V2), (2)

where Pool is a pooling operator used in the second stage of O. Suppose that O satisfies (CP). Then,
O(W1,W2) = {w} and O(V1, V2) = {u}, which contradicts Equation (2).

The theorem above in some philosophical contexts can be used as an argument against the consistency
principle, while from another perspective, it casts a shadow on the notion of an obdurate merging
operator. This unfortunately includes the natural merging operator OSEP, or obdurate social entropy
process, defined as follows. For every n ≥ 1 and all W1, . . . ,Wn ⊆ DJ :

OSEP(W1, . . . ,Wn) = {LogOpN (ME(W1), . . . ,ME(Wn))}.

Recall that ME(Wi) denotes the most entropic point in Wi or equivalently the KL-projection of the
uniform probability function into Wi, andN is the family of weighting vectors ( 1

n
, . . . , 1

n
), one for every

n ≥ 1. It is easy to observe that OSEP is really an obdurate merging operator.
In [10], it is proven that OSEP is (thus far, the only known) probabilistic merging operator satisfying

a particular version of the independence principle, a principle that is an attempt to resurrect the notion of
the independence preservation of pooling operators [20] in the context of probabilistic merging operators.

One may say that the reason behind an obdurate merging operator not satisfying (CP) is its
“forgetting” nature. In the first stage, it transforms sets W1, . . . ,Wn into w(1), . . . ,w(n) individually
without taking into account other sets, thus “forgetting” any existing connections, such as the
consistency. However, instead of changing the definition of an averaging projective procedure so as
to make it not “forgetting”, we will take a different viewpoint on the procedure itself in the following
subsection.
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2.3. Fixed Points

Our second approach to an averaging projective procedure F consists of considering the set of the
fixed points of F . That is, for given n ≥ 1 and given closed convex nonempty sets W1, . . . ,Wn ⊆ DJ ,
we are interested in whether there are any points v ∈ DJ , such that:

F[W1,...,Wn](v) = v.

Following the convincing justification for combining Bregman projections with the LinOpA-pooling
operator (see Section 1.3), for every convex Bregman divergence Df and a family of weighting vectors
A, we consider here the averaging projective procedure FDf ,A defined for every n ≥ 1 and all closed
convex nonempty sets W1, . . . ,Wn ⊆ DJ by the following.

1. For an argument v ∈ DJ , take w(i) the Df -projection of v into Wi for all 1 ≤ i ≤ n.
2. Set FDf ,A

[W1,...,Wn](v) = LinOpa(w(1), . . . ,w(n)), where a ∈ A.

The restriction to convex Bregman divergences is needed for some later theorems and is adopted ad hoc.
Therefore, unfortunately, we cannot provide any elaborate justification for it.

Given closed convex nonempty sets W1, . . . ,Wn ⊆ DJ , we will denote the set of all fixed points of
FDf ,A defined above by Θ

Df
a (W1, . . . ,Wn), where a ∈ A.

On the other hand, the conjugated parallelogram theorem (Theorem 4), suggesting the combination
of the conjugated KL-projection with the LogOp-pooling operator, leads us to the consideration of
those convex Bregman divergences, which are strictly convex also in the second argument. The squared
Euclidean distance and the Kullback–Leibler divergence are instances of such divergences. A fairly
general example is a Bregman divergence Df , such that f(v) =

∑J
j=1 g(vj), where g is a strictly convex

function (0, 1) → R, which is three times differentiable, and g′′(vj) − (wj − vj)g
′′′(vj) > 0 for all

1 ≤ j ≤ J and all w,v ∈ DJ (this is easy to check by the Hessian matrix). Apart from the two
divergences mentioned above, this condition is satisfied in particular if g(v) = vr, 2 ≥ r > 1. Note that
the Bregman divergence generated by such a function g is also convex in both arguments.

Assuming strict convexity in the second argument of Df , we can define the conjugated Df -projection
of v ∈ DJ into a closed convex nonempty set W ⊆ DJ as that unique w ∈ W that minimizes Df (v‖w)

subject only to w ∈ W . Moreover, since a sum of strictly convex functions is a strictly convex function,
for any w(1), . . . ,w(n) ∈ DJ , there exists a unique minimizer of:

n∑
i=1

aiDf (v‖w(i))

which we denote PoolDf
a (w(1), . . . ,w(n)). Thus, for a family of weighting vectors A, we can define the

Pool
Df

A -pooling operator. Note that PoolKL
A = LogOpA, PoolE2

A = LinOpA and that we do not need
strict convexity in the second argument in these cases.

Theorem 6 (Conjugated Parallelogram Theorem). LetDf be a Bregman divergence, w(1), . . . ,w(n),v ∈
DJ and a ∈ Dn. Then:

n∑
i=1

aiDf (v‖w(i)) =
n∑
i=1

aiDf (Pool
Df
a (w(1), . . . ,w(n))‖w(i))+
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+Df (v‖PoolDf
a (w(1), . . . ,w(n))).

Proof. Let w = PoolDf
a (w(1), . . . ,w(n)). We need to prove that:

n∑
i=1

ai

[
f(v)− f(w(i))−

J∑
j=1

(vj − w(i)
j )

∂f(w(i))

∂w
(i)
j

]
=

=
n∑
i=1

ai

[
f(w)− f(w(i))−

J∑
j=1

(wj − w(i)
j )

∂f(w(i))

∂w
(i)
j

]
+

+
[
f(v)− f(w)−

J∑
j=1

(vj − wj)
∂f(w)

∂wj

]
,

or equivalently:
J∑
j=1

(vj − wj)
( n∑
i=1

ai
∂f(w(i))

∂w
(i)
j

− ∂f(w)

∂wj

)
= 0. (3)

Since w = arg minw∈DJ

∑n
i=1 aiDf (w‖w(i)), differentiation using the Lagrange multiplier method

(since a differentiable convex function f is necessarily continuously differentiable (see [9]), the partial
derivatives used above are all continuous and the Lagrange multiplier method is permissible) applied to
the condition

∑J
j=1wj = 1 produces

∑n
i=1 ai

∂f(w(i))

∂w
(i)
j

− ∂f(w)
∂wj

= λ, 1 ≤ j ≤ J , where λ is a constant

independent of j. Therefore, Equation (3) is equal to
∑J

j=1(vj−wj)λ = 0, and the theorem follows.

The idea of defining a spectrum of pooling operators where the pooling operators LinOp and LogOp

are special cases was developed previously in a similar manner, but in a slightly different framework of
alpha-divergences; cf. [27].

Here, following [1,12], we will point out a geometrical relationship between pooling operators
LinOp and PoolDf , which will be helpful in illustrating some results of this paper.

Recall that the generator of a Bregman divergence Df is a strictly convex function f : (0, 1)J → R,
which is differentiable over DJ . Let w ∈ DJ . We define w∗ = ∇f(w). Since f is a strictly convex
function, the mapping w → ∇f(w) is injective; thus, the coordinates of w∗ form a coordinate system.
There are two kinds of affine structures in DJ . Df (w‖v) is convex in w with respect to the first structure
and is convex in v∗ with respect to the second structure.

Therefore, the proof above, in fact, gives [v]∗ = [PoolDf
a (w(1), . . . ,w(n))]∗ =

LinOpa([w(1)]∗, . . . , [w(n)]∗) + c, where c = (λ, . . . , λ︸ ︷︷ ︸
J-times

) is a normalizing vector induced by∑J
j=1 vj = 1.
The only other type of averaging projective procedure F̂Df ,A that we consider here will be generated

by a convex differentiable Bregman divergence Df , which is strictly convex in its second argument,
and a family of weight A and is defined for every n ≥ 1 and all closed convex nonempty sets
W1, . . . ,Wn ⊆ DJ by the following.

1. For an argument v ∈ DJ , take w(i) the conjugated Df -projection of v into Wi for all 1 ≤ i ≤ n.
2. Set F̂Df ,A

[W1,...,Wn](v) = PoolDf
a (w(1), . . . ,w(n)), where a ∈ A.
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Given closed convex nonempty sets W1, . . . ,Wn ⊆ DJ , we will denote the set of all fixed points of
F̂Df ,A defined above by Θ̂

Df
a (W1, . . . ,Wn), where a ∈ A.

Note that we always require an additional assumption of Df being differentiable for this type of
averaging projective procedure. This assumption is essential to the proofs of some results concerning
this procedure. We note that both divergences KL and E2 are differentiable.

Given a family of weighting vectors A, our aim is to investigate Θ
Df

A = {ΘDf
a : a ∈ A} and

Θ̂
Df

A = {Θ̂Df
a : a ∈ A} as operators acting on P(DJ)× . . .×P(DJ). In particular, we ask the following

questions. Given any closed convex nonempty sets W1, . . . ,Wn ⊆ DJ and a ∈ A:

• Are Θ
Df
a (W1, . . . ,Wn) and Θ̂

Df
a (W1, . . . ,Wn) always nonempty?

• Are these sets always closed and convex?

If both answers are positive, then we can consider Θ
Df

A and Θ̂
Df

A as probabilistic merging operators.
In such a case, the following question makes sense.

• As probabilistic merging operators, do they satisfy the consistency principle (CP)?

The fact that the answer to all three questions is “yes” is perhaps surprising, given that the much
simpler obdurate merging operators do not satisfy (CP). We prove the above results in the following
sequence of theorems, which conclude Section 2.

The following well-known lemma is a simple, but useful observation.

Lemma 1. Let Df be a Bregman divergence and a,v,w ∈ DJ . Then:

Df (a‖v)−Df (a‖w)−Df (w‖v) = (a−w) ·
(
∇f(w)−∇f(v)

)
.

Theorem 7. Let Df be a convex Bregman divergence, W1, . . . ,Wn ⊆ DJ be closed convex nonempty
sets and a ∈ Dn. Let v,w ∈ DJ , u(1) ∈ W1, . . . ,u

(n) ∈ Wn and w(1) ∈ W1, . . . ,w
(n) ∈ Wn be such

that v = LinOpa(u(1), . . . ,u(n)), w = LinOpa(w(1), . . . ,w(n)) and u(i) are the Df -projection of v
into Wi, 1 ≤ i ≤ n. Then:

n∑
i=1

aiDf (u
(i)‖v) ≤

n∑
i=1

aiDf (w
(i)‖w).

Proof. First of all, by the extended Pythagorean property, we have that:

Df (w
(i)‖v)−Df (u

(i)‖v)−Df (w
(i)‖u(i)) ≥ 0.

By the parallelogram theorem:

n∑
i=1

aiDf (w
(i)‖v) =

n∑
i=1

aiDf (w
(i)‖w) +Df (w‖v).

Hence:
n∑
i=1

aiDf (w
(i)‖w)−

n∑
i=1

aiDf (u
(i)‖v) +Df (w‖v)−

−
n∑
i=1

aiDf (w
(i)‖u(i)) ≥ 0. (4)
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Since we assume that Df (·‖·) is a convex function in both arguments by the Jensen inequality:

Df (w‖v)−
n∑
i=1

aiDf (w
(i)‖u(i)) ≤ 0. (5)

The Inequalities (4) and (5) give:
n∑
i=1

aiDf (u
(i)‖v) ≤

n∑
i=1

aiDf (w
(i)‖w)

as required.

Figure 6 depicts the situation in the proof above for n = 2. Arrows indicate corresponding divergences.

Figure 6. The situation in the proof of Theorem 7 for n = 2.

W2w(2)

w(1)

w

u(2)

u(1)

v

W1

An interesting question related to conjugated Bregman projections arises as to whether a similar
property to the Pythagorean property holds. It turns out that the corresponding property is the
so-called four-point property, from to Csiszár and Tusnády. The following theorem in the case of the
KL-divergence is a specific instance of a result in [28], Lemma 3, but the formulation using the term
“conjugated KL-projection” first appeared in [21]. An illustration is depicted in Figure 7.

Theorem 8 (Four-Point Property). Let Df be a convex differentiable Bregman divergence, which is
strictly convex in its second argument. Let V be a convex closed nonempty subset of DJ , and let
v,u,w, s ∈ DJ be such that v is the conjugatedDf -projection of w into V and u ∈ V is arbitrary. Then:

Df (s‖v) ≤ Df (s‖u) +Df (s‖w).

Figure 7. The illustration of the four-point property.

V
u

v

s

w

conjugated Df -projection

Df (s‖v) ≤ Df (s‖u) +Df (s‖w)
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Proof. By Lemma 1, we have that:

Df (s‖w) = Df (s‖v)−Df (w‖v)− (s−w) · (∇f(w)−∇f(v)).

We can rewrite the above as:
Df (s‖w)−Df (s‖v) +Df (s‖u) =

= Df (s‖u)−Df (w‖v)− (s−w) · (∇f(w)−∇f(v)). (6)

Since Df (·‖·) is a convex differentiable function, by applying the first convexity condition twice,
we have that:

Df (s‖u) ≥ Df (w‖v)+

+
J∑
j=1

(aj − wj)
∂

∂xj

[
Df (x‖v)

]∣∣∣
x=w

+
J∑
j=1

(uj − vj)
∂

∂xj

[
Df (w‖x)

]∣∣∣
x=v

. (7)

Expressions (6) and (7) give that:

Df (s‖v) ≤ Df (s‖u) +Df (s‖w)−

−
J∑
j=1

(uj − vj)
∂

∂xj

[
Df (w‖x)

]∣∣∣
x=v

.

However, since v is the conjugated Df -projection of w into V , the gradient of Df (w‖·) at (w,v) in the
direction to (w,u) must be greater than or equal to zero:

J∑
j=1

(uj − vj)
∂

∂xj

[
Df (w‖x)

]∣∣∣
x=v
≥ 0

and the theorem follows.

The following result appeared for the first time in [10], but without considering the weighting.

Theorem 9 (Characterization Theorem for Θ
Df
a ). Let Df be a convex Bregman divergence, a ∈ Dn and

W1, . . . ,Wn ⊆ DJ be closed convex nonempty sets. Then:

Θ
Df
a (W1, . . . ,Wn) =

{
arg min

v∈DJ

n∑
i=1

aiDf (w
(i)‖v) : w(i) ∈ Wi, 1 ≤ i ≤ n

}
,

where the right hand-side denotes the set of all possible minimizers. That is the set of all probability
functions v ∈ DJ , which globally minimize

∑n
i=1 aiDf (w

(i)‖v), subject only to w(1) ∈ W1, . . . ,

w(n) ∈ Wn.

Proof. It is easy to see that, given closed convex nonempty sets W1, . . . ,Wn ⊆ DJ , we have that those
w(1) ∈ W1, . . . ,w

(n) ∈ Wn, which together with v ∈ DJ , globally minimize:
n∑
i=1

aiDf (w
(i)‖v),
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are also the Df -projections of v into W1, . . . ,Wn respectively. This, together with Equation (1)
(the equation preceding Theorem 2), gives:

Θ
Df
a (W1, . . . ,Wn) ⊇

{
arg min

v∈DJ

n∑
i=1

aiDf (w
(i)‖v) : w(i) ∈ Wi, 1 ≤ i ≤ n

}
.

Now, assume that v ∈ Θ
Df
a (W1, . . . ,Wn) and

u ∈
{

arg min
v∈DJ

n∑
i=1

aiDf (w
(i)‖v) : w(i) ∈ Wi, 1 ≤ i ≤ n

}
.

Let us denote the Df -projections of v into W1, . . . ,Wn by w(1) . . . ,w(n), respectively. Accordingly,
let us denote the Df -projections of u into W1, . . . ,Wn by r(1) . . . , r(n), respectively. Suppose that∑n

i=1 aiDf (w
(i)‖v) >

∑n
i=1 aiDf (r

(i)‖u), i.e.,

v 6∈
{

arg min
v∈DJ

n∑
i=1

aiDf (w
(i)‖v) : w(i) ∈ Wi, 1 ≤ i ≤ n

}
.

This contradicts Theorem 7, and therefore:

Θ
Df
a (W1, . . . ,Wn) ⊆

{
arg min

v∈DJ

n∑
i=1

aiDf (w
(i)‖v) : w(i) ∈ Wi, 1 ≤ i ≤ n

}
.

Let us now deviate for a while from the goals of this subsection and stress the importance of the
restriction to the positive discrete probability functions, which was detailed in Section 1.1. The problem
with the KL-divergence is that the function f(x) =

∑J
j=1 xj log xj is not differentiable if some xj = 0.

Without the adopted restriction, the KL-divergence is therefore usually defined by:

KL(w‖v) =

{ ∑
j: vj 6=0wj log

wj

vj
, if vj = 0 implies wj = 0 for all 1 ≤ j ≤ J ,

+∞, otherwise.

If vj = 0 implies wj = 0 for all 1 ≤ j ≤ J , we say that v dominates w and write v� w.
The first problem we would face with this definition is whether the notion of the KL-projection makes

sense. For given v ∈ DJ and closed convex nonempty set W ⊆ DJ , the KL-projection of v into W
makes sense only if there is at least one w ∈ W , such that v� w.

However, even if adding this condition to all of the discussion concerning the KL-projection above
(this is perfectly possible, as seen in [10]), Theorem 9 still could not hold, as the following example
demonstrates.

Example 4. Let W1 = {λ(0, 0, 1
6
, 5

6
) + (1 − λ)(0, 1

3
, 1

3
, 1

3
) : λ ∈ [0, 1]} and W2 = {λ(0, 0, 1

3
, 2

3
) +

(1 − λ)(0, 1
3
, 1

3
, 1

3
) : λ ∈ [0, 1]}. Assume that a = (1

2
, 1

2
). It is easy to check that (0, 0, 1

4
, 3

4
) and

(0, 1
3
, 1

3
, 1

3
) are both fixed points, but the former does not belong to the set of global minimizers v of

KL(w(1)‖v)+KL(w(2)‖v) subject to w(1) ∈ W1 and w(2) ∈ W2. An illustration is depicted in Figure 8.
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Figure 8. The illustration of Example 4.
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Moreover, some variant of the above example would show that the set ΘKL
a (W1,W2) is not convex,

which would wreck our aims; more details are given in [10].
On the other hand, neither of those Bregman divergences, which generate functions, are differentiable

over the whole space of discrete probability functions (e.g., the squared Euclidean distance) and would
encounter the difficulties of the KL-divergence. In particular, Theorem 9 formulated over the whole
space of discrete probability functions (as opposed to only the positive ones) would still hold for such
Bregman divergences.

Now, we shall go back and prove a theorem similar to Theorem 9 for the Θ̂
Df

A -operator. In order to
do that, we will need the following analogue of Theorem 7.

Theorem 10. Let Df be a convex differentiable Bregman divergence, which is strictly convex in its
second argument, and let W1, . . . ,Wn ⊆ DJ be closed convex nonempty sets and a ∈ Dn. Let
v,w ∈ DJ and u(1) ∈ W1, . . . ,u

(n) ∈ Wn and w(1) ∈ W1, . . . ,w
(n) ∈ Wn be such that

v = PoolDf
a (u(1), . . . ,u(n)), w = PoolDf

a (w(1), . . . ,w(n)) and u(i) are the conjugated Df -projection
of v into Wi, 1 ≤ i ≤ n. Then:

n∑
i=1

aiDf (v‖u(i)) ≤
n∑
i=1

aiDf (w‖w(i)).

Figure 9. The situation in the proof of Theorem 10 for n = 2.
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Proof. By Theorem 6, we have that:
n∑
i=1

aiDf (w‖u(i)) =
n∑
i=1

aiDf (v‖u(i)) +Df (w‖v)

which by the four-point property (notice that we need the differentiability ofDf to employ the four-point
property) (Theorem 8) becomes:

n∑
i=1

aiDf (w‖w(i)) +Df (w‖v) ≥
n∑
i=1

aiDf (v‖u(i)) +Df (w‖v)

and hence:
n∑
i=1

aiDf (v‖u(i)) ≤
n∑
i=1

aiDf (w‖w(i))

as required, see Figure 9.

The theorem above is fairly similar to Theorem 7. Let us use the dual affine structure in DJ defined
after the proof of Theorem 6 to analyze this more closely. For W ⊂ DJ , define W ∗ = {w∗; w ∈ W}
and define the dual divergence D∗f to the divergence Df by D∗f (v

∗‖w∗) = Df (w‖v). Since, by
Theorem 6, we have that [v]∗ = [PoolDf

a (w(1), . . . ,w(n))]∗ = LinOpa([w(1)]∗, . . . , [w(n)]∗) + cv,
where cv = (λ, . . . , λ︸ ︷︷ ︸

J-times

) is a normalizing vector induced by
∑J

j=1 vj = 1, the theorem above can be

rewritten as follows.
Let Df be a convex differentiable Bregman divergence, which is strictly convex in its second

argument, and letW1, . . . ,Wn ⊆ DJ be closed convex nonempty sets and a ∈ Dn. Let v,w ∈ DJ , u(1) ∈
W1, . . . ,u

(n) ∈ Wn and w(1) ∈ W1, . . . ,w
(n) ∈ Wn be such that v∗ = LinOpa([u(1)]∗, . . . , [u(n)]∗) +

cv, w∗ = LinOpa([w(1)]∗ . . . , [w(n)]∗) + cw and [u(i)]∗ are the D∗f -projection of v∗ into W ∗
i ,

1 ≤ i ≤ n. Then:
n∑
i=1

aiD
∗
f ([u

(i)]∗‖v∗) ≤
n∑
i=1

aiD
∗
f ([w

(i)]∗‖w∗).

This illustrates that if Df is a convex differentiable Bregman divergence that is strictly convex in its
second argument, then Theorems 7 and 10 are dual with respect to ∗.

Theorem 11 (Characterization Theorem for Θ̂
Df
a ). Let Df be a convex differentiable Bregman

divergence, which is strictly convex in its second argument, and let W1, . . . ,Wn ⊆ DJ be closed convex
nonempty sets and a ∈ Dn. Then:

Θ̂
Df
a (W1, . . . ,Wn) =

{
arg min

v∈DJ

n∑
i=1

aiDf (v‖w(i)) : w(i) ∈ Wi, 1 ≤ i ≤ n
}

,

where the right hand-side denotes the set of all possible minimizers.

Proof. The proof is similar to the proof of Theorem 9. First, given closed convex nonempty sets
W1, . . . ,Wn ⊆ DJ , we have that those w(1) ∈ W1, . . . ,w

(n) ∈ Wn, which together with v ∈ DJ ,
globally minimize:

n∑
i=1

aiDf (v‖w(i)),
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that are also the conjugated Df -projections of v into W1, . . . ,Wn, respectively. This together with the
definition of PoolDf

a gives:

Θ̂
Df
a (W1, . . . ,Wn) ⊇

{
arg min

v∈DJ

n∑
i=1

aiDf (v‖w(i)) : w(i) ∈ Wi, 1 ≤ i ≤ n
}

.

Second, assume that v ∈ Θ̂
Df
a (W1, . . . ,Wn) and:

u ∈
{

arg min
v∈DJ

n∑
i=1

aiDf (v‖w(i)) : w(i) ∈ Wi, 1 ≤ i ≤ n
}

.

Let us denote the conjugated Df -projections of v into W1, . . . ,Wn by w(1) . . . ,w(n), respectively.
Accordingly, let us denote the conjugated Df -projections of u into W1, . . . ,Wn by r(1) . . . , r(n),
respectively. Suppose that:

n∑
i=1

aiDf (u‖r(i)) <
n∑
i=1

aiDf (v‖w(i)),

i.e., v 6∈
{

arg minv∈DJ

∑n
i=1 aiDf (v‖w(i)) : w(i) ∈ Wi, 1 ≤ i ≤ n

}
. This contradicts Theorem 10,

and therefore:

Θ̂
Df
a (W1, . . . ,Wn) ⊆

{
arg min

v∈DJ

n∑
i=1

aiDf (v‖w(i)) : w(i) ∈ Wi, 1 ≤ i ≤ n
}

.

The following simple observation originally from [10] based on Equation (1) (alternatively on the
parallelogram theorem) will be used in the proof of the forthcoming theorem.

Lemma 2. Let Df be a convex Bregman divergence and a ∈ Dn. Then, the following are equivalent:

1. The probability functions v,w(1), . . . ,w(n) ∈ DJ minimize the quantity:

n∑
i=1

aiDf (w
(i)‖v)

subject to w(1) ∈ W1, . . . ,w
(n) ∈ Wn.

2. The probability functions w(1), . . . ,w(n) ∈ DJ minimize the quantity:

n∑
i=1

aiDf (w
(i)‖LinOpa(w(1), . . . ,w(n))

subject to w(1) ∈ W1, . . . ,w
(n) ∈ Wn and v = LinOpa(w(1), . . . ,w(n)).

Theorem 12. Let Df be a convex Bregman divergence. Then, for all nonempty closed convex sets
W1, . . . ,Wn ⊆ DJ and a ∈ Dn, the set

{
arg minv∈DJ

∑n
i=1 aiDf (w

(i)‖v) : w(i) ∈ Wi, 1 ≤ i ≤ n
}

is

a nonempty closed convex region of DJ .
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Proof. This proof is from [10]. Let v, s ∈
{

arg minv∈DJ

∑n
i=1 aiDf (w

(i)‖v) : w(i) ∈ Wi, 1 ≤

i ≤ n
}

, as the set is clearly nonempty. For convexity, we need to show that λv + (1 − λ)s ∈{
arg minv∈DJ

∑n
i=1 aiDf (w

(i)‖v) : w(i) ∈ Wi, 1 ≤ i ≤ n
}

for any λ ∈ [0, 1].

Assume that w(1) ∈ W1, . . . ,w
(n) ∈ Wn are such that v = LinOpa(w(1), . . . ,w(n)) and u(1) ∈

W1, . . . ,u
(n) ∈ Wn are such that s = LinOpa(u(1), . . . ,u(n)). It is easy to observe that the convexity of

Df (·‖·) implies convexity of:

g(x(1), . . . ,x(n)) =
n∑
i=1

aiDf (x
(i)‖LinOpa(x(1), . . . ,x(n)))

over the convex region specified by constraints x(i) ∈ Wi, 1 ≤ i ≤ n. Moreover, the function g attains
its minimum over this convex region at points (w(1), . . . ,w(n)) and (u(1), . . . ,u(n)). We need to show
that g also attains its minimum at the point:

λ(w(1), . . . ,w(n)) + (1− λ)(u(1), . . . ,u(n))

for any λ ∈ [0, 1]. Since g is convex by the Jensen inequality, we have that:

λg(w(1), . . . ,w(n)) + (1− λ)g(u(1), . . . ,u(n)) ≥

≥ g(λ(w(1), . . . ,w(n)) + (1− λ)(u(1), . . . ,u(n))).

Since g(w(1), . . . ,w(n)) = g(u(1), . . . ,u(n)), the inequality above can only hold with equality, and
therefore, by Lemma 2,

λv + (1− λ)s ∈
{

arg min
v∈DJ

n∑
i=1

aiDf (w
(i)‖v) : w(i) ∈ Wi, 1 ≤ i ≤ n

}
for any λ ∈ [0, 1].

Moreover, since convexity implies continuity, the minimization of a convex function over a closed
convex region produces a closed convex set. Therefore, the fact that W1, . . . ,Wn are all closed and
convex implies that the set of n-tuples (w(1), . . . ,w(n)), which are global minimizers of g over the
region specified by w(i) ∈ Wi, 1 ≤ i ≤ n, is closed. Additionally, since closed regions are preserved by
projections in the Euclidean space, the set given by LinOpa(w(1), . . . ,w(n)) is closed, as well.

The following observation immediately follows by the definition of PoolDf
a .

Lemma 3. Let Df be a convex Bregman divergence and a ∈ Dn. Then, the following are equivalent:

1. The probability functions v,w(1), . . . ,w(n) ∈ DJ minimize the quantity:

n∑
i=1

aiDf (v‖w(i))

subject to w(1) ∈ W1, . . . ,w
(n) ∈ Wn.
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2. The probability functions w(1), . . . ,w(n) ∈ DJ minimize the quantity:

n∑
i=1

aiDf (Pool
Df
a (w(1), . . . ,w(n))‖w(i))

subject to w(1) ∈ W1, . . . ,w
(n) ∈ Wn and v = PoolDf

a (w(1), . . . ,w(n)).

Theorem 13. Let Df be a convex Bregman divergence. Then, for all nonempty closed convex sets
W1, . . . ,Wn ⊆ DJ and a ∈ Dn, the set

{
arg minv∈DJ

∑n
i=1 aiDf (v‖w(i)) : w(i) ∈ Wi, 1 ≤ i ≤ n

}
is

a nonempty closed convex region of DJ .

Proof. Let v, s ∈
{

arg minv∈DJ

∑n
i=1 aiDf (v‖w(i)) : w(i) ∈ Wi, 1 ≤ i ≤ n

}
, as the set is clearly

nonempty. For convexity, we need to show that λv + (1 − λ)s ∈
{

arg minv∈DJ

∑n
i=1 aiDf (v‖w(i)) :

w(i) ∈ Wi, 1 ≤ i ≤ n
}

for any λ ∈ [0, 1].

Assume that w(1) ∈ W1, . . . ,w
(n) ∈ Wn are such that v = PoolDf

a (w(1), . . . ,w(n)) and u(1) ∈
W1, . . . ,u

(n) ∈ Wn are such that s = PoolDf
a (u(1), . . . ,u(n)). Now, for any λ ∈ [0, 1],

λ

n∑
i=1

aiDf (Pool
Df
a (w(1), . . . ,w(n))‖w(i)) + (1− λ)

n∑
i=1

aiDf (Pool
Df
a (u(1), . . . ,u(n))‖u(i)) ≥

≥
n∑
i=1

aiDf (λPool
Df
a (w(1), . . . ,w(n)) + (1− λ)PoolDf

a (u(1), . . . ,u(n))‖λw(i) + (1− λ)u(i)) ≥

≥
n∑
i=1

aiDf (Pool
Df
a (λw(1) + (1− λ)u(1), . . . , λw(n) + (1− λ)u(n))‖λw(i) + (1− λ)u(i)),

where the first inequality follows by convexity of Df (·‖·) and the second by the definition of PoolDf
a as

the unique minimizer. However, the inequality above can only hold with equality and, by Lemma 3,

λv + (1− λ)s ∈
{

arg min
v∈DJ

n∑
i=1

aiDf (w
(i)‖v) : w(i) ∈ Wi, 1 ≤ i ≤ n

}
for any λ ∈ [0, 1].

Moreover, since convexity implies continuity, the minimization of a convex function over a
closed convex region produces a closed convex set. Therefore, the fact that W1, . . . ,Wn are all
closed and convex implies that the set of n-tuples (w(1), . . . ,w(n)), which are global minimizers of∑n

i=1 aiDf (Pool
Df
a (w(1), . . . ,w(n))‖w(i)) over the region specified by w(i) ∈ Wi, 1 ≤ i ≤ n, is closed.

Additionally, since closed regions are preserved by projections in the Euclidean space, the set given by
PoolDf

a (w(1), . . . ,w(n)) is closed, as well.

Finally, we can establish our initial claims:

Theorem 14. LetA be a family of weighting vectors. The operator Θ
Df

A , whereDf is a convex Bregman
divergence, and the operator Θ̂

Df

A , where Df is a convex differentiable Bregman divergence, which is
strictly convex in its second argument, are well defined probabilistic merging operators that satisfy (CP).
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Proof. First, the fact that Θ
Df

A is well defined as a probabilistic merging operator follows Theorems 9
and 12. Accordingly, Θ̂

Df

A is a well-defined probabilistic merging operator by Theorems 11 and 13.
Second, let a ∈ A (in particular a ∈ Dn) and W1, . . . ,Wn ⊆ DJ be closed, convex, nonempty and

have a nonempty intersection. Clearly, every point in that intersection minimizes
∑n

i=1 aiDf (w
(i)‖v)

and
∑n

i=1 aiDf (v‖w(i)) subject to w(1) ∈ W1, . . . ,w
(n) ∈ Wn with both expressions attaining the zero

value. SinceDf (w‖v) = 0 only if w = v, those points in the intersection are the only points minimizing
the above quantities.

It turns out that, given closed convex nonempty sets W1, . . . ,Wn ⊆ DJ and weighting a, the sets
of fixed points Θ

Df
a (W1, . . . ,Wn) and Θ̂

Df
a (W1, . . . ,Wn) posses attractive properties, which make the

operators Θ
Df

A and Θ̂
Df

A suitable for probabilistic merging. The following example taken from [10]
illustrates a possible philosophical justification for considering the set of all fixed points of a mapping
consisting of a convex Bregman projection and a pooling operator.

Example 5. Assume that there are n experts, each with his own knowledge represented by closed convex
nonempty sets W1, . . . ,Wn ⊆ DJ , respectively. Say that an independent chairman of the college has
announced a probability function v to represent the agreement of the college of experts. Each expert
then naturally updates his own knowledge by what seems to be the right probability function. In other
words, the expert “i” projects v toWi, obtaining the probability function w(i). Each expert subsequently
accepts w(i) as his working hypothesis, but he does not discard his knowledge base Wi; he only takes
into account other people’s opinions. Then, it is easy for the chairman to identify the average of the
actual beliefs w(1), . . . ,w(n) of the experts. If he found that this average v′ did not coincide with the
originally announced probability function v, then he would naturally feel unhappy about such a choice,
so he would be tempted to iterate the process in the hope that, eventually, he will find a fixed point.

It seems that, in a broad philosophical setting, such as in the example above, we ought to study any
possible combination of Bregman projections with pooling operators. The question as to which other
combination produces a well-defined probabilistic merging operator satisfying the consistency principle
(CP) is open to investigation.

3. Convergence

3.1. Iterative Processes

In this section, we continue the investigation of the averaging projective procedures FDf ,A and F̂Df ,A.
Recall that, given a convex Bregman divergence Df and a family of weighting vectors A, FDf ,A, was
defined in the previous section for every n ≥ 1 and all closed convex nonempty sets W1, . . . ,Wn ⊆ DJ

by the following.

1. For an argument v ∈ DJ , take w(i) as the Df -projection of v into Wi for all 1 ≤ i ≤ n.
2. Set FDf ,A

[W1,...,Wn](v) = LinOpa(w(1), . . . ,w(n)), where a ∈ A.

For Df , which is moreover differentiable and strictly convex in the second argument, F̂Df ,A was defined
analogously by conjugated projections and the Pool

Df

A -pooling operator.
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Our current aim is to find out what will happen if we iterate the application of averaging projective
procedures FDf ,A and F̂Df ,A. In particular:

• Will the resulting sequences converge?

We shall find the answer in this subsection.
It is intriguing that we can abstractly define a “conjugated projection” with respect to a summation

of a convex differentiable Bregman divergence Df . Let w(1), . . . ,w(n) ∈ DJ and a ∈ Dn.
Then, the “conjugated projection” of (w(1), . . . ,w(n)) into DJ is defined by the global minimizer of∑n

i=1 aiDf (w
(i)‖v), which, by Equation (1), is v = LinOpa(w(1), . . . ,w(n)).

The claim that this behaves as a “conjugated projection” is supported by the following analogue of
the four-point property illustrated in Figure 10.

Theorem 15. Let Df be a convex differentiable Bregman divergence. Let a ∈ Dn, w(1), . . . ,w(n) ∈ DJ

and v = LinOpa(w(1), . . . ,w(n)). Let u(1), . . . ,u(n) ∈ DJ and u ∈ DJ . Then:
n∑
i=1

aiDf (u
(i)‖v) ≤

n∑
i=1

aiDf (u
(i)‖u) +

n∑
i=1

aiDf (u
(i)‖w(i)).

Figure 10. The illustration of Theorem 15.

DJ

u
v

(u(1), . . . ,u(n))

(w(1), . . . ,w(n))

v = LinOpa(w(1), . . . ,w(n))

∑n
i=1 aiDf (u

(i)‖v) ≤
∑n

i=1 aiDf (u
(i)‖u) +

∑n
i=1 aiDf (u

(i)‖w(i))

Proof. The proof is similar to the one of the actual four-point property (Theorem 8) only with a slightly
different argument at the end: after obtaining:

n∑
i=1

aiDf (u
(i)‖v) ≤

n∑
i=1

aiDf (u
(i)‖u) +

n∑
i=1

aiDf (u
(i)‖w(i))−

−
n∑
i=1

ai

J∑
j=1

(uj − vj)
∂

∂xj

[
Df (w

(i)‖x)
]∣∣∣

x=v

we proceed with:

−
n∑
i=1

ai

J∑
j=1

(uj − vj)
∂

∂xj

[
Df (w

(i)‖x)
]∣∣∣

x=v
=

=
J∑
j=1

(uj − vj)
[ J∑
k=1

(
n∑
i=1

aiw
(i)
k − vk)

∂ ∂f(x)
∂xk

∂xj

∣∣∣
x=v

]
= 0,

since
∑n

i=1 aiw
(i)
k = vk for all 1 ≤ k ≤ J , and the theorem follows.
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Similarly, given w(1), . . . ,w(n) ∈ DJ , a ∈ Dn and a convex differentiable Bregman divergence
Df , which is strictly convex in its second argument, we can consider PoolDf

a (w(1), . . . ,w(n)) the
“projection” of (w(1), . . . ,w(n)) into DJ , since Theorem 6 resembles (a special case of) the extended
Pythagorean property: for any u ∈ DJ :

n∑
i=1

aiDf (u‖PoolDf
a (w(1), . . . ,w(n))) +

n∑
i=1

aiDf (Pool
Df
a (w(1), . . . ,w(n))‖w(i)) =

=
n∑
i=1

aiDf (u‖w(i)).

The two observations above and the following lemma will be essential to the proofs of the two main
theorems of this subsection.

Lemma 4. LetDf be a convex Bregman divergence. Assume that we are given a closed convex nonempty
set W , v[i] ∈ DL, i = 1, 2, . . . and w[i] ∈ DJ , i = 1, 2, . . . , such that w[i] is the Df -projection of v[i]

into W for all i = 1, 2, . . . . Assume that {v[i]}∞i=1 converges to v ∈ DJ and {w[i]}∞i=1 converges to
w ∈ DJ . Then, w is the Df -projection of v into W .

Proof. For a contradiction, assume that the Df -projection of v into W denoted by w̄ is distinct from w.
Then, by the extended Pythagorean property, Df (w

[i]‖v[i]) +Df (w̄‖w[i]) ≤ Df (w̄‖v[i]). Since Df (·‖·)
is continuous (see Section 1.1), we have that:

lim
i→∞

Df (w
[i]‖v[i]) = Df (w‖v),

lim
i→∞

Df (w̄‖w[i]) = Df (w̄‖w) and

lim
i→∞

Df (w̄‖v[i]) = Df (w̄‖v).

Therefore: Df (w‖v) + Df (w̄‖w) ≤ Df (w̄‖v), which contradicts the assumption that w̄ is the
Df -projection of v into W .

Finally, we are going to answer the question about whether the iteration of the averaging projective
procedures FDf ,A and F̂Df ,A converges; however, the result for FDf ,A will be limited only to the case
when Df is differentiable. Both results below should be attributed to a number of people. First, the
results are applications of well-known alternative projections due to Csiszár and Tusnády; see [28],
Theorem 3. In a particular case of the Kullback–Leibler divergence, the theorems were observed and
proven by Matúš in [21]. Last, but not least, Eggermont and LaRiccia reformulated original alternative
projections in terms of Bregman divergences in [29].

Theorem 16. LetDf be a convex differentiable Bregman divergence,A be a family of weighting vectors
and a ∈ A be such that a ∈ Dn and W1, . . . ,Wn ⊆ DJ are closed, convex and nonempty. Then, for any
v ∈ DJ , the sequence:

{v[i]}∞i=0,

where v[0] = v and v[i+1] = F
Df ,A
[W1,...,Wn](v

[i]) converge to some probability function in Θ
Df
a (W1, . . . ,Wn).

(Recall that Θ
Df
a (W1, . . . ,Wn) is the set of the fixed points of FDf ,A

[W1,...,Wn], i.e., all points v, such that

F
Df ,A
[W1,...,Wn](v) = v.)
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Proof. This proof is inspired by [21].
Denote the Df -projections of v[i] into W1, . . . ,Wn by π1v

[i], . . . , πnv
[i], respectively. Then, it is easy

to observe that:
n∑
k=1

akDf (πkv
[i]‖v[i]) ≥

n∑
k=1

akDf (πkv
[i]‖v[i+1]) ≥

n∑
k=1

akDf (πkv
[i+1]‖v[i+1]),

for all i = 1, 2, . . . . Due to the monotonicity of this sequence, the limit limi→∞
∑n

k=1 akDf (πkv
[i]‖v[i])

exists. Thanks to the compactness of W1, . . . ,Wn, the sequence {(π1v
[i], . . . , πnv

[i],v[i])}∞i=1 has a
convergent subsequence. Let us denote the limit of this subsequence (π1v, . . . , πnv,v). Due to
Lemma 4, πkv is really the Df -projection of v into Wk for all 1 ≤ k ≤ n. Moreover

lim
i→∞

n∑
k=1

akDf (πkv
[i]‖v[i]) =

n∑
k=1

akDf (πkv‖v).

By Theorem 15:
n∑
k=1

akDf (πkv‖v[i]) ≤
n∑
k=1

akDf (πkv‖v) +
n∑
k=1

akDf (πkv‖πkv[i−1]). (8)

This is because v[i] = LinOpa(π1v
[i−1], . . . , πnv

[i−1]). Moreover, by the extended Pythagorean
property:

n∑
k=1

akDf (πkv
[i]‖v[i]) +

n∑
k=1

akDf (πkv‖πkv[i]) ≤
n∑
k=1

akDf (πkv‖v[i]). (9)

An illustration of the situation is depicted in Figure 11.

Figure 11. The situation in the proof of Theorem 16.

Wkπkv
[i−1]

πkv
[i]

v[i]

πkv

v

Df -projection
Df -projection

Now, since:

lim
i→∞

n∑
k=1

akDf (πkv
[i]‖v[i]) =

n∑
k=1

akDf (πkv‖v)

and
∑n

k=1 akDf (πkv
[i]‖v[i]) ≥

∑n
k=1 akDf (πkv‖v) for all i = 1, 2, . . . , Equations (8) and (9) give that:

n∑
k=1

akDf (πkv‖πkv[i]) ≤
n∑
k=1

akDf (πkv‖πkv[i−1]) (10)
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for all i = 1, 2, . . . . We conclude that this is possible only if:

lim
i→∞

n∑
k=1

akDf (πkv‖πkv[i])

exists.
However, we already know that a subsequence of {(π1v

[i], . . . , πnv
[i])}∞i=1 converges to

(π1v, . . . , πnv); hence, a subsequence of the sequence {
∑n

k=1 akDf (πkv‖πkv[i])}∞i=1 decreases to
zero, which by Equation (10), forces the whole sequence to converge to zero. Due to the fact that
Df (x‖y) = 0, only if x = y and, by the continuity, we get:

lim
i→∞

πkv
[i] = πkv.

It follows that limi→∞ v[i] exists and is equal to v. Moreover, v = limi→∞ v[i+1] =

limi→∞ LinOpa(π1v
[i], . . . , πnv

[i]) = LinOpa(π1v, . . . , πnv), and therefore, v is a fixed point of the
mapping FDf ,A

[W1,...,Wn]; hence, v ∈ Θ
Df
a (W1, . . . ,Wn).

The following analogue of Lemma 4 will be needed in the forthcoming theorem.

Lemma 5. Let Df be a convex differentiable Bregman divergence, which is strictly convex in its second
argument. Assume that we are given a closed convex nonempty set W , v[i] ∈ DL, i = 1, 2, . . . and
w[i] ∈ DJ , i = 1, 2, . . . , such that w[i] is the conjugated Df -projection of v[i] into W for all i =

1, 2, . . . . Assume that {v[i]}∞i=1 converges to v ∈ DJ and {w[i]}∞i=1 converges to w ∈ DJ . Then, w is the
conjugated Df -projection of v into W .

Proof. For a contradiction, assume that the conjugated Df -projection of v into W denoted by w̄ is
distinct from w. Then, by the four-point property, Df (v

[i]‖w[i]) ≤ Df (v
[i]‖w̄) + Df (v

[i]‖v). Since
Df (·‖·) is continuous, we have that:

lim
i→∞

Df (v
[i]‖w[i]) = Df (v‖w),

lim
i→∞

Df (v
[i]‖w̄) = Df (v‖w̄) and:

lim
i→∞

Df (v
[i]‖v) = Df (v‖v) = 0.

Therefore: Df (v‖w) ≤ Df (v‖w̄), which contradicts the assumption that w̄ is the conjugated
Df -projection of v into W .

Theorem 17. Let Df be a convex differentiable Bregman divergence, which is strictly convex in its
second argument,A be a family of weighting vectors and a ∈ A be such that a ∈ Dn andW1, . . . ,Wn ⊆
DJ are closed, convex and nonempty. Then, for any v ∈ DJ , the sequence:

{v[i]}∞i=0,

where v[0] = v and v[i+1] = F̂
Df ,A
[W1,...,Wn](v

[i]), converges to some probability function in

Θ̂
Df
a (W1, . . . ,Wn). (Recall that Θ̂

Df
a (W1, . . . ,Wn) is the set of the fixed points of F̂Df ,A

[W1,...,Wn], i.e., all

points v, such that F̂Df ,A
[W1,...,Wn](v) = v.)
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Proof. Denote the conjugated Df -projections of v[i] into W1, . . . ,Wn by π1v
[i], . . . , πnv

[i], respectively.
Then, it is easy to observe that:

n∑
k=1

akDf (v
[i]‖πkv[i]) ≥

n∑
k=1

akDf (v
[i+1]‖πkv[i]) ≥

n∑
k=1

akDf (v
[i+1]‖πkv[i+1]),

for all i = 1, 2, . . . . Due to the monotonicity of this sequence, the limit limi→∞
∑n

k=1 akDf (v
[i]‖πkv[i])

exists. Thanks to the compactness of W1, . . . ,Wn, the sequence {(π1v
[i], . . . , πnv

[i],v[i])}∞i=1 has a
convergent subsequence. Let us denote the limit of this subsequence (π1v, . . . , πnv,v). Due to
Lemma 5, πkv is really the conjugated Df -projection of v into Wk for all 1 ≤ k ≤ n. Moreover:

lim
i→∞

n∑
k=1

akDf (v
[i]‖πkv[i]) =

n∑
k=1

akDf (v‖πkv).

By the four-point property:

n∑
k=1

akDf (v‖πkv[i]) ≤
n∑
k=1

akDf (v‖πkv) +Df (v‖v[i]). (11)

Moreover, by Theorem 6:

n∑
k=1

akDf (v
[i+1]‖πkv[i]) +Df (v‖v[i+1]) =

n∑
k=1

akDf (v‖πkv[i]). (12)

That is because v[i+1] = PoolDf
a (π1v

[i], . . . , πnv
[i]). An illustration of the situation is depicted in

Figure 12.

Figure 12. The situation in the proof of Theorem 16.

Wkπkv
[i]

v[i+1]

v[i]

πkv

v

conjugated Df -projection

Now, since:

lim
i→∞

n∑
k=1

akDf (v
[i+1]‖πkv[i]) =

n∑
k=1

akDf (v‖πkv)

and
∑n

k=1 akDf (v
[i+1]‖πkv[i]) ≥

∑n
k=1 akDf (v‖πkv) for all i = 1, 2, . . . , the expressions (11) and (12)

give that:
Df (v‖v[i+1]) ≤ Df (v‖v[i]) (13)
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for all i = 1, 2, . . . . We conclude that this is possible only if:

lim
i→∞

Df (v‖v[i])

exists.
However, we already know that a subsequence of {v[i]}∞i=1 converges to v; hence, a subsequence of

the sequence {Df (v‖v[i])}∞i=1 decreases to zero, which by Equation (13), forces the whole sequence to
converge to zero. Due to the fact that Df (x‖y) = 0 only if x = y and by the continuity, we get:

lim
i→∞

v[i] = v

and, subsequently, limi→∞ πkv
[i] = πkv, 1 ≤ k ≤ n (the subsequence of {πkv[i]}∞i=1 has πkv as a limit,

and {Df (v
[i]‖πkv[i])}∞i=1 is monotonic).

Moreover, v = limi→∞ v[i+1] = limi→∞PoolDf
a (π1v

[i], . . . , πnv
[i]) = PoolDf

a (π1v, . . . , πnv),
since PoolDf

a is continuous (
∑n

k=1 akDf (·‖·) is continuous and strictly convex in the first argument).
Therefore, v is a fixed point of the mapping F̂Df ,A

[W1,...,Wn], and hence, v ∈ Θ̂
Df
a (W1, . . . ,Wn).

The problem of characterizing the limits of Theorems 16 and 17 more precisely remains open. On
the other hand, the theorems suggest a way to compute at least some points in Θ

Df
a (W1, . . . ,Wn) and

Θ̂
Df
a (W1, . . . ,Wn), although we have not investigated how fast the sequences converge. Moreover, also

the question of how effective it is to compute Df -projections and conjugated Df -projections was left
unanswered. This latter problem was nevertheless addressed in the literature, at least in the case of the
KL-divergence and sets W1, . . . ,Wn generated by finite collections of marginal probability functions. In
such a case, the well-known iterative projective fitting procedure IPFP can be effectively employed [16].

3.2. Chairmen Theorems

In this section, for a convex differentiable Bregman divergence Df , which is strictly convex in its
second argument, and a family of weighting vectors A, we investigate the susceptibility of Θ

Df

A and
Θ̂
Df

A -merging operators to a small bias by an arbitrary probability function in DJ . The study of this
problem first occurred in [18], where Wilmers argued that an independent adjudicator, whose only
knowledge consists of what is related to him by the given college of experts, can rationally bias the
agreement procedure by including himself as an additional expert, whose personal probability function
is the uniform one (not arbitrary), in order to calculate a single social probability function and then find
what would happen to this social probability function if his contribution happened to be infinitesimally
small relative to that of the other experts. He showed that in the case of the Θ̂KL

N -merging operator, this
point of agreement is characterized by the most entropic point in the region defined by Θ̂KL

N . A similar
theorem for the ΘKL

N -merging operator was proven in [10]. In what follows, we adapt these results to our
general situation.

The following theorem will tell us that, in some particular case of W1, . . . ,Wn ⊆ DJ , we can always
tell that the set Θ

Df
a (W1, . . . ,Wn) is a singleton.

Theorem 18. Let W1, . . . ,Wn ⊆ DJ be closed, convex, nonempty and such that, for at least one i Wi

is a singleton. Let Df be a convex Bregman divergence, which is strictly convex in its second argument
and a ∈ Dn. Then, Θ

Df
a (W1, . . . ,Wn) is a singleton.
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Proof. Without loss of generality, assume that W1 = {v}. For a contradiction, suppose that w, r ∈
Θ
Df
a (W1, . . . ,Wn) and w 6= r. Denote w(2), . . . ,w(n) the Df -projections of w into W2, . . . ,Wn,

respectively, and r(2), . . . , r(n) the Df -projections of r into W2, . . . ,Wn, respectively. By definition,
w = LinOpa(v,w(2), . . . ,w(n)) and r = LinOpa(v, r(2), . . . , r(n)).

Now, consider x = λw + (1 − λ)r for some λ ∈ (0, 1). By Theorems 9 and 12, we have that
x ∈ Θ

Df
a (W1, . . . ,Wn). Since Df (·‖·) is a convex function, by the Jensen inequality, we have that:

a1Df (v‖x) +
n∑
i=2

aiDf (λw
(i) + (1− λ)r(i)‖x) ≤

≤ λ
(
a1Df (v‖w) +

n∑
i=2

aiDf (w
(i)‖w)

)
+ (1− λ)

(
a1Df (v‖r) +

n∑
i=2

aiDf (r
(i)‖r)

)
. (14)

However, since w, r,x ∈ Θ
Df
a (W1, . . . ,Wn) and λw(i) + (1 − λ)r(i) ∈ Wi, 1 ≤ i ≤ n, the above is

possible only with the equality.
On the other hand, since Df is strictly convex in its second argument, the following Jensen inequality

is strict:
Df (v‖x) < λDf (v‖w) + (1− λ)Df (v‖r).

Note that the border points λ = 0, 1 are excluded. Therefore, Equation (14) yields:

n∑
i=2

aiDf (λw
(i) + (1− λ)r(i)‖x) >

> λ
( n∑
i=2

aiDf (w
(i)‖w)

)
+ (1− λ)

( n∑
i=2

aiDf (r
(i)‖r)

)
.

However, this contradicts the Jensen inequality.

Theorem 19 (Chairman Theorem for Θ
Df

A ). Let I ⊆ DJ be a singleton consisting of an arbitrary
probability function t ∈ DJ . Let W1, . . . ,Wn ⊆ DJ be closed, convex and nonempty, a ∈ A be such that
a ∈ Dn and Df be a convex Bregman divergence, which is strictly convex in its second argument. For
1 > λ > 0, define (by the previous theorem, the following set is a singleton):

{v[λ]} = Θ
Df

(λ,a1−λa1,...,an−λan)(I,W1, . . . ,Wn).

Then, limλ↘0 v
[λ] exists and equals

arg min
v∈Θ

Df
a (W1,...,Wn)

Df (t‖v),

i.e., it equals the conjugated Df -projection of the probability function t into Θ
Df
a (W1, . . . ,Wn).
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Figure 13. The illustration of the chairman theorem for Θ
Df

N .

DJ

W1 W2

Θ
Df

( 1
2
, 1
2

)
(W1,W2)

t

v[0.5]

v[λ]

conjugated Df -projection *

* Note that the fact that v[λ]-s lie on the arrow does not have any meaning.

Proof. This proof is inspired by [30], where a slightly stronger result is proven for the special case of
ΘKL
N . We note that Theorem 9 from Section 2.3 is implicitly used in what follows.
First, denote M

Df
a (W1, . . . ,Wn) as the minimal value of:

n∑
i=1

aiDf (w
(i)‖v)

subject to w(i) ∈ Wi, 1 ≤ i ≤ n and v ∈ DJ . Furthermore, we denote Eλ as the minimal value of:

(1− λ)
[ n∑
i=1

aiDf (w
(i)‖v)−M

Df
a (W1, . . . ,Wn)

]
+ λDf (t‖v) (15)

subject to w(i) ∈ Wi, 1 ≤ i ≤ n and v ∈ DJ . By the definition of M
Df
a (W1, . . . ,Wn), we have that

0 ≤ Eλ for all 1 > λ > 0.
Note that for a fixed λ, if v ∈ DJ globally minimizes Equation (15) subject to w(i) ∈ Wi, 1 ≤ i ≤ n,

then v ∈ Θ
Df

(λ,a1−λa1,...,an−λan)(I,W1, . . . ,Wn) (by Theorem 18, such a v is unique), and conversely,

if v ∈ Θ
Df

(λ,a1−λa1,...,an−λan)(I,W1, . . . ,Wn), then v minimizes Equation (15), subject to the above
constraints.

Now, let r = arg min
v∈Θ

Df
a (W1,...,Wn)

Df (t‖v). Since r ∈ Θ
Df
a (W1, . . . ,Wn), it follows that for all

1 > λ > 0, we have that:
Eλ ≤ λDf (t‖r). (16)

Since DJ ⊆ RJ is a compact space, there exists a sequence {λm}∞m=1, 0 < λm < 1, limm→∞ λm = 0,
such that {v[λm]}∞m=1 converges. Let w(i)[λm] be the Df -projection of v[λm] into Wi for all 1 ≤ i ≤ n and
m = 1, 2, . . . . By Equation (16), the sequence:{ n∑

i=1

aiDf (w
(i)[λm]‖v[λm])

}∞
m=1

converges to M
Df
a (W1, . . . ,Wn).

Note that we already know that limm→∞ v[λm] exists, and we denote it by v. However, we do
not know whether the same is true for limm→∞w(i)[λm], 1 ≤ i ≤ n. On the other hand, since
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W1, . . . ,Wn are compact, the considered sequences have convergent subsequences. Let us denote the
corresponding limits w(1), . . . ,w(n). Since Df (·‖·) is a continuous function in both variables, the value
of
∑n

i=1 aiDf (w
(i)‖v) must be equal to M

Df
a (W1, . . . ,Wn). However, this means that we have found

a global minimizer (w(1), . . . ,w(n),v) of
∑n

i=1 aiDf (w
(i)‖v) subject to w(i) ∈ Wi, 1 ≤ i ≤ n, and

v ∈ DJ .
It follows that v = limm→∞ v[λm] ∈ Θ

Df
a (W1, . . . ,Wn). By Equation (16):

0 ≤ (1− λm)
[ n∑
i=1

aiDf (w
(i)[λm]‖v[λm])−M

Df
a (W1, . . . ,Wn)

]
+ λmDf (t‖v[λm]) ≤ λmDf (t‖r).

Hence, 0 ≤ λm[Df (t‖r) − Df (t‖v[λm])] for all m = 1, 2, . . . . However, by definition of r, this is
possible only if r = v.

In fact, we have proven that for every sequence {λm}∞m=1, such that limm→∞ λm = 0 and {v[λm]}∞m=1

is convergent, {v[λm]}∞m=1 must converge to r. Therefore, assume that there is a sequence {λm}∞m=1,
such that limm→∞ λm = 0, but {v[λm]}∞m=1 is not convergent. Then, there is an open neighborhood of
the point r outside of which there are an infinite number of the members of the sequence {v[λm]}∞m=1.
Since DJ is compact, this sequence must have a convergent subsequence with a limit distinct from r.
That, however, contradicts our previous claim.

The theorem above is illustrated in Figure 13. Indeed, if Θ
Df
a (W1, . . . ,Wn) is a singleton, then the

limit in the theorem above is obvious. By Theorem 18, this happens in particular when at least one
of W1, . . . ,Wn is a singleton. However, it is not hard to observe an interesting case; consider that
W1, . . . ,Wn have a nonempty intersection, which is not a singleton. In this case, the limit above is, in
fact, the conjugated Df -projection of the probability function t into that intersection. Such a conjugated
projection depends on t. In particular, we can recover any point in the intersection by setting it to be the
point t.

The following analogue of Theorem 18 has a fairly similar proof.

Theorem 20. Let W1, . . . ,Wn ⊆ DJ be closed, convex, nonempty and such that, for at least one i Wi

is a singleton. Let Df be a convex Bregman divergence, which is strictly convex in its second argument
and a ∈ Dn. Then, Θ̂

Df
a (W1, . . . ,Wn) is a singleton.

Theorem 21 (Chairman Theorem for Θ̂
Df

A ). Let I ⊆ DJ be a singleton consisting of an arbitrary
probability function t ∈ DJ . Let W1, . . . ,Wn ⊆ DJ be closed, convex and nonempty, a ∈ A be
such that a ∈ Dn and Df be a convex differentiable Bregman divergence, which is strictly convex in its
second argument. For 1 > λ > 0, define:

{v[λ]} = Θ̂
Df

(λ,a1−λa1,...,an−λan)(I,W1, . . . ,Wn).

Then, limλ↘0 v
[λ] exists and equals:

arg min
v∈Θ̂

Df
a (W1,...,Wn)

Df (v‖t),

i.e., it equals the Df -projection of the probability function t into Θ̂
Df
a (W1, . . . ,Wn).
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The proof is analogous to the one of Theorem 19, so we omit it.

4. Applications

4.1. Relationship to Inference Processes

In this subsection, we will discuss some striking relationships between the chairmen theorems and
the framework of inference processes [26]. Inference processes are methods of reasoning by which an
expert may select a single probability function from a nonempty closed convex set of possible options.
In our framework, it is simply a problem of choosing a single probability function in a closed convex
nonempty set W ⊆ DJ . This selection is, however, not arbitrary, and it is expected to satisfy some
rational principles based on symmetry and consistency, as discussed in [15]. The maximum entropy
(ME) inference process, which chooses the most entropic point in a given closed convex nonempty set,
is uniquely justified by a list of such principles, as Paris and Vencovská showed [15].

As discussed in Section 1.2, the most entropic point in a closed convex nonempty set W ⊆ DJ

coincides with the KL-projection of the uniform probability function into W . This can be immediately
applied to the chairman theorem for Θ̂KL

A , where A is a family of weighting vectors:
Let I ⊆ DJ be a singleton consisting of the uniform probability function t ∈ DJ . Let W1, . . . ,Wn ⊆

DJ be closed, convex and nonempty and a ∈ A be such that a ∈ Dn. For 1 > λ > 0, define:

{v[λ]} = Θ̂KL
(λ,a1−λa1,...,an−λan)(I,W1, . . . ,Wn).

Then:
lim
λ↘0

v[λ] = ME(Θ̂KL
a (W1, . . . ,Wn)).

For the family of weighting vectors:

N =
{( 1

n
, . . . ,

1

n︸ ︷︷ ︸
n

)
: n = 1, 2, . . .

}
the operator that results by applying the ME-inference process to the operator Θ̂KL

N is, in fact, a
probabilistic merging operator, which was introduced and studied by Wilmers in [18] under the name
“social entropy process” or SEP, for short. In that paper, Wilmers argues that this merging operator is, to
date, the most appealing with respect to symmetry and consistency; somehow, in the spirit of the original
justification for the ME-inference process, although the problem of finding a complete justification is
still open.

Whether SEP will turn out to be the most appealing probabilistic merging operator or not, by the
same manner as above, we can define several probabilistic merging operators related to several other
classical inference processes.

For example, the conjugated KL-projection of the uniform probability function into a closed convex
nonempty set W ⊆ DJ in fact generates the so-called CM∞-inference process (a limit version of the
central mass process [26]). We write simply CM∞(W ) to denote the point of the projection, which is
explicitly given by:

CM∞(W ) = arg min
w∈W

−
J∑
j=1

logwj .
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The chairman theorem for ΘKL
N then suggests considering the probabilistic merging operator defined for

every n ≥ 1 and all closed convex nonempty sets W1, . . . ,Wn ⊆ DJ by:

coSEP(W1, . . . ,Wn) = {CM∞(ΘKL
a (W1, . . . ,Wn))},

where a ∈ Dn and a ∈ N . We will call this operator the conjugated social entropy process coSEP.
What is really appealing about the operators SEP and coSEP is that there are singletons; we simply

say that they satisfy the singleton principle (SP). Furthermore, the consistency principle (CP) is obviously
satisfied by all of them. However, there is an interesting principle that can never be satisfied by a
probabilistic merging operator that satisfies (CP) and is always a singleton: the disagreement principle
introduced in [5].

(DP) Disagreement Principle. Let ∆ be a probabilistic merging operator. Then, we say that ∆ satisfies
the disagreement principle if, for every n,m ≥ 1 and all W1, . . . ,Wn ⊆ DJ and V1, . . . , Vm ⊆ DJ :

∆(W1, . . . ,Wn) ∩∆(V1, . . . , Vm) = ∅

implies:
∆(W1, . . . ,Wn, V1, . . . , Vm) ∩∆(W1, . . . ,Wn) = ∅.

We cite [5] on the desirability of this principle: the principle (informally) says “. . . that a consistent
group who disagrees with another group and then merges with them can be sure that they have influenced
the opinions of the combined group.”

Theorem 22. There is no probabilistic merging operator that satisfies all (SP), (CP) and (DP).

Proof. Let ∆ be a probabilistic merging operator. Assume that V ( W ⊆ DJ and that V is a singleton.
Suppose that ∆(W ) 6= V = ∆(V ). Then, by (CP), ∆(W,V ) = V , which contradicts (DP).

Theorem 23. The probabilistic merging operators Θ
Df

N and Θ̂
Df

N , where Df is a convex Bregman
divergence for the prior and is additionally differentiable and strictly convex in its second argument
for the latter, satisfy (DP).

Proof. We prove the theorem only for Θ̂
Df

N . The proof for Θ
Df

N is similar.
Let W1, . . . ,Wn, V1, . . . , Vm ⊆ DJ be closed convex and nonempty. For a contradiction, assume

that v ∈ Θ̂
Df

( 1
n
,..., 1

n
)
(W1, . . . ,Wn), v ∈ Θ̂

Df

( 1
n+m

,..., 1
n+m

)
(W1, . . . ,Wn, V1, . . . , Vm) and, at the same time,

v 6∈ Θ̂
Df

( 1
m
,..., 1

m
)
(V1, . . . , Vm).

Denote v(i) the conjugated Df -projection of v into Vi, 1 ≤ i ≤ m. Then, there is u ∈ DJ , such
that u = Pool

Df

( 1
m
,..., 1

m
)
(v(1), . . . ,v(m)), i.e.,

∑m
i=1

1
m
Df (v‖v(i)) >

∑m
i=1

1
m
Df (u‖v(i)). Since every

Bregman divergence is strictly convex in its first argument, we have that:

∂

∂λ

[ m∑
i=1

Df ((1− λ)v + λu‖v(i))
]∣∣∣
λ=0

< 0. (17)
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Now, denote w(i) the conjugated Df -projection of v into Wi, 1 ≤ i ≤ n. Since v =

Pool
Df

( 1
n+m

,..., 1
n+m

)
(w(1), . . . ,w(n),v(1), . . . ,v(m)) and v = Pool

Df

( 1
n
,..., 1

n
)
(w(1), . . . ,w(n)), the strict

convexity of Bregman divergences in their first argument gives also:

∂

∂λ

[ n∑
i=1

Df ((1− λ)v + λu‖w(i)) +
m∑
i=1

Df ((1− λ)v + λu‖v(i))
]∣∣∣
λ=0
≥ 0

and:

∂

∂λ

[ n∑
i=1

Df ((1− λ)v + λu‖w(i))
]∣∣∣
λ=0
≥ 0.

However, this contradicts Equation (17).

We can conclude that, before deciding which probabilistic merging operator to use, we need to
establish which two of the three properties we want the operator to satisfy. In this paper, we have
seen instances of all three options, as listed in Table 1.

Table 1. Examples for three saturated possibilities with respect to the consistency
principle (CP), disagreement principle (DP) and singleton principle (SP). KIRP,
Kern-Isberner and Rödder; OSEP, obdurate social entropy process; SEP, social entropy
process; coSEP, conjugated social entropy process.

Principles Probabilistic Merging Operators

(DP), (CP) Θ
Df

N , Θ̂
Df

N
(DP), (SP) KIRP, OSEP

(CP), (SP) SEP, coSEP

Recall that KIRP is the operator due to Kern-Isberner and Röder and OSEP is the obdurate social
entropy process; see Section 2.2 for more details. A proof that KIRP and OSEP satisfy (DP) can be
easily obtained as a modification of the proof of Theorem 23, so we omit it.

4.2. Computability

In this subsection, we would like to propose a method corresponding to the classical method of
projection, but in the multi-expert context. The possible use could be similar; if the knowledge of a
college of experts could be characterized by a closed convex nonempty set of probability functions,
then we would like to find such a probability function in that set that is “closest” to a given piece of
information represented by another probability function. We only need to specify a way to represent the
knowledge of the college by such a single set and pair it with an appropriate method of projection.

Throughout this subsection, assume that we are given closed convex nonempty sets of probability
functions W1, . . . ,Wn ⊆ DJ with weighting a ∈ A, where ai is the weight of Wi and a probability
function v ∈ DJ to represent.

If the measure of “being closed” is quantified by a projection by means of a convex differentiable
Bregman divergence Df , which is strictly convex in its second argument, our proposed method consists
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of the following. First, represent W1, . . . ,Wn by a single, closed and convex set Θ̂
Df
a (W1, . . . ,Wn), and

then, take the Df -projection of v into Θ̂
Df
a (W1, . . . ,Wn).

On the other hand, if the measure of “being closed” is quantified by a conjugated projections by means
of a convex differentiable Bregman divergence Df , which is strictly convex in its second argument, we
first representW1, . . . ,Wn by a single, closed convex set Θ

Df
a (W1, . . . ,Wn) and then take the conjugated

Df -projection of v into Θ
Df
a (W1, . . . ,Wn).

The methods have two distinguishing features:

1. If all of the sets W1, . . . ,Wn are singletons, the methods reduce to Pool
Df

A and LinOpA-pooling
operators respectively.

2. If W1, . . . ,Wn have a nonempty intersection V , they reduce to Df and conjugated Df -projections
into V , respectively.

In this subsection, we shall investigate how effective it is to compute the results of those two methods.
Notice that SEP and coSEP, defined in Section 4.1, are specific instances of those procedures,
respectively, in which case, we are interested in KL-projections and conjugated KL-projections of the
uniform probability function.

There are indeed some serious computational issues. The most essential is the following. A closed
convex nonempty set W ⊆ DJ is often given by a set of constraints on DJ . How can we effectively
verify that the resulting setW is nonempty? Unfortunately, it is not even possible to find a random Turing
machine running in polynomial time that upon input given by a set of constraints on probability functions
verifies the consistency of this set of constraints (given that the problems solvable in a randomized
polynomial time cannot be solved in a polynomial time); see Theorem 10.7 of [26].

However, some computational problems closely related to projections have been extensively studied
in the literature. As we have noted in Section 3.1, this includes procedures for finding a KL-projection
to a closed convex set of probability functions. These show that in many particular practical
implementations, the problem of intractability does not arise, e.g., as in the case when given closed
convex nonempty sets are generated by marginal probability functions and where the IPFP-procedure
can be applied to effectively find a KL-projection; see [16]. Therefore, we will assume that some
effective procedures for Df -projections and conjugated Df -projections are given.

Under such an assumption, the iterative processes from Section 3.1 and the Chairmen theorems offer
a way how to compute (although possibly ineffectively) the results of the two methods above. We shall
start with the latter.

By Theorem 16, we know that the sequence:

{v[i]}∞i=0,

where v[0] = t is arbitrary in DJ and v[i+1] = F
Df ,A
[W1,...,Wn](v

[i]), converges to some probability function in

Θ
Df
a (W1, . . . ,Wn). Notice that Df is required to be differentiable in order to establish this conclusion.
Recall that by Theorem 18, Θ

Df
a (W1, . . . ,Wn) is a singleton when at least one of W1, . . . ,Wn is a

singleton. Let I ∈ DJ be such that I = {v}. For every 1 > λ > 0, we define the sequence {v[i]
[λ]}∞i=0 by

v
[0]
[λ] = t (t can be arbitrary) and:

v
[i+1]
[λ] = F

Df ,(λ,a1−λa1,...,an−λan)

[I,W1,...,Wn] (v
[i]
[λ]).
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By Theorem 16:
{ lim
i→∞

v
[i]
[λ]} = Θ

Df

(λ,a1−λa1,...,an−λan)(I,W1, . . . ,Wn).

By the chairman theorem for Θ
Df

A :

lim
λ↘0

lim
i→∞

v
[i]
[λ] = arg min

w∈Θ
Df
a (W1,...,Wn)

Df (v‖w) (18)

i.e., equals the conjugated Df -projection of the probability function v into Θ
Df
a (W1, . . . ,Wn).

Now, notice that if the limits in Equation (18) were interchangeable, then this would offer an answer
to the question from Section 3.1 to closely characterize the limit limi→∞ v[i] (but with no claims to any
theoretical results on the complexity of the computation). Unfortunately, the following simple example
introduced in [10] shows that these limits are not interchangeable.

Example 6. Let J = 4, W1 = {(x, 1
4
− x, y, 3

4
− y), x ∈ [0.01, 1

4
− 0.01], y ∈ [0.01, 3

4
− 0.01]} and

W2 = {(x, y, 1
4
− x, 3

4
− y), x ∈ [0.01, 1

4
− 0.01], y ∈ [0.01, 3

4
− 0.01]}. Assume that the weighting isN ,

Df = KL and the probability function v ∈ D4 to interpret is the uniform probability function. In other
words, we are looking for coSEP(W1,W2).

Then, the members of the sequence {v[i]}∞i=0 can be computed by two minimization problems: find
x ∈ [0.01, 1

4
− 0.01] and y ∈ [0.01, 3

4
− 0.01] that minimize:

x log
x

v
[i]
1

+
(1

4
− x
)

log
1
4
− x
v

[i]
2

+ y log
y

v
[i]
3

+
(3

4
− y
)

log
3
4
− y
v

[i]
4

and another couple x̄ ∈ [0.01, 1
4
− 0.01] and ȳ ∈ [0.01, 3

4
− 0.01] that minimize:

x̄ log
x̄

v
[i]
1

+ ȳ log
ȳ

v
[i]
2

+ (
1

4
− x̄) log

1
4
− x̄
v

[i]
3

+ (
3

4
− ȳ) log

3
4
− ȳ
v

[i]
4

.

Then, v[i+1]
1 = x+x̄

2
, v[i+1]

2 =
1
4
−x+ȳ

2
, v[i+1]

3 =
1
4
−x̄+y

2
and v[i+1]

4 =
3
2
−ȳ−y

2
. After setting v[0] = (1

4
, 1

4
, 1

4
, 1

4
),

it turns out that in each iteration, x̄ = x and ȳ = y.
After performing the numerical computation for the first one hundred iterations, we obtain:

{v[100]} ≈ (0.0488395, 0.2011605, 0.2011605, 0.5488394).

The rate of convergence for the first coordinate of probability functions is depicted in Figure 14 by the
bottom red line.

However, since W1 and W2 are jointly consistent, we have that:

Θ
Df

( 1
2
, 1
2

)
(W1,W2) = W1 ∩W2 =

{(
x,

1

4
− x, 1

4
− x, 1

2
+ x
)

, x ∈
[
0.01,

0.96

4

]}
.

We compute that CM∞(W1 ∩W2) (the conjugated KL-projection of the uniform probability function)
is approximately:

(0.091506, 0.15849, 0.15849, 0.5915),

which is obviously not equal to the limit of the sequence {v[i]}∞i=0.
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Figure 14. The numerical computation for Example 7. Blue lines from the top are for
λ = 1

21
, λ = 1

41
and λ = 1

61
. This graph is taken from [10].

It seems that the only viable way to use Equation (18) to estimate a result of the conjugated
Df -projection into Θ

Df
a (W1, . . . ,Wn) is to choose a sufficiently small λ, and for this λ, iterate the

sequence {v[i]
[λ]}∞i=0. However, the rate of convergence heavily depends on λ, and in fact, this often

materializes in a negative way for a practical computation [10]:

Example 7. Consider the situation from Example 6. We compute numerically the first coordinate of
initial members of the sequence {v[i]

[λ]}∞i=0 for several values of λ, and we compare them with the first
coordinate of the sequence {v[i]}∞i=0. The algorithm we use is as follows. Note that due to the design of
the sets, only one minimization problem is sufficient to solve in each iteration, as we have pointed out in
the previous example.
v1 := 1

4
; v2 := 1

4
; v3 := 1

4
; v4 := 1

4
;

for i from 1 by 1 to 200 do
Minimize

(
x log x

v1
+
(

1
4
− x
)

log
1
4
−x
v2

+ y log y
v3

+
(

3
4
− y
)

log
3
4
−y
v4
, x = 0.01..0.96

4
, y = 0.01..2.96

4

)
;

v1 := 1
4
· λ + x · (1

2
− 1

2
λ) + x · (1

2
− 1

2
λ); v2 := 1

4
· λ + (1

4
− x) · (1

2
− 1

2
λ) + y · (1

2
− 1

2
λ); v3 :=

1
4
· λ+ 1

4
− x) · (1

2
− 1

2
λ) + y · (1

2
− 1

2
λ); v4 := 1

4
· λ+ (3

4
− y) · (1

2
− 1

2
λ) + (3

4
− y) · (1

2
− 1

2
λ);

end do;
The numerical result for λ = 1

21
, 1

41
, 1

61
is plotted in Figure 14. We can see that as λ decreases, the

limit points of sequences are converging to the first coordinate of CM∞(W1 ∩W2), which is denoted by
the black dotted line. The red line denotes the first coordinate of the sequence {v[i]}∞i=0.

The numerical result for λ = 1
61
, 1

121
, 1

181
is plotted in Figure 15. We can conclude that, although

the eventual precision rises as λ decreases, the rate of convergence is affected severely. Therefore, there
is a significant trade-off between the precision and the number of iterations.

Notice that, as λ decreases, the blue lines point-wise converge to the red line. This convergence is,
however, obviously not uniform.
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Figure 15. The numerical computation for Example 7. Blue lines from the top are for
λ = 1

61
, λ = 1

121
and λ = 1

181
. This graph is taken from [10].

Now, consider the prior method, which follows a fairly similar computation idea. By Theorem 17, we
know that the sequence:

{u[i]}∞i=0,

where u[0] = t is arbitrary in DJ and u[i+1] = F̂
Df ,A
[W1,...,Wn](u

[i]), converges to some probability

function in Θ̂
Df
a (W1, . . . ,Wn). This procedure can be, for instance, immediately used to compute

SEP(W1, . . . ,Wn) in a case when Θ̂KL
( 1
n
,..., 1

n
)
(W1, . . . ,Wn) is a singleton. By Theorem 20, this happens

when at least one of W1, . . . ,Wn is a singleton.
One may perhaps expect that if u[0] is the uniform probability function, then {limi→∞ u[i]} =

SEP(W1, . . . ,Wn). In the following example from [10], we will, however, see that this is not true in
general. Note that we cannot use Example 6, since in that case, actually, limi→∞ u[i] = SEP(W1,W2).

Example 8. Let J = 8,

W1 =
{(
x,

1

12
− x, 1

12
− x, 2

6
+ x, y,

1

6
− y, 1

6
,
1

6

)
, x ∈

[
0.01,

0.88

12

]
, y ∈

[
0.01,

0.94

6

]}
and:

W2 =
{(
x,

1

12
− x, 1

12
− x, 2

6
+ x,

1

12
,

1

12
, y,

2

6
− y
)

, x ∈
[
0.01,

0.88

12

]
, y ∈

[
0.01,

1.94

6

]}
.

W1 and W2 have a nonempty intersection; W1 ∩W2 = {(x, 1
12
− x, 1

12
− x, 2

6
+ x, 1

12
, 1

12
, 1

6
, 1

6
), x ∈

[0.01, 0.88
12

]}, and we can compute that SEP(W1,W2) is the most entropic probability function from the
set above with x equal to approximately 0.013888.

However, the sequence {u[i]}∞i=0 is already constant after one iteration and equals CM∞(W1) =

CM∞(W2) = CM∞(W1 ∩W2), in which case, x ≈ 0.029231.

By the aid of the chairman theorem for Θ̂
Df

A , we also suggest a way to approximate the Df -projection
of v into Θ̂

Df
a (W1, . . . ,Wn), but we have no claims to any theoretical results on the complexity of
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computation. Let I = {v}. For every 1 > λ > 0, we define the sequence {u[i]
[λ]}∞i=0 by u

[0]
[λ] = t, which

is arbitrary, and:

u
[i+1]
[λ] = F̂

Df ,(λ,a1−λa1,...,an−λan)

[I,W1,...,Wn] (u
[i]
[λ]).

By Theorem 17:

{ lim
i→∞

u
[i]
[m]} = Θ̂

Df

(λ,a1−λa1,...,an−λan)(I,W1, . . . ,Wn).

By the chairman theorem for Θ̂
Df

A :

lim
λ↘0

lim
i→∞

u
[i]
[λ] = arg min

w∈Θ̂
Df
a (W1,...,Wn)

Df (w‖v) (19)

i.e., equals the Df -projection of the probability function v into Θ̂
Df
a (W1, . . . ,Wn).

In particular, to approximate SEP(W1, . . . ,Wn) using Equation (19), one needs to choose a
sufficiently small λ and then iterate the sequence {u[i]

[λ]}∞i=0, where u
[0]
[λ] = v is the uniform probability

function, A = N and Df = KL. However, the question of how to determine such an λ and i in order to
achieve a specific level of accuracy merits further investigation.

The special case of the problem above when W1, . . . ,Wn have a nonempty intersection was
extensively studied in the literature, and many scientific and engineering problems can be expressed
as a problem of finding a point in such an intersection. Bregman in [7] showed the convergence of
(what is now called) cyclic Bregman projections to a point in the intersection (the notion of a Bregman
divergence is used only for the Euclidean space, but in [7], a more general topological vector space was
considered). Many cyclic algorithms with appealing applications have been developed since then; see,
e.g., [31,32].

Although the approach we propose offers the option of an empty intersection, it always leads to
a meaningful point, and in particular, if the intersection is nonempty, it chooses a point inside the
intersection; our study cannot be considered as an extension of the classical method of cyclic projections,
which was developed over (possibly infinite) Banach spaces [33] in contrast to a limited discrete
probabilistic space, which we are considering.

It is also worth mentioning that the method of cyclic projections, even in the case of an empty
intersection, often provides more useful results than our method. An example is the noise reduction
algorithm from [34].

One can perhaps conclude that the approach offered in this paper is at its best only another contribution
to the problem of finding a point in a convex set by means of geometry, which, however, offers some
interesting insights into the combination of Bregman projections with pooling operators.
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