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Abstract:



We consider the learning coefficients in learning theory and give two new methods for obtaining these coefficients in a homogeneous case: a method for finding a deepest singular point and a method to add variables. In application to Vandermonde matrix-type singularities, we show that these methods are effective. The learning coefficient of the generalization error in Bayesian estimation serves to measure the learning efficiency in singular learning models. Mathematically, the learning coefficient corresponds to a real log canonical threshold of singularities for the Kullback functions (relative entropy) in learning theory.
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1. Introduction


The purpose of a learning system is to estimate an unknown true density function (a probability model) that generates the data. Real data associated with, for example, genetic analysis, data mining, image or speech recognition, artificial intelligence, the control of a robot and time series prediction are very complicated and usually are not generated by a simple normal distribution. In Bayesian estimation, we set a learning model that is written in probabilistic form with parameters, and our goal is to estimate the true density function by a predictive function constructed with the learning model and such data. Therefore, the learning model should be abundant enough to capture the true density function’s structure. Hierarchical learning models, such as the layered neural network, the Boltzmann machine, the reduced rank regression and the normal mixture model, are known to be effective learning models for analyzing such data. These are, however, singular learning models, which cannot be analyzed using the classic theory of regular statistical models, because singular learning models have a singular Fisher metric that is not always approximated by any quadratic form [1,2,3,4]. Therefore, it is difficult to analyze their generalization errors, which indicate how precisely the predictive function approximates the true density function.



In recent studies, Watanabe showed using algebraic geometry that the generalization and training errors are subject to a universal law and defined the model selection method “widely applicable information criterion” (WAIC ) as a generalized Akaike information criterion (AIC) [5,6,7,8,9]. WAIC can even be applied to singular learning models, whereas AIC cannot. Using the WAIC, we can estimate the generalization errors from the training errors without any knowledge of the true probability density functions. The generalization errors relate to the generalization losses via the entropy of the true distribution. Thus, we can select a suitable model from among several statistical models by this method.



Computing the WAIC requires the values of the learning coefficient and the singular fluctuation, which are both birational invariants. Mathematically, the learning coefficient is the log canonical threshold (Definition 1) of the Kullback function (relative entropy), and the singular fluctuation is known as a statistically generalized log canonical threshold, which is obtained theoretically from the learning coefficient (Equation (1) in Section 2). These values can be obtained by Hironaka’s Theorem (Appendix A). However, it is still difficult to obtain these within learning theory for several reasons, such as degeneration with respect to their Newton polyhedra and non-isolation of their singularities [10]. Moreover, in algebraic geometry and algebraic analysis, these studies are usually done over an algebraically closed field [11,12]; many differences exist for real and complex fields. For example, log canonical thresholds over the complex field are less than one, whereas those over the real field are not necessarily so. We, therefore, cannot apply results over an algebraically closed field to our current situation directly (Appendix B). One of the bottlenecks in learning theory is to obtain the learning coefficients and the singular fluctuation.



In this paper, we consider the learning coefficient of “Vandermonde matrices-type singularities” in statistical learning theory. The reason why we contribute only to such singularities is that the Vandermonde matrix type is generic and essential in learning theory. These log canonical thresholds give the learning coefficients of normal mixture models, three-layered neural networks and mixtures of binomial distributions, which are widely used as effective learning models (Section 3.1 and Section 3.2 and [13]). Moreover, we prove Theorem 2 (the method for finding a deepest deepest singular point) and Theorem 3 (the method to add variables), which are very beneficial to obtain the log canonical threshold for the homogeneous case. Theorem 2 indicates the best point of singularities that gives the log canonical threshold. Therefore, this theorem is useful for the reduction of the number of blowup processes. Theorem 3 improves our recursive blowup method by simplifying coordinate system changes with added variables. These two theorems enable us to obtain a new bound for the log canonical thresholds of Vandermonde matrix-type singularities in Theorem 5. These bounds are much tighter than those in [14].



In the past few years, we have obtained the learning coefficients for reduced rank regression [15], for the three-layered neural network with one input unit and one output unit [16,17], and for the normal mixture models with a dimension of one [18]. The paper [14] derived bounds on the learning coefficients for the Vandermonde matrix-type singularities and explicit values under some conditions. The learning coefficients for the restricted Boltzmann machine [19] have also been considered recently. Ref [20,21,22], respectively, obtained these for naive Bayesian networks and for directed tree models with hidden variables. These results give partial answers for the learning coefficients.



The rest of the paper is in three sections. Section 2 summarizes the framework of Bayesian learning models. In Section 3, we demonstrate our main theorems and consider the log canonical threshold of Vandermonde matrix-type singularities (Definition 3). We finish with our conclusions in Section 4.




2. Learning Coefficients and Singular Fluctuations


In this section, we present the theory of learning coefficients and singular fluctuations. Let [image: there is no content] be a true probability density function of variables, [image: there is no content], and let [image: there is no content] be n training samples selected from [image: there is no content] independently and identically. Consider a learning model that is written in probabilistic form as [image: there is no content], where [image: there is no content] is a parameter. The purpose of the learning system is to estimate [image: there is no content] from [image: there is no content] using [image: there is no content]. Let [image: there is no content] be an a priori probability density function on the parameter set, W, and p(w|[image: there is no content]) be the a posteriori probability density function:


p(w|[image: there is no content])=1Znψ(w)∏i=1np([image: there is no content]|w)








where:


[image: there is no content]











Let us define for the inverse temperature, β:


[image: there is no content]








We usually set [image: there is no content].



We then have a predictive density function, [image: there is no content], which is the average inference of the Bayesian density function.



We next introduce the Kullback function, [image: there is no content], and the empirical Kullback function, [image: there is no content], for density functions [image: there is no content]:


K(q||p)=∑xq(x)log[image: there is no content]p(x)










[image: there is no content]








The function, [image: there is no content], always has a non-negative value and satisfies [image: there is no content], if and only if [image: there is no content].



The Bayesian generalization error, [image: there is no content], Bayesian training error, [image: there is no content], Gibbs generalization error, [image: there is no content], and Gibbs training error, [image: there is no content], are defined as follows:


[image: there is no content]=K(q(x)||Ew[p(x|w)]))










[image: there is no content]=Kn(q(x)|Ew[p([image: there is no content]|w)])










[image: there is no content]=Ew[K(q(x)||p(x|w))]








and


[image: there is no content]=Ew[Kn(q(x)||p(x|w))]








The most important of these is the Bayesian generalization error. This error describes how precisely the predictive function approximates the true density function.



Watanabe [6,7,23] proved the following four relations:


E[[image: there is no content]]=λ+νβ−νnβ+o(1n)










E[[image: there is no content]]=λ−νβ−νnβ+o(1n)










E[[image: there is no content]]=λ+νβnβ+o(1n)










E[[image: there is no content]]=λ−νβnβ+o(1n)











Thus we have:


E[[image: there is no content]]=E[[image: there is no content]]+2β(E[[image: there is no content]]−E[[image: there is no content]])+o(1n)








and


E[[image: there is no content]]=E[[image: there is no content]]+2β(E[[image: there is no content]]−E[[image: there is no content]])+o(1n)











Eliminating the expectation of the true probability density function from the above four errors and setting:


[image: there is no content]










[image: there is no content]










[image: there is no content]










[image: there is no content]








we then have:


E[BLg]=E[BLt]+2β(E[[image: there is no content]]−E[[image: there is no content]])+o(1n)








and


E[GLg]=E[GLt]+2β(E[[image: there is no content]]−E[[image: there is no content]])+o(1n)











These two equations constitute the WAIC and show that we can estimate the Bayesian and Gibbs generalization errors from the Bayesian and Gibbs training errors without any knowledge of the true probability density functions. Training errors are calculated from training samples, [image: there is no content], using a learning model, p. In real applications or experiments, we usually do not know the true distribution, but only the values of the training errors. Our purpose is to estimate the true distribution from the training samples, showing that these relations are effective. We can select a suitable model from among several statistical models by observing these values.



Let λ denote a learning coefficient and ν a singular fluctuation, both of which are birational invariants. Mathematically, λ is equal to the log canonical threshold introduced in Definition 1 and Appendix B. For regular models, [image: there is no content] holds, where d is the dimension of the parameter space.



The difference between the Bayesian and Gibbs training errors converges to [image: there is no content]:


nβ(E[[image: there is no content]]−E[[image: there is no content]])→ν








These relations were shown using the resolution of singularities and the Schwarz distribution.



From the learning coefficient, λ, and its order, θ, the value, ν, is obtained theoretically as follows. Let [image: there is no content] be an empirical process defined on the manifold obtained by a resolution of singularities, and [image: there is no content] denote the sum of local coordinates that attain the minimum λ and the maximum θ. We then have:


ν=12Eξ∫0∞dt[image: there is no content]∫duξ(u)tλ−1/2e−βt+βtξ(u)∫0∞dt[image: there is no content]∫dutλ−1/2e−βt+βtξ(u)



(1)




[image: there is no content] is a random variable of a Gaussian process with mean zero and variance two. Our purpose in this paper is to obtain λ.



To assist in achieving this aim, we use the desingularization approach from algebraic geometry (cf. Appendix A). It is a new problem in algebraic geometry to obtain the desingularization of the Kullback functions, because the singularities of these functions are very complicated, and as such, most of these have not yet been investigated.




3. Main Theorems and Vandermonde Matrix-Type Singularities


We denote constants, such as [image: there is no content], [image: there is no content] and [image: there is no content], by the suffix ∗. Additionally, for simplicity, we use the notation: [image: there is no content] instead of: [image: there is no content] because we always have [image: there is no content] and [image: there is no content] in this paper.



Define the norm of a matrix, [image: there is no content], by [image: there is no content]. Set [image: there is no content].




Definition 1 

For a real analytic function, f, in a neighborhood, U, of [image: there is no content] and a [image: there is no content] function ψ with a compact support, let λ[image: there is no content](f,ψ) be the largest pole of [image: there is no content] and θ[image: there is no content](f,ψ) be its order. If ψ([image: there is no content])≠0, then we denote λ[image: there is no content](f)=λ[image: there is no content](f,ψ) and θ[image: there is no content](f)=θ[image: there is no content](f,ψ), because the log canonical threshold and its order are independent of ψ.








Definition 2 

Fix [image: there is no content]. Define: [image: there is no content] if [image: there is no content], [image: there is no content], and [image: there is no content]








Definition 3 

Fix [image: there is no content].



Let A=a11⋯a1Ha1,H+1*…a1,H+r*a21⋯a2Ha2,H+1*…a2,H+r*⋮⋮aM1⋯aMHaM,H+1*…aM,H+r*, [image: there is no content]


[image: there is no content]








and


[image: there is no content]








(the superscript, t, denotes matrix transposition).







[image: there is no content] and [image: there is no content][image: there is no content] are variables in a neighborhood of [image: there is no content] and [image: there is no content], where [image: there is no content] and [image: there is no content] are fixed constants.



Let [image: there is no content] be the ideal generated by the elements of [image: there is no content].



We call singularities of [image: there is no content] Vandermonde matrix-type singularities.



To simplify, we usually assume that


[image: there is no content]








for [image: there is no content] and


[image: there is no content]








for [image: there is no content].




Example 1 

If [image: there is no content] and [image: there is no content], then we have: B=b11b112⋯b11Hb21b212⋯b21H⋮bH1bH12⋯bH1H.







This matrix is a Vandermonde matrix.




Example 2 

If [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], then we have: [image: there is no content] and [image: there is no content].







In this paper, we denote:


AM,H=a11a12⋯a1Ha21a22⋯a2H⋮aM1aM2⋯aMH,BH,N,I=∏j=1Nb1jℓj∏j=1Nb2jℓj⋮∏j=1NbHjℓjand








[image: there is no content].



Furthermore, we denote: [image: there is no content] and


(AM,H,a*)=a11a12⋯a1Ha1,H+1*a21a22⋯a2Ha2,H+1*⋮aM1aM2⋯aMHaM,H+1*












Theorem 1 

([18]) Consider a sufficiently small neighborhood, U, of


[image: there is no content]={[image: there is no content],[image: there is no content]}1≤i≤H








and variables, [image: there is no content], in the set, U.







Set: [image: there is no content].



Let each: [image: there is no content], …, [image: there is no content] be a different real vector in:


[image: there is no content]








That is:


{(b11**,⋯,b1N**),…,(b[image: there is no content]1**,⋯,b[image: there is no content]N**);[bi1*,⋯,biN*]Q≠0,i=1,…,H+r}











Then, [image: there is no content] is uniquely determined, and [image: there is no content]≥r by the assumption in Definition 3. Set: [image: there is no content] for [image: there is no content].



Assume that:


[bi1*,⋯,biN*]Q=0,1≤i≤H0(b11**,⋯,b1N**),H0+1≤i≤H0+H1,(b21**,⋯,b2N**),H0+H1+1≤i≤H0+H1+H2,⋮(b[image: there is no content]1**,⋯,b[image: there is no content]N**),H0+⋯+H[image: there is no content]−1+1≤i≤H0+⋯+H[image: there is no content],








and H0+⋯+H[image: there is no content]=H.



We then have:


λ[image: there is no content](||AB||2)=M[image: there is no content]2+λw1(0)*(||AM,H0BH0,N(Q)||2)+∑α=1rλw1(α)*(||(AM,Hα−1,a(α)*)BHα,N[image: there is no content]||2)+∑α=r+1[image: there is no content]λw1(α)*(||AM,Hα−1BHα−1,N[image: there is no content]||2)








where: [image: there is no content] [image: there is no content] and [image: there is no content] for [image: there is no content].




Theorem 2 (Method for finding a deepest singular point) 

Let [image: there is no content], …, [image: there is no content] be homogeneous functions of [image: there is no content][image: there is no content] with the degree, [image: there is no content], of [image: there is no content]. Furthermore, let ψ be a [image: there is no content] function, such that [image: there is no content][image: there is no content] and [image: there is no content] is homogeneous of [image: there is no content] in a small neighborhood of [image: there is no content].







Then, we have:


λ[image: there is no content](f12+⋯+fm2,ψ)≤λ([image: there is no content],⋯,wj*,wj+1*,⋯,wd*)(f12+⋯+fm2,ψ)











(Proof)



Let d be the degree of [image: there is no content] for ψ in a neighborhood of [image: there is no content] Let us construct the blowup of [image: there is no content], …, [image: there is no content] along the submanifold, [image: there is no content]. Let [image: there is no content] for [image: there is no content]. We have: v[image: there is no content]fi(w1′,…,wd′) and ([image: there is no content](w)2+f2(w)2+⋯+[image: there is no content](w)2)zψdwdv=(v2n1f12([image: there is no content])+v2n2f22([image: there is no content])+⋯+v2nm[image: there is no content]([image: there is no content])2)zψ([image: there is no content])vd+jd[image: there is no content]dv. Because: v2[image: there is no content]fi2(w1′,…,wd′)≤fi2(w1′,…,wd′) for [image: there is no content], we have: [image: there is no content], and, hence, by Lemma 1 in Appendix C:


λ[image: there is no content](f12+⋯+fm2,ψ)≤min{d+j+1,λ[image: there is no content](f12+⋯+fm2,ψ)}











Furthermore, we consider the construction of the blowup of: [image: there is no content], …, [image: there is no content] along the submanifold: [image: there is no content], for which we have


λ[image: there is no content](f12+⋯+fm2,ψ)≤d+j      Q.E.D.











In general, it is not true that:


λw0(f12+⋯+fm2,ψ)≤λ[image: there is no content](f12+⋯+fm2,ψ)








even if [image: there is no content] satisfies:


[image: there is no content]












Example 3 

Let [image: there is no content]=x(x−1)2, [image: there is no content] and [image: there is no content]. Then, we have: [image: there is no content]=f2=f3=∂[image: there is no content]∂x=∂f2∂y=∂f2∂x=∂f3∂z=∂f3∂x=0 if and only if [image: there is no content].







In this case, we have [image: there is no content]




Theorem 3 (Method to add variables) 

Let [image: there is no content], …, [image: there is no content] be homogeneous functions of [image: there is no content] of the degree, [image: there is no content], in [image: there is no content]. Set: f1′(w2,…,wd)=[image: there is no content](1,w2,…,wd), …, fm′(w2,…,wd)=[image: there is no content](1,w2,…,wd). If [image: there is no content], then we have:


[image: there is no content]















(Proof) Set [image: there is no content]. Then, we have:


fi(w1,w2,…,wd)=w1[image: there is no content]fi(1,w2′,…,wd′)=w1[image: there is no content]fi′











Since w1[image: there is no content]≠0 on a small neighborhood of [image: there is no content], there exist positive real numbers, [image: there is no content], such that:


[image: there is no content]








This completes the proof by Lemma 1 in Appendix C. Q.E.D.



Remark 1



The above theorem shows that we can set nonzero constants as variables to obtain the same log canonical threshold. However, in general, this is not true.

	(1)

	
Consider the function [image: there is no content]. We have [image: there is no content], whereas [image: there is no content].




	(2)

	
Consider the function [image: there is no content]. We have [image: there is no content], whereas [image: there is no content].









The second example shows that the following theorem over the complex field is not true over the real field.



Theorem 4 [11]



Let [image: there is no content] be a holomorphic function near zero, and for a hyperplane H, let [image: there is no content] (or [image: there is no content]) denote the restriction of f to [image: there is no content] (or H). Then, [image: there is no content].



Define: [image: there is no content],




Theorem 5 

We use the same notation as in Theorem 1. Let:


[image: there is no content]








where: [image: there is no content], [image: there is no content]


di(s)=(N−1)Q∑s1=is(count(i,s1,k(s1))−1)di′(s)=M(i−1){(count(i,s,k(s))−1)Q+1}+QM∑s1=i,count(i,s,k(s))>count(i,s1,k(s1))s−1(count(i,s,k(s))−count(i,s1,k(s1))),di″(s)=0,if count(i,s,k(s))=1,(H−s){C(i,s)Q+(N−1)Q(count(i,s,k(s))−2)},if count(i,s,k(s))≥2,N−1≤M,(H−s){C(i,s)Q+MQ(count(i,s,k(s))−2)},if count(i,s,k(s))≥2,C(i,s)≤M<N−1,(H−s){MQ(count(i,s,k(s))−1)},if count(i,s,k(s))≥2,M≤C(i,s).















Furthermore, let: [image: there is no content] where: [image: there is no content], and let:


[image: there is no content]











We have


λ0(||AM,HBH,N(Q,m)||2)≤min{bound1,bound2,bound3}λ0(||(AM,H−1,a*)BH,N(Q,m)||2)≤min{bound1,bound2}











The proof appears in Appendix C.



Figure 1a–d show the values of new bounds, [image: there is no content], for (a) [image: there is no content], (b) [image: there is no content], (c) H=7,N=7 and (d) [image: there is no content] with [image: there is no content], respectively. We compare these values with those obtained by the past work in [14]. In the figures, the horizontal axis is the number, M, and the vertical one, the value of such bounds. The dashed lines indicate the bounds obtained by the past work. These figures show that new bounds are not greater than old ones.


Figure 1. The values of new bounds, [image: there is no content], for (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content] and (d) [image: there is no content] with [image: there is no content], compared with the bounds obtained by the past work in [14].



[image: Entropy 15 03714 g001]








In paper [24], we had exact values for [image: there is no content]:


[image: there is no content]








where: [image: there is no content] and we had:


[image: there is no content]








We had other exact values when H is small on paper [14]. Both sets of exact values are the bounded values in Theorem 5.



3.1. A Learning Coefficient for a Three-Layered Neural Network


Consider the three-layered neural network with N input units, H hidden units and M output units, which are trained for estimating the true distribution with r hidden units. Their learning coefficients, λ, are as follows [14,24]:


[image: there is no content]












3.2. A Learning Coefficient for a Normal Mixture Model


Consider normal mixture models with H peaks and the true distribution with r peaks. Then, their learning coefficients, λ, are as follows [14,18]:


[image: there is no content]











In particular, we have for [image: there is no content]:


[image: there is no content]








where i=max{j∈Z;j2+j≤2(H−(r−1))}.





4. Conclusions


In this paper, we prove two theorems, Theorem 2 (the method for finding a deepest singular point) and Theorem 3 (the method to add variables) for obtaining learning coefficients in a homogeneous case. By applying these methods to Vandermonde matrix-type singularities and using the inclusion of ideals and recursive blowup from algebraic geometry, we found new bounds on learning coefficients for Vandermonde matrix-type singularities. These bounds are much tighter than those in [14]. Our future research aim is to improve our methods and to obtain exact values for the general machine model.



The learning coefficients from our recent results have been used very effectively by Drton [25,26] for model selection, using a method called “singular Bayesian information criterion (sBIC)”, which can be applied to singular models, where the assumptions supporting the use of the standard BIC do not hold. Our theoretical results introduce a mathematical measure of precision to numerical calculations, such as Markov chain Monte Carlo (MCMC). Nagata and Watanabe [27,28] gave a mathematical foundation for analyzing and developing the precision of the MCMC method using our theoretical values of marginal likelihoods.
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Appendix A


We introduce Hironaka’s Theorem on desingularization.




Theorem 6 

[Desingularization, Hironaka (1964), (Figure A1)]

Figure A1. Hironaka’s Theorem: diagram of desingularization, μ, of f: [image: there is no content] maps to [image: there is no content]. U−[image: there is no content] is isomorphic to [image: there is no content] by μ, where V is a small neighborhood of [image: there is no content] with f([image: there is no content])=0.



[image: Entropy 15 03714 g002]











Let f be a real analytic function in a neighborhood of [image: there is no content]=([image: there is no content],⋯,wd*)∈[image: there is no content]d with f([image: there is no content])=0. There exists an open set, V∋[image: there is no content], a real analytic manifold, U, and a proper analytic map, μ, from U to V, such that:

	(1) 

	
μ:U−[image: there is no content]→V−f−1(0) is an isomorphism, where [image: there is no content]=μ−1(f−1(0)),




	(2) 

	
for each [image: there is no content], there is a local analytic coordinate system [image: there is no content], such that [image: there is no content], where [image: there is no content] are non-negative integers.












Appendix B


The learning coefficient is the log canonical threshold of the Kullback function (relative entropy). In this section, we explain its difference for real and complex fields. Let f be a nonzero holomorphic function over [image: there is no content] or an analytic function over [image: there is no content] on a smooth variety, Y, and let [image: there is no content] be a closed subscheme. The log canonical threshold, [image: there is no content], is defined analytically as:


[image: there is no content]








over [image: there is no content], and:


[image: there is no content]








over [image: there is no content] [11,12]. It is known that if f is a polynomial or a convergent power series, then λ0([image: there is no content]d,f) is the largest root of the Bernstein-Sato polynomial, b(s)∈[image: there is no content][s], of f, where [image: there is no content] for a linear differential operator, P [29,30,31]. The log canonical threshold, [image: there is no content], also corresponds to the largest pole of [image: there is no content] over [image: there is no content], ([image: there is no content] over [image: there is no content]), where [image: there is no content] is a [image: there is no content]− function with a compact support, such that [image: there is no content] on Z.




Appendix C


Using the blowup process and the method to add variables together with the inductive method for s, we demonstrate Theorem 5



We give below Lemma 1, as it is frequently used in the proofs.




Lemma 1 

([18,24,32]) Let U be a neighborhood of [image: there is no content]∈[image: there is no content]d. Let I be the ideal generated by [image: there is no content],…,fn, which are analytic functions defined on U.



[image: there is no content] If [image: there is no content], then λ[image: there is no content](g12+⋯+gm2)≤λ[image: there is no content](f12+⋯+fn2).



[image: there is no content] If [image: there is no content], then λ[image: there is no content](g12+⋯+gm2)≤λ[image: there is no content](f12+⋯+fn2). In particular, if [image: there is no content] generate the ideal I, then λ[image: there is no content](f12+⋯+fn2)=λ[image: there is no content](g12+⋯+gm2).







The following lemma is also used in the proofs.




Lemma 2 

([19]) Let [image: there is no content] be the ideals generated by [image: there is no content](w),…,fn(w) and [image: there is no content], respectively. If w and [image: there is no content] are different variables, then


λ([image: there is no content],w′*)(f12+⋯+fn2+g12+⋯+gm2)=λ[image: there is no content](f12+⋯+fn2)+λw′*(g12+⋯+gm2).















Step 1



Let us consider the following procedure from [image: there is no content] to [image: there is no content], and the generators of the ideal:


[image: there is no content]











By constructing the blowup repeatedly and choosing one branch of the blowup process, we show the following (i)∼(v) in this subsection:

	(i)

	
[image: there is no content],




	(ii)

	
count(i1,i2,j)=#{k(i)=j|i1≤i≤i2} for [image: there is no content],




	(iii)

	
[image: there is no content]=v1v2⋯vibij′,i<s−1,v1v2⋯vs−1bij′,i≥s−1, and [image: there is no content],




	(iv)

	
The Jacobian is:


∏i=1H∏j=1Nd[image: there is no content]=∏i=1s−1vi(H−i+1)N−1+didvi∏i=1s−1∏j=1Ndbij′








and


[image: there is no content]












	(v)

	


J=ai0i1bi1k(i1)∏k(i)=k(i1),1≤i≤i1−1(bi1,k(i1)Q−bi,k(i1)Q):1≤i0≤M,1≤i1≤s−1+ai0s⋯ai0HbsjnQ+1∏k(i)=j,1≤i≤s−1(bsjQ−bijQ)⋮bHjnQ+1∏k(i)=j,1≤i≤s−1(bHjQ−bijQ):1≤i0≤M,j=1,⋯,N,n≥0+ai0s⋯ai0Hbs1ℓ1⋯bsNℓN⋮bH1ℓ1⋯bHNℓN:1≤i0≤M,∑i=1Nℓi=nQ+1,n≥1,∀ℓj<Qn+1.



(2)













By Theorem 3, we can set [image: there is no content] as a variable.



Now, we show the above by the inductive method.



Define [image: there is no content]. Construct the blowup along [image: there is no content]. Set [image: there is no content] for [image: there is no content] and set [image: there is no content].



By constructing the blowup along [image: there is no content] repeatedly, and by choosing one branch of the blowup process, set [image: there is no content] for [image: there is no content], where [image: there is no content].



Consider a sufficiently small neighborhood of [image: there is no content] using Theorem 2.



Set [image: there is no content] for [image: there is no content], [image: there is no content] and b˜ij=b˜ij′∏i1=1svi1=[image: there is no content]−bsjfik(s)fsk(s) for [image: there is no content].



We then have:


bs1ℓ1⋯bsNℓN⋮bH1ℓ1⋯bHNℓN=∏j=1Nbsjℓjbs+1,k(s)ℓk(s)∏j=1,j≠k(s)N(b˜s+1,j+bsjfs+1,k(s)fsk(s))ℓj⋮bH,k(s)ℓk(s)∏j=1N(b˜Hj+bsjfHk(s)fsk(s))ℓj








which is an element of the vector ideal:


∏j=1Nbsjℓj∏j=1,j≠k(s)Nbsjℓjbs+1,k(s)ℓk(s)(fs+1,k(s)fsk(s))∑j=1,j≠k(s)Nℓj⋮∏j=1,j≠k(s)NbsjℓjbHk(s)ℓk(s)(fHk(s)fsk(s))∑j=1,j≠k(s)Nℓj+∑ℓk(s)′=ℓk(s),0≤ℓj′≤ℓj,∃ℓj′≠ℓj0∏j=1,j≠k(s)Nbsjℓj′bs+1,k(s)ℓk(s)∏j=1,j≠k(s)Nb˜s+1,jℓj−ℓj′(fs+1,k(s)fsk(s))∑j=1,j≠k(s)Nℓj′⋮∏j=1,j≠k(s)Nbsjℓj′bHk(s)ℓk(s)∏j=1,j≠k(s)Nb˜Hjℓj−ℓj′(fs+1,k(s)fsk(s))∑j=1,j≠k(s)Nℓj′











Furthermore, we have: ∏j=1Nbsjℓj∏j=1,j≠k(s)Nbsjℓjbs+1,k(s)ℓk(s)(fs+1,k(s)fsk(s))∑j=1,j≠k(s)Nℓj⋮∏j=1,j≠k(s)NbsjℓjbHk(s)ℓk(s)(fHk(s)fsk(s))∑j=1,j≠k(s)Nℓj is an element of:


[image: there is no content]bs,k(s)nQ+1∏k(i1)=k(s),1≤i1≤s−1(bsk(s)Q−bi1k(s)Q)bs+1,k(s)nQ+1∏k(i1)=k(s),1≤i1≤s−1(bs+1k(s)Q−bi1k(s)Q)⋮bHk(s)nQ+1∏k(i1)=k(s),1≤i1≤s−1(bHk(s)Q−bi1k(s)Q):n≥0








Since [image: there is no content] for [image: there is no content], where [image: there is no content], we have [image: there is no content] and [image: there is no content] is finite. That is, we have:


∏j=1Nbsjℓj∏j=1,j≠k(s)Nbsjℓjbs+1,k(s)ℓk(s)(fs+1,k(s)fsk(s))∑j=1,j≠k(s)Nℓj⋮∏j=1,j≠k(s)NbsjℓjbHk(s)ℓk(s)(fHk(s)fsk(s))∑j=1,j≠k(s)Nℓj∈bs,k(s)nQfsk(s)bs+1,k(s)nQfs+1,k(s)⋮bHk(s)nQfHk(s):n≥0











If we assume that for α:


Jα=bsk(s)nQfsk(s)⋮bHk(s)nQfHk(s),n≥0+bs1ℓ1⋯bsNℓN⋮bH1ℓ1⋯bHNℓN:∑j=1Nℓj=nQ+1,n≥1,∑j=1,j≠k(s)Nℓj≤α=bsk(s)nQfsk(s)⋮bHk(s)nQfHk(s),n≥0+0bs+1,k(s)∏j=1,j≠k(s)Nb˜s+1,jℓj⋮bHk(s)∏j=1,j≠k(s)Nb˜Hjℓj:∑j=1Nℓj=nQ+1,n≥1,∑j=1,j≠k(s)Nℓj≤α,











we have for [image: there is no content]:


[image: there is no content]











since for [image: there is no content], we have:


0∏j=1,j≠k(s)Nbsjℓj′bs+1,k(s)ℓk(s)∏j=1,j≠k(s)Nb˜s+1,jℓj−ℓj′(fs+1,k(s)fsk(s))∑j=1,j≠k(s)Nℓj′⋮∏j=1,j≠k(s)Nbsjℓj′bHk(s)ℓk(s)∏j=1,j≠k(s)Nb˜Hjℓj−ℓj′(fH,k(s)fsk(s))∑j=1,j≠k(s)Nℓj′=∏j=1,j≠k(s)Nbsjℓj′fsk(s)∑j=1,j≠k(s)Nℓj′0bs+1,k(s)ℓk(s)∏j=1,j≠k(s)Nb˜s+1,jℓj−ℓj′fs+1,k(s)∑j=1,j≠k(s)Nℓj′⋮bHk(s)ℓk(s)∏j=1,j≠k(s)Nb˜Hjℓj−ℓj′fH,k(s)∑j=1,j≠k(s)Nℓj′∈Jα











Therefore, by setting:


[image: there is no content]








for [image: there is no content] and by setting [image: there is no content]=b˜ij again, we have:


J=ai0i1bi1k(i1)∏k(i)=k(i1),1≤i≤i1−1(bi1,k(i1)Q−bi,k(i1)Q):1≤i0≤M,1≤i1≤s−1+ai0s′bsk(s)∏k(i)=k(s),1≤i≤s−1(bs,k(s)Q−bi,k(s)Q):1≤i0≤M+ai0s+1⋯ai0Hbs+1j∏k(i)=j,1≤i≤s(bs+1jQ−bijQ)⋮bHj∏k(i)=j,1≤i≤s(bHjQ−bijQ):j=1,⋯,N+ai0s+1⋯ai0Hbs+1,1ℓ1⋯bs+1,NℓN⋮bH1ℓ1⋯bHNℓN:1≤i0≤M,∑i=1Nℓi=nQ+1,n≥1,∀ℓj<Qn+1








with (i)∼(iv).



Step 2



By Step 1, we need to consider the ideal:


ai0,i1∏i=1i1vi(count(i,i1,k(i1))−1)Q+1:1≤i0≤M,i1≤s+ai0s+1⋯ai0H∏i=1svicount(i,s,j)Q+1bs+1j′⋮bHj′:j=1,⋯,N+ai0s+1⋯ai0H∏i=1sviQ+1bs+1,1′ℓ1⋯bs+1,N′ℓN⋮bH1′ℓ1⋯bHN′ℓN:1≤i0≤M,∑i=1Nℓi=Q+1,∀ℓj<Q+1








with Jacobian:


∏i=1Hvi(H−i+1)N−1+di(s)dvi∏k=1M∏i=1Hd[image: there is no content]∏i=1H∏j=1Ndbij′








where:


[image: there is no content]











We have: [image: there is no content]


min{(H−i+1)N+di(s)+di′(s)+di,is+1,⋯,iH″(s)2(count(i,s,k(s))−1)Q+2:1≤i≤s,iα≥0,1≤s≤H}








where:


di′(s)=M(i−1){(count(i,s,k(s))−1)Q+1}+QM∑s1=i,count(i,s,k(s))>count(i,s1,k(s1))s−1(count(i,s,k(s))−count(i,s1,k(s1)))di,is+1,⋯,iH″(s)=∑α=s+1H{Miα+∑j=1,j≠k(s)count(i,s,j)=0max{Q(count(i,s,k(s))−1)−iα,0}+∑j=1,j≠k(s)count(i,s,j)≥1,count(i,s,k(s))≥2Nmax{Q(count(i,s,k(s))−2)−iα,0}}











Set [image: there is no content] Then, we have:


di″(s)=min{di,is+1,⋯,iH″,iα≥0}=0,if count(i,s,k(s))=1(H−s){C(i,s)Q+(N−1)Q(count(i,s,k(s))−2)}if count(i,s,k(s))≥2,N−1≤M(H−s){C(i,s)Q+MQ(count(i,s,k(s))−2)}if count(i,s,k(s))≥2,C(i,s)≤M<N−1(H−s){MQ(count(i,s,k(s))−1)}if count(i,s,k(s))≥2,M≤C(i,s)








By the above equation, we have bound1. By [19], we have bound2 and bound3, thus completing the proof.
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