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Abstract: Entropy generation in adiabatic flow of highly concentrated non-Newtonian 

emulsions in smooth tubes of five different diameters (7.15–26.54 mm) was investigated 

experimentally. The emulsions were of oil-in-water type with dispersed-phase concentration 
(φ ) ranging from 59.61–72.21% vol. The emulsions exhibited shear-thinning behavior in 

that the viscosity decreased with the increase in shear rate. The shear-stress (τ ) versus 
shear rate (γ ) data of emulsions could be described well by the power-law model: nKγτ = . 

The flow behavior index n  was less than 1 and it decreased sharply with the increase in φ  

whereas the consistency index K  increased rapidly with the increase in φ . For a given 

emulsion and tube diameter, the entropy generation rate per unit tube length increased 
linearly with the increase in the generalized Reynolds number ( nRe_ ) on a log-log scale. 

For emulsions with φ 15.65≤ % vol., the entropy generation rate decreased with the 

increase in tube diameter. A reverse trend in diameter-dependence was observed for the 
emulsion with φ  of 72.21% vol. New models are developed for the prediction of entropy 

generation rate in flow of power-law emulsions in smooth tubes. The experimental data 

shows good agreement with the proposed models.  

Keywords: emulsion; non-Newtonian; power law; entropy generation; pipeline flow; 

exergy destruction  
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1. Introduction 

According to the Gouy-Stodola theorem, the rate of loss of work or available energy in a process is 

directly proportional to the total rate of entropy generation within and outside the control volume. The 

Gouy-Stodola theorem is expressed mathematically as [1]: 

,lost o G totalW T S= 
 (1)

where lostW  is the rate of lost work, oT is the surroundings temperature, and totalGS ,
  is the total rate of 

entropy generation within and outside the control volume. The greater the rate of entropy generation 

due to internal and external irreversibilities, the greater is the amount of energy that becomes 

unavailable for work [2–4]. Thus, it is important from a practical point of view to estimate the rate of 

entropy generation in a process in order to determine the thermodynamic efficiency of the process. 

This article is related to entropy generation in flow of highly concentrated non-Newtonian 

emulsions of oil-in-water type in smooth tubes. The oil-in-water (designated as O/W) emulsions 

consist of oil droplets dispersed in a continuum of aqueous phase. Such emulsions are very important 

industrially [5]. For example, a large number of skincare and makeup creams marketed today are in the 

form of O/W emulsions. One important function of these creams is to prevent dryness of skin by 

replacing lost moisture and by keeping the skin hydrated over a period of time. The O/W emulsions are 

of considerable importance in the food industry as well. Examples of food emulsions (O/W type) are: milk, 

mayonnaise, coffee whiteners, and salad dressings. The dispersed-phase (oil droplets) concentration of 

food emulsions could range from low to very high. For example, milk consists of 3–4 volume percent of 

dispersed-phase whereas mayonnaise consists of more than 65 volume percent dispersed phase (oil 

droplets). The pipeline transportation of highly viscous crude oils in the form of O/W emulsions has 

also received special attention in recent years [6–8]. The transportation of highly viscous crude oils, 

such as bitumen and heavy oils, by pipelines is difficult, especially during cold weather. To facilitate 

the flow of highly viscous crude oils in pipelines, it is necessary to reduce their viscosity. This can be 

achieved by forming emulsions of O/W type with crude oil as the dispersed phase. The concept of 

crude oil transportation in the form of O/W emulsion has already been utilized commercially in a 

pipeline 21 km in length and 20 cm in diameter in California, and in a pipeline 238 km in length and  

51 cm in diameter in Indonesia [7]. For emulsion pipelining to be economical, it is important to keep 

the dispersed-phase (oil) concentration of the emulsion as high as possible and, at the same time, 

maintain the emulsion viscosity at a reasonable level. However, concentrated O/W emulsions are 

known to exhibit non-Newtonian shear-thinning behavior. 

In light of the industrial applications of emulsions just mentioned, it is of practical significance to 

investigate the production of entropy in emulsion flow in pipelines and other process equipment. In the 

past, a number of research articles have been published on simultaneous flow of oil and water in 

pipelines [7,9–22]. The published studies deal with topics such as: phase inversion in emulsion  

flow [9–12], droplet size and droplet size distribution in emulsion flow [13,14], flow patterns in 

concurrent flow of oil and water in pipelines [15–17], and pressure drop in pipeline flow of  

emulsions [7,16–22]. However, little or no attention has been given to the second law analysis and 

entropy generation in emulsion flows despite the practical significance of the problem.  
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This work is in continuation of our earlier study on the production of entropy in flow of emulsions 

in smooth tubes [23]. Our earlier study was restricted to entropy generation in flow of dilute to 

moderately concentrated water-in-oil (W/O) emulsions. The emulsions were Newtonian in nature. The 

key objective of the present work is to experimentally investigate the generation of entropy in flow of 

highly concentrated surfactant-stabilized oil-in-water (O/W) emulsions in different diameter tubes. 

These emulsions exhibited non-Newtonian shear-thinning behavior. Models are also developed for the 

prediction of entropy generation rate in flow of power-law emulsions in smooth tubes. 

It should be pointed out that a number of interesting research articles have been published recently 

on heat transfer and entropy generation in flow of Newtonian and non-Newtonian fluids [24–33]. 

Several published articles also deal with the fluid mechanics, thermodynamics, and stability of  

non-Newtonian fluids in different configurations [34–36]. However, the published studies mostly deal 

with analytical solutions and simulations related to homogeneous fluids. To our knowledge, little or no 

experimental and theoretical work has been reported on entropy generation in flow of concentrated 

non-Newtonian emulsions in tubes.  

2. Theoretical Background 

Consider a control volume with multiple inlets and outlets. Let the control volume be in contact 
with N heat reservoirs at temperatures iT ’s and the environment at oT . Let the rates of heat transfer 

from heat reservoirs to the control volume be iQ ’s and from environment to the control volume be oQ . 

Let the temperatures of the control volume boundary portions in contact with the heat reservoirs and 
the environment be biT ’s and boT , respectively. Entropy balance on the control volume gives: 
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(2)

where m is the mass flow rate, s  is the specific entropy, GS is the rate of entropy generation, “In” refers 

to inlets, “Out” refers to outlets, and subscript “CV” refers to control volume. Doing entropy balance on 

the surroundings, one can write: 
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This equation could be re-cast as: 
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Adding the entropy balances for control volume and surroundings, the following result is obtained: 
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(5)

This equation could be re-cast as: 
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The thermodynamic efficiency η  of a flow process is defined as the ratio of actual shaft work ( shW ) 

produced to the maximum shaft work ( idealshW ,
 ) obtainable from a given change in the properties of the 

flow streams [2,4]. Thus: 
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 −
==η

 
(7)

Using the Gouy-Stodola theorem, the thermodynamic efficiency of a process can be expressed as: 

idealsh
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(8)

According to the second law of thermodynamics, 0, >totalGS  for any irreversible process and therefore, 

the efficiency of a process expressed in Equation (8) is always less than one. Only in the limiting case 

of complete reversibility where the process is completely reversible without any internal and external 
irreversibilities, 0, =totalGS and the thermodynamic efficiency of the process is one. 

Consider now the steady and adiabatic flow of fluid in a pipe. According to Equation (2):  

( ) smssmS CVG Δ=−= 
12,  (9)

For adiabatic incompressible flow in a horizontal pipe in the absence of any shaft work, the enthalpy 
change is zero ( 012 =−=Δ hhh ) according to the first law for open systems. Using the following 

fundamental thermodynamic relation: 

ρ
dP

Tdsdh +=
 

(10)

it follows that:  







−=

dx

dP

dx

ds
T

ρ
1

 
(11)

where T  is temperature, P  is pressure, ρ  is density, and dxdP /  is pressure gradient in the direction 

of flow. Combining Equations (9) and (11), we obtain: 
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where GS′  is the rate of entropy generation per unit pipe length.  

The Fanning friction factor f  in pipe flow is defined as: 

2/

)4/)(/(
2V

DdxdP
f

ρ
−=

 
(13)

where D  is the pipe diameter and V is the average fluid velocity in pipe. From Equations (12) and (13), 

it follows that: 
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2
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In pipeline flow of non-Newtonian power-law fluids, friction factor is related to the generalized 
Reynolds number nRe_  defined as: 

n
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where K and n  are the power-law parameters which appear in the following power-law model of the fluid:  
nKγτ =  (16)

In this power law model, τ is the shear stress and γ  is the shear rate. The power-law parameter K  is 

often referred to as “consistency index” and n  is called “flow behavior index”. For Newtonian fluids, 
1=n  and K μ=  ( μ is the viscosity) and the generalized Reynolds number nRe_  reduces to the 

conventional Reynolds number. For pseudo-plastic (shear-thinning) fluids, 1<n  and for dilatant (shear-

thickening) fluids, 1>n .  

From Equations (14) and (15), it can be readily shown that: 
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When the fluid is Newtonian, 1=n , μ=K , μ=na , and the expression for entropy generation rate per 

unit pipe length reduces to : 
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where Re is the conventional Reynolds number defined as: μρ /Re VD= . Equation (19) was derived 

in our previous study [23] on entropy generation in pipeline flow of Newtonian emulsions.  

For laminar flow of non-Newtonian power-law fluids in pipes, the friction factor is related to the 
generalized Reynolds number nRe_  as follows: 

n
f

Re_

16=
 

(20)

For turbulent flow of non-Newtonian power-law fluids in hydraulically smooth pipes, the friction 

factor is given by the following Dodge-Metzner equation [37]: 
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The Dodge-Metzner equation reduces to the well-known Prandtl-von Karman law in the special case 
of Newtonian fluids ( 1=n , μ=K ): 

[ ] 4.0Relog4
1

10 −= f
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(22)
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The disadvantage of Equation (21) is that it is not explicit in f  and has to be solved numerically. Dodge 

and Metzner [37] also proposed a Blasius-type equation explicit in f  for non-Newtonian fluids: 

( ) nn
f n

β
α

Re_
=

 
(23)

where nα  and nβ  are functions of n  reported graphically. The plots of nα versus n  and nβ  versus n  

can be described accurately by the following expressions: 

078.0)ln(0077.0 += nnα  (24)

22.0)(25.0 −= nnβ  (25)

The critical Reynolds number for transition from laminar to turbulent flow in power-law non-Newtonian 

fluids is given as [38]: 
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Substitution of the friction factor expressions from Equations (20) and (23) into Equation (17) leads to 

the following relations for entropy production in pipeline flow of non-Newtonian power-law fluids: 
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(28)

where na is given by Equation (18), nα by Equation (24), and nβ by Equation (25). Equations (27) and (28) 

are the new predictive models for entropy generation per unit length in pipeline flow of non-Newtonian 

power-law fluids. These models could be applied to non-Newtonian (power-law) pseudo-homogeneous 
mixtures of two phases such as emulsions of oil and water. When the fluid is Newtonian, 1=n , μ=K , 

these expressions reduce to: 
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(30)

Equations (29) and (30) were derived in our previous study [23] on entropy generation in pipeline flow 

of Newtonian emulsions.  
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3. Model Predictions 

Figure 1 shows the effect of flow behavior index n  on entropy generation rate in flow of  
non-Newtonian power-law fluids in a smooth tube. The plots of GS′  versus nRe_  are generated from 

model Equations (27) and (28) for different values of n . The tube diameter is 26.54 mm and the fluid 
properties are as follows: 3/1000 mkg=ρ  and nsPaK .1.0= . The figure indicates that: (a) for a given 

value of n , the entropy generation rate GS′  increases linearly with the increase in generalized Reynolds 

number on a log-log scale, in both laminar and turbulent regimes. However, the slope in the turbulent 
regime is higher; (b) for a given value of nRe_ , the entropy generation rate per unit tube length 

increases with the increase in the value of the flow behavior index n . This indicates that flow of 

pseudo-plastic fluids ( 1<n ) is more efficient thermodynamically in comparison with dilatant  

fluids ( 1>n ).  

Figure 1. GS ′  versus nRe_  plots for non-Newtonian power-law fluids for different values 

of flow behavior index n . 

 
The influence of consistency index K  on entropy generation rate in flow of power-law fluids in a 

smooth tube is shown in Figure 2. The plots of GS′  versus nRe_  shown in the figure are generated 

from model Equations (27) and (28) for different values of K . The tube diameter is 26.54 mm and the 
fluid properties are as follows: 3/1000 mkg=ρ  and 6.0=n . With the increase in K , a constant 

upward shift is observed in the plot of GS′  versus nRe_ . This indicates that for a given value of nRe_ , 

the entropy generation rate per unit tube length increases with the increase in K  value. 
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Figure 2. GS ′  versus nRe_  plots for non-Newtonian power-law fluids for different values 

of consistency index K . 

 

4. Experimental Work 

Figure 3 shows a schematic diagram of the flow rig that was designed and developed to 

experimentally investigate of the rate of entropy generation in flow of emulsions in smooth tubes. Five 

different diameter tubes (stainless steel, seamless) were installed horizontally. The various dimensions 

of the test sections are summarized in Table 1. The emulsions were prepared in a large mixing tank 

(capacity about 1 m3) equipped with baffles, two high shear mixers, heating/cooling coil, and a 

temperature controller. The emulsion from the mixing tank was circulated to the tube test sections, one 

at a time, by a centrifugal pump. From the tube test section, the emulsion was allowed to return to the 

mixing tank via the metering section where its flow rate was measured.  

The pressure drops in various tubes were measured by means of pressure transducers. The output 

signals from the pressure transducers were recorded by a microcomputer data-acquisition system. 

Further details about the flow rig can be found in our earlier publication [23]. 

The emulsions were prepared using 1% by wt. surfactant solution in tap water and a refined mineral 

oil (Bayol-35). Triton X-100 (isooctylphenoxypolyethoxy ethanol) was used as a surfactant. This is a 

water soluble non-ionic surfactant. The oil had a density of 780 kg/m3 and a viscosity of  

2.41 mPa.s at 25 °C. The oil-in-water emulsions of three different dispersed phase (oil) concentrations 

were prepared; the dispersed phase concentrations were 59.61%, 65.15%, and 72.21% by volume. The 

emulsions produced were highly stable with respect to coalescence.  
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A Fann coaxial cylinder viscometer was used to determine the rheological behavior (shear stress 

versus shear rate) of emulsions. The droplet size information of emulsion was obtained by taking 

photomicrographs with a Zeiss optical microscope. 

The experimental work was conducted at a constant temperature of 25 °C. The temperature was 

maintained constant in the flow loop with the help of a temperature controller installed in the mixing tank. 

Figure 3. Schematic diagram of the flow rig. 

 

Table 1. Various dimensions of tube test sections. 

Tube inside diameter 
[mm] 

Entrance length 
[m] 

Length of test section 
[m] 

Exit length 
[m] 

7.15 1.07 3.05 0.46 
8.89 0.89 3.35 0.48 
12.60 1.19 2.74 0.53 
15.80 1.65 2.59 0.56 
26.54 3.05 1.22 0.67 

5. Experimental Results and Discussion 

Figure 4 shows typical photomicrographs of oil droplets of an emulsion. The droplets are smaller 

than 12 µm in diameter. The viscosity versus shear rate plots of emulsions are shown in Figures 5–7.  
The apparent viscosity μ , defined as the ratio of shear stress (τ ) to shear rate (γ ), decreases with 

the increase in shear rate indicative of shear-thinning non-Newtonian behavior of emulsions. The plots of 
μ  versus γ  follow a linear relationship on a log-log scale indicating that emulsions follow a power-law 

model (Equation (16)). Note that the power-law model (Equation (16)) could be expressed as: 
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γμ log)1(loglog nK −−=  (31)

Thus, the slope is of μ  versus γ  plot is negative, equal to – (1– n ). According to plots of Figures 5–7, 

the power-law index n  decreases and the consistency index K  increases with the increase in 

dispersed-phase (oil) concentration. The variations of n  and K  with the dispersed-phase concentration 

of emulsion can be seen more clearly in Figures 8 and 9. Interestingly, the power law constants n   

and K  undergo dramatic changes when the oil concentration of the emulsion is increased from  

65.15–72.21% vol. 

Figure 4. Typical photomicrographs of emulsion. 

 

  



Entropy 2014, 16 5188 

 

 

Figure 5. Apparent viscosity versus shear rate plot for 59.61% vol. O/W emulsion. 

 
Figure 6. Apparent viscosity versus shear rate plot for 65.15% vol. O/W emulsion. 

 
Figure 7. Apparent viscosity versus shear rate plot for 72.21% vol. O/W emulsion. 
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Figure 8. Variation of flow behavior index n  with the increase in dispersed phase 

concentration of O/W emulsion. 

 
Figure 9. Variation of consistency index K  with the increase in dispersed phase 

concentration of O/W emulsion. 

 

Figure 10 shows the plots of GS′  versus nRe_  data for 59.61% vol. O/W emulsion in different 

diameter tubes. For a given diameter tube, the entropy generation rate GS′  increases linearly with the 

increase in the generalized Reynolds number ( nRe_ ) on a log-log plot. As expected, the slope of GS′  

versus nRe_  plot is higher in the turbulent regime. With the increase in tube diameter, the entropy 

generation rate per unit tube length decreases at any given value of the generalized Reynolds number. 
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Also, the experimental data shows excellent agreement with the predictions of the models. The solid 

lines shown in Figure 10 are the predictions of laminar model (Equation (27)) and the dashed lines 

represent the predictions of turbulent model (Equation (28)).  

Figure 10. GS′  versus nRe_  plots for 59.61% vol. O/W emulsion flow in different 

diameter tubes. The solid lines in the laminar region represent Equation (27) and the 

dashed lines in the turbulent region represent Equation (28). 

 

Figures 11 and 12 show the plots of GS′  versus nRe_  data for 65.15% and 72.21% vol. O/W 

emulsions, respectively. Due to the highly viscous nature of these emulsions, turbulent flow could not 
be achieved in our experiments and the data are restricted to laminar regime only. The plots of GS′  

versus nRe_  data are linear (log-log scale) and the experimental data show good agreement with the 

predictions of the model, see Equation (27). It is interesting to note that in the case of 72.21% vol. 
O/W emulsion, the diameter dependence of entropy generation rate GS′  is opposite to that of the other 

emulsions with lower volume fraction of dispersed-phase. The entropy generation rate GS′ increases 

with the increase in tube diameter for 72.21% vol. O/W emulsion whereas the other emulsions with 
lower concentration exhibit a decrease in GS′  with the increase in tube diameter at a given nRe_ . 

According to the models, Equations (27) and (28):  
( ) ( )nn

G DS −−−∝′ 2/24
 (32)

When 5.0=n , Equation (32) predicts GS′  to be independent of the tube diameter. When 5.0>n , GS′  is 

expected to decrease with the increase in tube diameter as ( ) ( ) 02/24 >−− nn ; for Newtonian fluid  

( 1=n ), ( ) ( ) 22/24 =−− nn . When 5.0<n , GS′  is expected to increase with the increase in tube 

diameter as ( ) ( ) 02/24 <−− nn ; for the case of extreme pseudo-plasticity ( 0=n ), ( ) ( ) 12/24 −=−− nn  

and DSG ∝′ , that is, GS′ is directly proportional to the tube diameter. 
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Figure 11. GS′  versus nRe_  plots for 65.15% vol. O/W emulsion flow in different 

diameter tubes. The solid lines represent Equation (27). 

 

Figure 12. GS′  versus nRe_  plots for 72.21% vol. O/W emulsion flow in different 

diameter tubes. The solid lines represent Equation (27). 
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Figures 13–15 confirm the diameter-dependence of GS′  expressed in Equation (32). The 

experimental data are now re-plotted as ( ) ( )
G

nn SD ′−− 2/24  versus nRe_ . As expected, the experimental 

data for a given emulsion from different diameter tubes fall on the same curve. The solid lines shown 

in the figures are generated from the model equations: Equations (27) for laminar flow and Equation (28) 

for turbulent flow. There is good agreement between experimental data and model predictions. 
Figure 16 compares the plots of ( ) ( )

G
nn SD ′−− 2/24  versus nRe_  for different emulsions. The 

experimental data from all the tubes are included. At any given value of the generalized Reynolds 
number ( nRe_ ), the diameter-scaled entropy generation rate ( ( ) ( )

G
nn SD ′−− 2/24 ) of O/W emulsion 

increases with the increase in the dispersed-phase (φ ) concentration. While the increase in entropy 

generation rate is modest when φ  increases from 59.61–65.15% vol., a large increase in entropy 

generation rate is observed when φ  increases from 65.15–72.21% vol.  

At a high dispersed-phase concentration of 72.21% vol., the dispersed (oil) droplets of emulsion are 

jam packed and consequently the emulsion behaves as a very viscous material with high rates of 

entropy generation. The theoretical value of the dispersed-phase concentration corresponding to 

hexagonal close packing of spheres is 74% vol. Thus, emulsions are expected to behave more like a 
semi-solid material with significant yield stress when φ  is increased above 74% vol.  

Figure 13. ( ) ( )
G

nn SD ′−− 2/24  versus nRe_  plot for 59.61% vol. O/W emulsion flow in 

different diameter tubes ( nsPaKn .0221.0,965.0 == ). The solid line in the laminar region 

represents Equation (27) and the solid line in the turbulent region represents Equation (28). 

The colored circles represent experimental data from different diameter tubes. 
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Figure 14. ( ) ( )
G

nn SD ′−− 2/24  versus nRe_  plot for 65.15% vol. O/W emulsion flow in different 

diameter tubes ( nsPaKn .0758.0,904.0 ==  ). The solid line represents Equation (27).  

The colored circles represent experimental data from different diameter tubes. 

 

Figure 15. ( ) ( )
G

nn SD ′−− 2/24  versus nRe_  plot for 72.21% vol. O/W emulsion flow in different 

diameter tubes ( nsPaKn .9.7,355.0 ==  ). The solid line represents Equation (27). The 

colored circles represent experimental data from different diameter tubes. 
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Figure 16. Comparison of ( ) ( )
G

nn SD ′−− 2/24  versus nRe_  plots for O/W emulsions with 

different dispersed-phase concentrations. The solid lines represent Equation (27) (laminar 

flow) and Equation (28) (turbulent flow). The colored circles represent experimental data. 

 

6. Conclusions 

Entropy production in adiabatic flow of non-Newtonian power-law emulsions of oil-in-water type 

in smooth tubes was investigated experimentally and theoretically. Based on this study, the following 

conclusions can be made: (a) for a given power-law emulsion ( K  and n  fixed), the entropy generation 
rate GS′ in a given diameter tube increases linearly with the increase in generalized Reynolds number 

on a log-log scale, in both laminar and turbulent regimes. However, the slope in the turbulent regime is 
higher; (b) at a given value of the generalized Reynolds number nRe_ , the entropy generation rate per 

unit tube length increases with the increase in the value of the flow behavior index n , keeping other 
factors ( K  and D ) constant; (c) at a given value of nRe_ , the entropy generation rate per unit tube 

length increases with the increase in K  value, keeping other factors ( n  and D ) constant; (d) the 

power-law constants ( n  and K ) undergo dramatic changes when the dispersed-phase concentration of 

the O/W emulsion is increased from 65.15%–72.21% vol.; n  drops whereas K  rises sharply;  
(e) emulsions with dispersed-phase concentration (φ ) ≤  65.15% exhibit inverse diameter-dependency 

in that the entropy generation rate decreases with the increase in tube diameter whereas emulsion with 
φ  = 72.21% vol. shows direct diameter-dependency in that the entropy generation rate increases with 

the increase in tube diameter; (f) the diameter-scaled entropy generation rate increases sharply when φ  

is increased from 65.15%–72.21% vol.; and (g) the models proposed for entropy generation rate in 

flow of power-law fluids in tubes describe the experimental data for power-law emulsions reasonably well.  
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