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Abstract: Reconciling competing desires to build urban models that can be simple and 

complicated is something of a grand challenge for urban simulation. It also prompts difficulties 

in many urban policy situations, such as urban sprawl, where simple, actionable ideas may 

need to be considered in the context of the messily complex and complicated urban processes 

and phenomena that work within cities. In this paper, we present a novel architecture for 

achieving both simple and complicated realizations of urban sprawl in simulation. Fine-scale 

simulations of sprawl geography are run using geographic automata to represent the 

geographical drivers of sprawl in intricate detail and over fine resolutions of space and time. 

We use Equation-Free computing to deploy population as a coarse observable of sprawl, 

which can be leveraged to run automata-based models as short-burst experiments within a 

meta-simulation framework. 

Keywords: urban simulation; geosimulation; agent-based model; high-performance computing; 

Equation-Free; coarse projective integration; complexity 
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1. Introduction 

“All these little strings keep holding us together” [1]. 

In this paper, we present a method for building simple simulations on top of complicated models, as 

an avenue for accommodating both vantage points in exploration of urban sprawl. Sprawl is a 

significant urban phenomenon, but its exploration often produces controversy and generates wide 

variation of opinion, in part because sprawl is approached with both simple and complicated explanations, 

diagnostic properties, drivers, and consequences [2]. Agent-based models have recently been suggested as 

a computational vehicle for investigating the intricacies of urban sprawl because of their faculties in 

representing complex systems [3–6]. An assumption of generative ability is central to much of the 

motivation for using agent-based models in urban simulation: the idea that simple agents can be 

specified at the microcosm of urban elements and run interactively over large swaths of space and time 

to produce complex formations such as sprawl at the macrocosm of the urban system. The idea is eloquent 

and perhaps even romantic, but the reality is that most agent-based models of urban growth or urbanization 

remain simple in their specification [7], despite decades (maybe even centuries) of theory and observational 

evidence that suggest that urban processes are actually incredibly more complicated [8]. 

Without reliable ability to trace indelible (or at least plausible) paths between the micro-scale of 

cities and their urban components and macro-scale phenomenological outcomes such as sprawl, urban 

models are perhaps always open to the criticism that they function as black boxes [9]: stuff goes into 

the model, stuff comes out, and little understanding of the trajectory between the two is garnered in the 

process. As broader than discussion about urban simulation of sprawl, this tension between simplicity 

and complication is characteristic of a wider critique of complexity studies more generally [10], and 

the sufficiency of the notion of emergence as used in vanguard complexity methods such as agent-based 

modeling [11]. Resolving the validity or usefulness of simple or complicated models in urban 

simulation is difficult, as both vantages have utility in urban studies and urban policy, and in many 

cases, we simply do not how to reconcile the ‘mesocosm’ between fine-scale urban dynamics and 

regional-scale urban phenomena. Indeed, we may be building the model to try to identify plausible 

paths for more detailed theoretical and observational inquiry. Complicating matters further, the urban 

modeling community’s ability to treat city-systems with the sorts of intricacy afforded by approaches 

such as agent-based modeling, and supported by big data to test them is very recent in urban studies [12]. 

The methods are in a stage of relative infancy and have not matured to the level enjoyed in related 

simulation fields such as climate modeling, where reconciliation of elaborate paths from micro-scale to 

macro-scale, featuring all of the messy intricacies in between, is more robustly handled in simulation, 

and more commonplace in models [13]. 

It would be tremendously useful, in urban simulation, to have schemes that can handle urban 

models at both complicated and simple scales of formulation, so that simulations can focus on the 

interstitial dynamics between the two [14]. Such a scheme would have particular value in studying 

suburban sprawl, where public policy and management schemes that can be brought to bear on individual 

urban agents (land parcels, households, developers, infrastructure projects) need to be assessed in terms of 

their up-scale consequences (smart growth, urban containment, externalities and spillovers) [15–19]. 

In this paper, we present a scheme for using population as a coarse and diagnostically useful 

observable of urban sprawl to run many diverse geographical process models of urbanization and urban 
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growth at fine-scale in simulation, as short-burst experiments within an evolving simulation. To facilitate 

this, we use coarse-graining [20,21] to enable a model-user to enjoy both simple and complicated vantages 

of sprawl via a meta-simulation. In the examples explored in [20,21], explicit coarse grained models of 

a stochastic lattice model are constructed and simulated: both deterministic (mesoscopic) and coarse-

grained stochastic meta-models. In our case, we circumvent the explicit derivation of such meta-

models; we perform the meta-simulation via the Equation-Free approach, by wrapping techniques such 

as Coarse Projective Integration (CPI) [22–24] atop geography in simulation. For example, in the case 

of [20,21] the fine scale variable is population (of chemical species adsorbed on a lattice of catalytic 

sites); in our example, by analogy, the fine scale variable is again population, but of persons, on a fine 

urban grid. Similarly, the coarse scale variable in [20,21] is again population (but now on a much 

coarser lattice), or a continuous population density profile at the mesoscopic level, and the analogy 

persists in our case. The point here is that the same nominal variable (population) can be simulated and 

observed at a very fine scale (when its evolution may appear strongly random and fluctuating) or at a 

much coarser (averaged) level, when its expected evolution, averaged over several stochastic 

realizations, can appear much smoother and predictable over longer time intervals. It is precisely  

this “recovery of smoothness” at the coarser level that underpins the existence of useful reduced, 

meso/macrosocpic descriptions. 

In what follows, we will show how the Equation-Free approach can be applied to coarse projective 

integration on population atop geography in urban models. We will discuss the value of population as 

a coarse observable of sprawl and as a base ingredient of other sprawl indicators. We will also present 

experiments to demonstrate that the Equation-Free approach can usefully ally simple observables of 

sprawl with detailed and complicated models of sprawl process dynamics, with the advantage that 

efficiencies in simulation may be attained, while preserving a faithful realization of the original, fine-scale 

model. While preliminary, this suggests several avenues for future simulation that could enable simple, 

policy- and theory-relevant global norms to be used as levers to control massively interactive and 

complicated underlying models in a decision-support context. In short, we think that the approach can 

allow urban simulations to be simple while also being complicated. 

2. Background 

In modeling cities, there is often a debate about whether simple or complicated representations of 

urban processes and phenomena are most appropriate for simulation [7,9]. Simplified models have 

long had a place in urban simulation. Some of the most popular, longstanding, and elegant urban 

models are simple [25]. Considered practically, it is also often desirable to reduce model results to a 

few degrees of control, i.e., outcomes or recommendations that can guide urban planners and managers 

in their decision-making [26]. 

The desire for simplicity in urban simulation from earlier traditions seems to have persisted into a 

recent era of agent-based modeling (ABM). Ironically, ABM was pioneered as a new approach to 

urban modeling because of its ability to support detailed and massively interactive simulation [7]. 

However, the much-cited advantage of ABM as a generative approach to modeling [27] often begins 

from an assertion that agent-based models should be designed simply at microscopic level and that 

complexity will emerge, from the bottom-up, as they are run through their paces [28]. This has led to 
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some strong criticism that such agent-based models are black-box simulation schemes, in which the 

mechanisms for generative complexity are not explicitly represented or presented in simulation [29]. If 

we think about this practically, this situation mirrors the current state of urban studies: we can observe 

lots of things on the ground in terrific detail, and the city- or regional-level conditions of many cities 

are also reasonably well-understood, but how we get from one to the other (up-scale, or down-scale) is 

not always clear. Indeed, this missing link in the middle, so to speak, is beginning to be realized in 

urban policy discussions [30,31]. Thinking purely about simulation, proponents of simple agent-based 

models rightfully point to several benefits of reductionism as a desired design goal for models [32]: 

there may be philosophical merits [33], simplicity has pedagogical value when models are deployed as 

tools to think with [34], simple models may be easier to code and use [35], and complicated models 

may be more difficult to control [29], yet, simple urban models are often at odds with the reality that 

our theoretical and observational assumptions about cities suggest [36]: that while some properties of 

cities conform to simple (usually statistical-mechanical) regularity [37,38], more of their processes and 

phenomena are anything but simple in their functioning [39]. 

Realistically, simplicity is just a vantage point on urban systems. Of course cities are rich in 

complexity and detail, but there are many instances in which a simple viewpoint of urban complexity 

is desirable. This is often true for urban policy, and examination of the phenomenon of urban sprawl is 

a good example of this. Debate about what exactly sprawl is has developed for some time [2,40–42]. 

This debate has carried forward into representation of sprawl in urban models [3]. A resolution to the 

controversy surrounding sprawl is somewhat elusive because the phenomenon has many causes, 

drivers, and implications [43] of relevance to a diverse set of stakeholders. Indeed, depending on how 

one measures sprawl, it may be found to appear or be absent in the same city [16]. 

Two central axes of controversy in defining, observing, and measuring sprawl seem to be, (1) the 

variable used to diagnose sprawl, and (2) the detail with which one investigates variables [2,16]. Amid 

the many properties of sprawl, two usually reoccurring, common benchmarks do present in the 

literature (i.e., they appear in most examinations of sprawl): population density [44] and geography [45]. 

Sprawl manifests with relatively low densities, and this is one of the main sources of complications 

(and confusion) with sprawl regarding accessibility [46], impervious surface [47], aesthetics [48], and 

so on. Less controversial is the idea that sprawl is a form of peri-urbanization, which appears on the 

urban fringe, arguably with related potential complications of political fragmentation [18], encroachment 

on agricultural land [49,50], inefficiencies in resource use [51,52], challenges for centralized transportation 

and transit infrastructure [53], and potential disruption of peripheral ecosystems [54]. 

In the approach that follows, we will use both mechanisms as control schemes in simulation: 

population as an ingredient to agent-based geographic processes, and as a coarse observable for 

numerical simulation. We will treat population as a coarse-scale observable of sprawl (which, 

incidentally, we could ally to further compound variables or indices such as service provision, activity, 

land-use intensity, and so on [15,44,55–62]). Population is then used in a meta-simulation framework 

to control fine-scale modeling of geographical processes for urbanization, urban growth, and urban 

change using geographic automata specified to the level of small units of space and time within a 

massively interactive simulated urban space. The meta-simulation framework is flexible, in that 

different models or observables could be swapped or compared within the same scheme. 
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We make use of an existing sprawl model [4], although, a different model could conceivably take 

its place in simulation. Elsewhere, we have reported on the accelerated computing scheme underlying 

this approach [63]. Our intention, in this paper, is to focus on its utility for modeling sprawl and as a 

scheme for enveloping simple and complicated vantages of an urban phenomenon within a unified 

simulation platform. 

3. Methods 

In the following section, we will present a method for performing Equation-Free numerical 

simulation of population using a detailed (agent-based) geographic automaton model of sprawl process 

dynamics at fine scales of space and time. The geographic model is designed to treat space-time drivers of 

sprawl, as spatial processes. The geography of these processes may have particular meaning in environmental, 

engineering, policy, sociological, and economic settings, but here we focus on their geographic form, as 

we regard population and geography as being sufficient indicators of sprawl, as discussed above. In dealing 

with geography, we deploy geographic automata as a polyspatial vehicle for sprawl, which allows the 

process drivers of the phenomenon to adapt to spatial context and scale [64]. 

3.1. Automata-Based Data Structures, Geographic Automata, and Polyspatial Functionality 

We begin by introducing a resourceful computational apparatus for simulation at fine-scale, with 

the realization that the often bewildering array of component phenomena and entities responsible for 

urban dynamics requires an extensible medium for simulation. At its essence, the apparatus is fashioned 

around the automaton because of its ability to be agilely and diversely configured to suit many model 

scenarios. While our requirement for polyspatial functionality in the model is not a particular 

representation challenge for the automata framework, the geographical mechanics of the models will 

be significant levers of dynamic control in the simulations that we wish to build, and so we also 

present specific, innate, parameters for them in the formulation of the automata. 

We consider geographic automata (GA) as a specific class of automata, and we seek to integrate 

GA building blocks as geographic automata systems (GAS) in simulation. The automaton structure is 

well-known since its introduction by John von Neumann [65] and Stanislaw Ulam [66] following Alan 

Turing’s ideas for computing [67,68] and thinking machines [69], but it is worth revisiting so that the 

geographic functionality that we add can be contextualized. We consider a basic automaton 

information-processing structure, , which we then wrap with additional geographic functionality to 

derive a geographic automaton, . The geography of  is parsimonious in its facilitation of geographic 

abilities and characteristics, but it is sufficient for most applications (we have tested this sufficiency in 

application in [70] and in scale in [64]): 

~ , , ;  

: |  (1)

~ , , , , , , ; 

:  

:  

(2)
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In Equations (1) and (2) above, we consider an automaton  as derived from states  and transition 

rules  that determine dynamic shifts in those states based on input  between two finite time-points 

 (with input possibly gleaned from other automata, but not necessarily). We may modify 

this basic data structure to form geographic automata  by expanding the definition of , , and  to 

accommodate sets of geographic operators for inertia , location , neighborhoods of influence , 

movement rules , and interaction rules . We will leave  and  to their generic automata 

interpretations so that state transition can interact more generally with location and interaction 

transitions supplied by  and . The inertia parameter  enables  to be fixed or mobile in its environment, 

which may be used to define  as a cellular automaton (CA) or not. If  invokes fixture, ’s location 

 remains wedded to the space within which it is registered.  still retains the ability to become 

unfixed if needed and it can still draw input  to its transition sequences dynamically using . 

The expansion of the basic functions of the automata with geographic-specific considerations is 

important, as it allows for the definition, interpretation, and contextualizing of key components of the 

automaton’s information-processing to be expressed in different places, spaces, times, events, 

processes, and company [70]. Significantly, in the context of this paper, we may also express  based 

on its scale or scaling, such that the components of  act polyspatially, i.e., that they are capable of 

adapting to the particular setting that a scale affords. At the most obvious, polyspatial functionality is 

enabled by , which, in some senses, allows us to render the automaton into a free agent-automaton [71] 

or a cellular automaton (CA). If a CA is defined, information can still move (through diffusion, 

contagion, influence, and so on), but the automaton itself (and its transition-processing functionality) 

remains within the cell. This is a small semantic distinction at first glance, but it can be important. 

When automata move, their ability to interact and react in the system can become much more dynamic 

than it might otherwise be under conditions of inertia. Realistically, agents in sprawling cities (whether 

houses or householders) engage in both geographies, and processes governed by movement and 

diffusion may intertwine seamlessly. We need the flexibility to handle both, and to treat both in the 

same model and even in the same automata system. The malleability implied in the interaction rule 

 also supports polyspatial reach for the automata, by allowing the geographic automaton to 

express its states and transitions up-scale and down-scale.  is left open to specification, so that 

geographic automata (or the reach of their influence) can flexibly traverse many spaces and times, 

even simultaneously between  when an automaton requires input from many different 

scales to resolve transition calculations. Similarly, movement rules  allow the geographic 

automata to work locally, globally, or anywhere in between. Operationally, these components can also 

be invoked using a variety of spatial processing [72], spatial analysis [73], or spatial data access 

schemes [74] from Geographic Information Science [75], geocomputing [76,77], or geosimulation [39], so 

geographic automata may also be considered as polyspatial in their ability to ally with other 

information technologies. 

3.2. Multi-Scale Equation-Free Computing on Population 

We employ two coupled scaling mechanisms in our approach: (1) polyspatiality in the model, and 

(2) multi-scale computing in simulation. In the automata model, as described above, automata (themselves) 

have a great deal of extensibility, with respect to space and time, in their information-processing abilities. 
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Importantly, they can adapt flexibly to the special spatial context of their situation. In multi-scale 

simulation (where we regard simulation as the running of the model for particular scenarios or over 

particular infrastructures or data-sets), we take advantage of mathematics-assisted computation to 

create multi-scale efficiencies in simulation and resolution of a model’s computing. This could make 

use of automata, although it does not have to; the scheme is open in this regard. This is multi-scale, 

rather than polyspatial, because the computational process for resolving the model in simulation 

usually remains the same, even when crossing scale barriers, and does not particularly transform or 

adapt to the scale at hand. The mathematics of the Equation-Free approach is used to resolve the 

simulation as an experiment (rather than as a model) in computing. 

In this example, multi-scale computing is achieved using the Equation-Free computational 

framework developed by Kevrekidis [78], which facilitates the design of simple experiments (which 

we can describe and interpret at macroscopic, systems-level) atop complicated models (which we can 

define at microscopic scales of space and time, and even stochastically if needed) [78]. (Although, 

other approaches beyond Equation-Free could be used instead.) This is accomplished by building the 

macroscopic experiment for relatively large swaths of space and time, using short-burst calls to the 

microscopic simulator for small bundles of space and time. Moreover, the macroscopic experiment can 

be built using traditional continuum numerical analysis, while the microscopic model can be specified 

as automata, such that the two styles of modeling can be reconciled within a unified experimental 

computational infrastructure. 

The essence of the Equation-Free (EF) approach is to address the challenge of moving from 

microscopic details of a system to holistic, macroscopic outcomes at the system level, without explicit 

formulae for how to trace that path between scales. In many ways, this echoes the tension that often 

presents between arguments for ‘simple’ and ‘complicated’ models of cities. Simple descriptions of the 

city may present as well-identified spatial structures or compositions or priorities for urban policy, 

such as suburban sprawl. These are the types of descriptors of urban dynamics that we inherited from 

the early quantification of urban studies and the big picture (city-encompassing and conceptual) 

models of Ullman, Harris [79], and Burgess [80]. In many ways, regional science [81,82] and the land-

use and transport models of the Twentieth Century [83–86] were pioneered to handle cities at this scale 

of analysis. However, we might also consider, on the other end of the spectrum, a set of complicated 

models that endeavor to explain, from the bottom-up and from the experiences of the intricacies of the 

components that make up cities, where, how, why, and when those big picture phenomena come from 

(or emerge from). This sort of scholarship is more traditionally sourced in the observational work of 

urban sociologists, and more conventionally available through urban sensor networks (transit systems, 

smart highways, instrumented buildings) [87] and volunteered geographic information from citizens’ 

mobile devices [88] and transactions [89]. Moreover, this microcosm of urban dynamics is more 

commonly modeled using agent-based models [90] that are more concerned with the actions, 

interactions, and reactions of individual people, cars, and properties than they are with the city as a 

holistic entity. At both ends of this spectrum, quite a lot is known and quite sophisticated (and scale-

appropriate) models can be built, but building connections between the two is a challenge. 

Realistically, it is a grand challenge, as a bewildering array of micro-conditions of a city or a city-dweller 

could possibly effect dynamics in the urban system that might manifest at system level; cities are 

exemplar complex adaptive systems [71,90,91].  
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The standard approach in evolving microscopic urban simulations using cellular automata or agent-

based models, for example, is to specify the model with plausible, experimental, or known (from 

remotely-sensed data, usually) parameters and then advance the model in discrete time-steps until a 

city or urban pattern is produced. In other variants, some global-level controls may be set as targets for 

the evolution of the model in fine time-scale, discrete, as normative urban policies or goals, for 

example [4]. In either case, the scientific procedure really involves setting the model, winding it up, 

and letting it go. This can be something of a scattershot approach and a series of averaging procedures 

have been developed to, in essence, automate huge volumes of blind trial and error runs (see [92] for 

an overview). The often-mentioned intent of this experimental approach is to engage in ‘generative’ 

science [93], such that simulated cities are built from the bottom-up. Realistically, the models are 

specified as ingredients at the ‘bottom’ scale of agents of urbanization, but very little building actually 

takes place in moving from the ‘bottom-up’, as the dynamics between the micro-scale and macro-scale 

are usually ceded to Monte Carlo averaging. Perhaps a tell-tale sign that little is being grown in 

simulation is the common practice of building models in exquisite detail, but reporting results as 

generalized, broad-strokes statistical indices or global spatial compositions [94]. 

As a practical concern, these sorts of massively-averaged generative runs of urban simulations are 

also computationally exhaustive. Adding more processing cores to the procedure is unlikely to offer 

efficiencies, as the volume of data that we have on hand to parameterize models at the micro-scale, and 

the sophistication of the rule-sets used to describe agents in the models, is ever-increasing. Agents are, 

like finite-state machines, thorny beasts for high-performance computing [95]. Indeed, perhaps one of 

the limiting factors for current automata-based urban simulation may be the constraints on computing. 

This has been raised in the context of load-balancing, for example, in the TRANSIMS traffic model, 

which is the most massively agent-based urban model (in terms of the triple of numbers of agents, 

sophistication of rule-sets, and fineness of spatio-temporal granularity) that we are aware of [96], and 

in implementations of the SLEUTH urban growth model [97]. Using the EF approach to run well-

parameterized bursts of the micro-model, instead of evolving every single component of the model to a 

macro-condition, we can accelerate the computing of the simulation [63]. 

Our approach in simulation, then, is to treat the micro-scale (automata-based) model as a node-

member of a supposed coarser mesh, which represents a small bundle of space-time embedded within 

a larger ensemble (field) of space-time that holds the macro-scale realization of the city-system. These 

short-burst experiments are resolved at the micro-scale and then interpolated to generate the evolution 

of the system-level realization of the city. A side advantage is that if the microscopic model is wrong 

in some way (in producing city-level phenomena), this will be detected sooner than with full simulation. 

Different approaches or controllers can be used at the level of the macro-scale to issue and resolve the 

short-burst experimental simulations at the micro-scale. In the experiments reported in this paper, we 

used a coarse time-stepper [98], which facilitates coarse stability and bifurcation analysis of the automata 

model at a macro-scale of the system. 

4. Modeling Sprawl 

Our main targeted application of the infrastructure is modeling suburban sprawl in American city-spaces. 

We regard this as a good test case for our approach for a number of reasons. First, sprawl is polyspatial 
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in its determining agency and processes. We will introduce a series of diverse geographical processes 

to account for this in simulation, but the panoply of urban geographies that govern sprawl dynamics 

has been well-discussed in the literature [2,18,19,40–45,48,99–116]. Second, sprawl is also a multi-scale 

phenomenon, experienced at the level of individual neighborhoods [117,118] through to megalopolitan 

regions [17,45], with plenty of processes that course among the interstitial scales. There is also a strong 

sense that sprawl emerges from the bottom-up; indeed, popular arguments contend that small-scale politics 

may be responsible for fostering sprawl with metropolitan-wide implications [18]. Third, sprawl, as an 

umbrella phenomenon, maintains fast and slow processes [119] within its collective dynamics [120].  

The value platform of urban sub-markets, for example, may take decades to unfold [121], while new 

home-builders can construct properties on the scale of months in reaction to urbanization trends [15], 

and a household may take only days to engage in a new home search [122]. Fourth, sprawl is widely 

recognized to be a complex adaptive system, sharing many of the same characteristics of other 

complex systems in social and physical realms. In particular, traits of emergence, self-organization, 

positive and negative feedback, path-dependency, bifurcation, homeostasis, and allometry must be 

negotiated in simulating sprawl in a systems context [16,37,123,124]. Fifth, sprawl is also a relatively 

recent phenomenon: realistically, we do not fully understand it as a generative system [43]. So, it is 

likely that our micro-formulation of proposed drivers may change over time. Sixth, sprawl manifests 

(and emerges) differently in different places and times [108]. One model is not likely to suffice given 

the number of sprawling cities around the world and the array of context-specific considerations that need 

to be embraced in modeling them. Realistically, what is needed is an extensible modeling 

infrastructure with the flexibility to mix and match different micro-models within an overarching meta-

simulation, experiments-of-experiments superstructure that can support meaningful cross-comparisons 

between models. 

Many of the characteristic outcomes (but not necessarily the drivers) of sprawl are observable  

at a systems level. This is particularly true of population density, which manifests in some of  

the distinct architectural, design, transport, lifestyle, social, and environmental aspects of the 

phenomenon [15,44,56,57,62,115,125–127]. Population density also serves as one of the most 

significant control levers for urban planning and management policies. These policy interventions are 

not without controversy in the public debate, and exploring their potential dynamics in a computational 

laboratory is useful [2,41,42]. Moreover, population density is an indicator of several other sprawl-related 

problems (some would argue them as opportunities [100]), as we have already described. 

4.1. Automata-Based Model Design for Sprawl Processes 

We make use of an existing sprawl model developed by Torrens [4] to specify GA-based agents as 

mobile urban development processes and dynamic land parcels. In essence, this provides our 

complicated model; the EF scheme then operates atop this, dipping into the GA model as-needed for 

short-burst experimentation. The results of these experimental bursts are integrated using the coarse 

population (population density) state from the original GA model, because of the significance of this 

variable for sprawl, as mentioned above. The original sprawl model developed in [4] ran by direct 

computation and we can therefore compare direct and Coarse Projective Integration (CPI) runs of  

the simulation. 
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Sprawl processes are treated in the model as geographic drivers, i.e., sprawl is modeled using space-

time mechanisms that mimic the path of sprawl over the urban/land surface as an urbanization, settlement, 

and development process. That households, policies, property developers, markets, sub-markets,  

decision-making, and so on are the very bottom-up drivers underlying these geographic processes is 

implied, but not explicitly treated. Elsewhere, Torrens and colleagues have demonstrated the necessary 

couplings between the two [64], as have other researchers [3,5,6]. 

Five geographical processes are introduced to represent interacting paths of urbanization for sprawl. 

The first process is immediate growth, which is used to introduce incremental development through 

simple extension and contagion at a (very) localized scale. The localization is constrained within input 

filters [an adjacent consideration of  in equation (ii)] that are limited to the immediate neighbors for a 

given GA. The second process is represented as nearby growth, which operates at the neighborhood 

level (several properties in close vicinity; i.e., a larger consideration of ). Third, leap-frog growth is 

used to produce development through settlement on the fringe of the urbanizing system at a distance 

from its main core or several polycentric cores [15,18,50]. Fourth, irregular growth accounts for 

development corridors that might form through some happenstance path-dependence in the anchoring 

of their settlement or, more likely, form under the influence of irregular natural features, for example, 

along rivers or rough terrain [128]. Fifth and finally, road-induced growth is used to produce urban 

growth around transportation nodes and links [129]. For each of the five processes, they may run in 

parallel or as compound sequences (such as leap-frogging followed by nearby growth). 

While the five geographic processes just mentioned produce patterns of growth in the model, 

population serves as the engine of growth. In other words, the five processes provide the spatial 

distribution of population geography over the evolving city-system in simulation. It is also important 

to note that each of these rules ‘sees’ population density (and sees it through the lens of geography) 

only; they do not see related variables such as wealth or overcrowding. So, population is, in this sense, 

both a “good” coarse observable and a honest parameter of the model. 

We treat population dynamics separately, but in a way that allows population totals (and by 

consequence density) to couple to the five process mechanisms. Again, population is one of the key 

ingredients and outcomes of our model. To enable simulated city-systems to be connected to other 

city-system not treated in simulation, we allow the possibility of exogenous growth, which we assume 

comes from in-migration of population to the system from without. Exogenous population growth is 

assumed to enter the system through specified gateway cities, from which it pass into the rest of the 

simulation processes. The input of population, in this way, is read-into the simulation continuously 

through a simulation run. We also treat endogenous population change within the system, to account 

for crude (in the demography sense of the word, as growth and decline due to factors other than movement) 

population dynamics. Once these units of population are produced in the system, they may also enter into 

the model’s mechanics, allowing them to move, settle, produce new population, and so on. 

The role of the geographic automata mechanisms, in simulation, is to determine the spatial 

distribution of exogenous/endogenous population change. For nearby and immediate growth, 

development probabilities and resulting population densities are obtained in a straightforward manner 

and the rules operate in a fashion familiar in CA transition. For a given cell , , the population  

at time 1  is determined by a trade-off of exogenous change , endogenous change , 
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move-in (immigration) potential  from a neighboring cell ,  within neighborhood , and 

move-out (emigration) potential , as follows: 

, , , , , , , ,

, , ,
, , , , ,

, , ,  (3)

For the nearby and immediate rules, simple Moore CA neighborhoods are used as windows for 

diffusion of population. For the immediate growth rule, 1, which denotes a fixed Moore sweep 
of one-cell in band size (Figure 1). , , 0 , because from the perspective of this rule at a 

particular cell ,  and time , immigration is not considered. Cell ,  can, however, receive 

population diffused to it from other cells ,  via the nearby rule (which from their perspective 

would be out-migration). From the particular space-time vantage of cell ,  at time , 

, , ,  for , ,  and , , . (We consider , simply because it 

denotes a fixed Moore neighborhood of nine cells, not considering seed cell , , cast within a 

Moore bandwidth of one.) For the nearby growth rule, we relax the neighborhood to permit a two-cell 

band Moore neighborhood (Figure 1), such that from the vantage of ,  at , and for ,
, , move-out conditional probabilities are calculated as follows: 

, , ,

1
8
2
5

1
3
, or

1
8
1
5

1
3
, or

1
8

1
40

 

with pattern , , , , , , , … , starting with  in a corner of the neighborhood filter. 

Figure 1. (a) The immediate rule diffuses development into the five cell Moore 

neighborhood (in blue, also including yellow cell) of a given cell (in yellow alone). (b) The 

nearby rule diffuses to the 25-cell Moore neighborhood. The red box in (b) denotes a 

corner  from Equation (4). 

(a) (b) 

The other three rules, for leapfrog growth, road growth, and irregular growth require agent-based 

movement to achieve in simulation. Under these schemes, a sub-transition is initiated (usually subject 
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to Monte Carlo simulation) within the transition 1 . During this bundle of space and time, 

an agent is created on , , endowed with the population for that cell, and traverses through a set of 

cells ,  based on one of the three processes. Either during the traversal or at the end of the 

traversal, the agent will modify the states of the cells traversed, which will then be available for further 

transition at 1 .The leapfrog growth rule creates agents on the fringe of the urbanized mass, 

which then execute either a nearby growth transition rule, or an immediate growth transition rule as 

dictated. The road growth heuristic selects a set of cells (the yellow portions of Figure 2b) within an 

existing urbanized mass and designates them as hubs. It builds a polyline (red in Figure 2b) between 

the hubs and initiates a nearby growth transition rule, or an immediate growth transition rule as 

dictated along that polyline to create linear corridors of growth. The irregular growth rule is initiated 

as a correlated random walk across the simulated space (Figure 3). 

Figure 2. (a) The leapfrog rule casts development (blue) at a distance from a seed cell 

(yellow) within a neighborhood window, to the periphery of that window. (b) The road 

rule forms connective polylines (red) of development (blue) between seeded node  

cells (yellow). 

(a) (b) 

Figure 3. The irregular rule is used to establish development (blue) that takes place along a 

linear trajectory (red) abutting assumed physical obstacles, in this case adverse terrain and 

a water feature. 
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4.2. Time-Stepping and Coarse Projective Integration of Population as a Macroscopic Observable of 

Urban Sprawl 

We use population density, which is encoded as a dynamic state of the GA structure, to guide the 

coarse projective integration in the EF simulation of the model. In essence, this provides a computational 

exploration of the behavior-space of the model in simulation. That exploration is guided by the 

premise that while the states of automata in simulation have many degrees of freedom in their 

transition, a simpler systems-level description may also be observable in coarse form. We consider 

population as the smooth, coarse level, macroscopic variable of the system, which is appropriate, as 

population is the variable that we mobilize and develop in the model. A time-stepper function is used 

on population to probe the dynamic evolution of the model, to estimate numerical temporal derivatives 

of population, and to temporally project values of the variable ahead using the estimates. This is 

achieved as follows (Figure 4). 

Figure 4. The scheme for coarse projective integration. 

 

First, we must identify an appropriate coarse-grained variable, which should sufficiently describe 

system dynamics in some way that is useful to the processes and patterns than unfold in simulation. As 

already justified above, we use population. Second, a lifting operator is used to map the macroscopic 

description (population) to one or more consistent microscopic descriptions. As discussed in the 

Introduction, this is “coarse population”, a smooth population density profile over geography; it is the 

expected population density, averaged over several random realizations of the fine-scale, stochastic, 

agent-based model. In practice, we consider a discretization ,  of such a smooth profile ,  

over a coarse ,  grid (with interpolation between the grid values). We then use a lifting operator to 

map the macroscopic description to one or more consistent microscopic descriptions. This is achieved 

by producing an ensemble of  realizations of this coarse smooth profile through integer-numbered 
assignments of agents in each cell of a fine-scale ,  grid, , , , 1,2, … , . These integer-

valued instantiations on the fine grid are consistent, on average, with the real-valued population 

density on the coarse grid. Technical details on the sampling of such integer valued profiles using the 

cumulative distribution function (CDF) in one dimension, as well as marginal and conditional 

distributions in dimensions higher than one can be found in [24,130]. Third, with the ensemble as a 

lifted, microscopic realization at an initial condition, we perform fine-level simulation using automata 
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to generate later-stage conditions. In essence, the automata realize  versions of the fine-scale 

dynamics. Importantly, this may be repeated for ensembles of realizations consistent with the same 

macroscopic initial condition, to reduce variance if required, and to generate proper ensemble 

averages. Fourth, a restriction operation is performed at subsequent steps of time, , , … , , 

up to time . The restriction operator maps the simulated microscopic states to the macroscopic 
description. This is achieved by calculating profiles, , , , , , , … , , , , for 

each realization  as a count over each cell , . This is used to garner ensemble-averaged 

population profiles by coarse time-stepping ensemble and space-averaged population profiles, 

, , , , … , , . Fifth, the population profiles are used for extrapolation. We 

numerically estimate the temporal derivative of the population profile, 
,

, using, for example, 

least-square fitting of the last  population profiles , , , , … , , . 

(In general, we could use other estimation methods, such as maximum likelihood [78].) In our simulations 

here the fine and coarse meshes coincide; the averaging is performed over several realizations of the 

detailed dynamics, so that the expected population behavior is evolved in time. We produce an 

extrapolation of this expected, coarse population by extrapolation over the time interval  as: 

, ,
,

 (5)

and iterate the process again and again. 

4.3. Simulating Sprawl in the American Midwest 

In order to build a realistic test-bed for the model and equation-free computing scheme, we 

simulated the urbanization and urban growth of the system of cities, towns, and suburbs that form the 

Midwestern Megalopolis [17,131] around the southern rim of Lake Michigan in the United States. The 

simulation was performed to represent two hundred years of urbanization, from 1800 to 2000. The 

seed sites for urbanization over this space are known from the historical record. We used the larger 

sites in simulation: Madison, WI; Milwaukee, WI; Chicago, IL; Gary, IN; South Bend, IN; Grand 

Rapids, MI; and Lansing, MI. The population counts for these cities are also known from historical 

census records, at decadal snapshots of space and time (Figure 5). So, we are able to use the seed cities 

to introduce geographical path-dependence/inertia to the system, and actual census data, to produce 

rates of population change for the system. Portions of census-derived population are released to the 

seed cities over the simulation run at rates commensurate with historical records. This represents  

in-migration to the system [132]. Endogenous change is also possible, as already explained, and this 

population has the ability to mobilize within the simulated city-system. The task of the simulation, 

then, is to actionably simulate space-time urban geography from these parameters and using the rules 

described in section 4.1, with the assistance of the meta-simulation architecture described in Section 4.2. 

4.4. Parallel Computing 

We ran direct simulation and coarse projective integration (CPI) simulation on a parallel computing 

cluster to achieve resolution of the simulation scenarios in an efficient manner. We ran simulations on 
Princeton University’s TIGRESS cluster, using 25 of its 3.2 GHz Xeon processors with 5, 3, 

and 5. 
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Figure 5. Historical population totals for seed sites in the simulation, derived from  

census data. 

 

There was also a secondary motive for employing high-performance computing, as automata are, at 

their core, finite state machines. They are the thirteenth dwarf of parallel (or even extreme) computing. 

Dwarfs are patterns of computing and communication, collections of which may be usefully 

distributed spatially and/or temporally over distributed computing grids. A review by Asanovic and 

colleagues reached the conclusion that in alleviating computational burden for the thirteenth dwarf, 

“nothing helps!” [95] (p. 45). At issue, here, is that while the idea of automata (particularly agent-

automata) hypothetically scales for relatively straightforward (simple) automata models, the reality in 

many urban simulations is a set of automata specified with detailed state-variables and with multiple 

(and multiply-involved) transition rules, properties which are thorny to handle in computation. In our 

model, for example, automata may run one of many (or combinations of many) transition rules, 

heterogeneously, in run-time. Such compound behaviors and processes are not easily abstracted into 

continuum aggregates, as are commonly used in particle models [133], or into master equations as 

commonly used in agent-based computational economics [134]. In the particle physics and economics 

examples, the aggregation of transition functions allows the model to focus on the exchange of 

information (states) between automata entities in simulation. However, in our models, because the 

rules are diverse, multiplicative, and often sensitive to the spacing and timing of when and where they 

are executed in simulation, we have to handle dynamic states, dynamic transition, and dynamic 

neighborhood filters. Moreover, our automata are mobile, which increases the potential for interaction 

for all of these components [135]. When the agents are allowed to be polyspatial, we introduce further 

interactive capability (and computing) between scales. No matter where one looks to expand or deepen 

the model, computational burdens increase. As the number of automata increases, computing increases 

and the same is true as the number of states, the number of neighborhood filters, the amount of 

movement, the number of rules, and the number of runs increase. 

We expect that our EF scheme can accelerate the computing required to extract useful information 

from the model. The outstanding question is whether it can do so while also preserving the fidelity of 

the simulation dynamics. 



Entropy 2013, 15 2621 

 

 

5. Results 

The spatial patterns and space-time dynamics of urbanization are shown for snapshots of the 

simulation in Figure 6. Characteristic sprawl patterns are generated, with concentrated population in 

central cities, and a distance-decay in the population profile [59] toward the urban fringe, where a large 

band of orbital sprawl forms (largely due to leapfrogging urbanization [136]), supported by (and 

supporting) the central core. Elsewhere, we describe, in detail, various metrics for benchmarking the 

composition and configuration of sprawl as a dynamic geographic phenomena [16]. We will abstract 

from that discussion in this paper, where our focus is on the simulation architecture for achieving 

relatively straightforward simulation atop relatively complicated models. In the remaining discussion, 

we concentrate on the plausibility and efficiency of the EF scheme in supporting sprawl simulation. 

Figure 6. The Midwestern sprawl coarse projective integration simulation at three time 

steps (darker yellow indicates higher relative population density than the case of lighter 

yellow). (Because we are averaging over many possible (heterogenous) growth 

trajectories/geographies, the spatial configurations above look relatively smooth). 

 

CPI-simulated year 1850 

 

CPI-simulated year 1900 

 

CPI-simulated year 2000 
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5.1. Plausibility of Equation-Free Sprawl 

To gauge the plausibility of the CPI scheme for coarse simulation on population, we compared 

differences in population estimation, per cell, in the simulated space (Figures 7 and 8). We also 

compared population counts nearby the simulation’s seed sites for exogenous population input at 

major cities (Figures 7 to 9). (Please note that these population counts are for cells near the sites, not 

for the entire metropolitan areas reported by the Census Bureau. They differ from those illustrated in 

Figure 5 for that reason.) The difference maps shown in Figure 7 are roughly equivalent to standard 

kappa-statistics used in remote sensing registration [137] and in many urban CA model validation tests 

for per-pixel comparisons [92]. We have explored other registration and comparison schemes, which 

are discussed in [16]. 

Figure 7. Relative agreement of population counts, per-cell, between direct ensemble 

simulation and simulation by coarse projective integration at time-step (a) 50, (b) 100, and 

(c) 200. Insets show seed city-sites for the model, with magnification expressed. The y-axis 

unity is 100%. 

 
(a) (b) 

 

(c) 
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Figure 8. Relative differences in population percentage (unity is 100%) between direct 

ensemble simulation and simulation by coarse projective integration. (In these figures we 

use just one shade of yellow and displacement in the y-axis indicates relative population 

change in positive or negative terms). 

Simulated year 1850 (time-step 50) 

Simulated year 1900 (time-step 100) 

Simulated year 2000 (time-step 200) 
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Figure 9. Comparison between direct and CPI simulation population count dynamics for 

seed sites (a) Chicago, (b) Madison, (c) Lansing, and (d) Grand Rapids. Note that the 

population figures do not include the entire metropolitan area for each site, just the central city. 

(a) (b) 

(c) (d) 

The errors introduced by the extrapolation operator in coarse projective integration (CPI) between 

time-steps 100 and 150 were relatively large (~50% for brief periods of simulation) in some places in 

the model. This was particularly true close to seed sites (Figures 7 and 9), which makes sense as they 

have the greatest population turnover of the simulated space and thus a higher chance for disagreement 

between simulation schemes. However, the errors between simulations quickly heal, i.e., they return 

relatively quickly to a stable trend with relative errors no more than ~30% at worst. This is evident in 

the relative spikes in Figure 9 around the 150 time-step. One possible explanation for the dramatic 

shift in registration between direct simulation and CPI at this point is the merging of several of the 

cities’ hinterlands at this time, as the independent cities in the Midwestern Megalopolis begin to form 

as a federated urban complex. 

5.2. Efficiency of the Meta-Simulation Architecture 

A second test for the meta-model (perhaps even a supra-model) architecture was computational 

efficiency. As referenced earlier in the paper, automata models are beholden to the thirteenth dwarf of 
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parallel computing—parallelizing one’s way out of computational burdens in simulation is not always 

straightforward. It is therefore desirable to have some options in the simulation scheme (as well as the 

information processing) to circumnavigate these difficulties. By simplifying the simulation 

architecture atop the underlying model, to allow the EF scheme to run the automata components in 

short-burst experiments, and integrating the resulting population dynamics as a coarse observable, we 

were able to (1) accelerate the resolution time of the model, improving its efficiency, while (2) holding 

as faithfully as possible to the space-time dynamics of the represented processes (sprawl in this case). 

Direct simulation of the Midwestern scenario took 806 seconds, while the CPI-accelerated simulation 

resolved in 470 seconds, for a ~42% time saving. (This is discussed in more detail for a variety of 

simulation scenarios beyond the Midwestern example in [63].) 

6. Conclusions 

A near-standard argument in agent-based modeling is that models should be simple. This argument 

is particularly pervasive in computational social science and elements of the mantra are also beginning 

to appear in the burgeoning science of cities [12], as supported by urban simulation. Certainly, models 

should be simpler than the realities that they seek to represent in many cases and there is often 

pedagogical value in simple models used in the classroom, or in effectively communicating 

complicated ideas and complex systems. But, there is also a need for detailed models and one of the 

often-advertised advantages of the automata approach is its ability to map to the specific, independent 

detail of the agent (in urban contexts, individual people, households, properties, and land parcels) with 

ability to represent the autonomous actions of these agents as they interplay in massively dynamic 

systems contexts. Some urban processes and phenomena are simple, but most are not. For other urban 

processes, there may be some key feature of the system that produces its most dramatic phase shifts 

(Thomas Schelling’s tipping point is a classic example [138] and the emerging obsession with rank-size 

rules is a recent archetype [37]), but even in these cases there are many other pieces of the system that 

must be accounted for before that single feature can be isolated, and realistically those features are 

usually artificial indices of much more involved underlying processes [10,11]. 

In many cases, urban models are (very, very much) simpler than the supporting observational and 

theoretical scaffolds that support them; in other instances they are simpler than the data available to 

feed them. In most cases models are interpreted with broad strokes descriptive statistics that simplify 

them even further. So, why do we bother to build urban models at all? In the geographical sciences, a 

main motivation is to energize our theories, observations, hypotheses, and data over space and time 

and many models are beginning to focus on explicitly spatial processes (as well as spatialized 

economic, social, environmental, and so on processes) to achieve this [139]. In part, the field of 

geosimulation [39] and tool-kits such as geographic automata has been developed and advanced in 

response to this impulse [140–144]. 

However, urban simulation, particularly in the geographical sciences, is in some ways limited by 

several decades of devotion to simple models [9,145]. Ironically, the trend toward simplification of 

models has reappeared in agent-automata schemes, despite the potential that automata computing 

structures offer to build intricately detailed models that scale from the microcosm to the macrocosm of 

urban phenomena. The availability of easy-to-use modeling packages [146,147] has perhaps emphasized a 
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simple approach at the expense of supporting the meticulous work that needs to be done to reconcile 

perhaps hundreds of years of practical and theoretical experimentation with simulation-assisted urban 

studies and the now burgeoning silos of big data that we have pulsing-in from decades of qualitative 

survey, remote observation, urban sensor grids, and passive citizen sensing. Curiously, these trends in 

urban simulation are quite at odds with the state-of-the-art in the hard science modeling endeavors that 

the idea of a ‘science of cities’ [12] seeks to emulate. Consider urban climate modeling, for example, 

where community models [13,148,149] grow more and more detailed and powerful each year and calls 

to keep such models as simple as possible are relatively quiet. Indeed, increased sophistication in 

urban community modeling in the climate sciences has allowed for large unified models to be 

developed, advanced, and honed [150]. 

We need a way to reconcile complicated models with simple simulation if we are to successfully 

and meaningfully develop a simulation-assisted science of cities. Simple models and tools to think 

with are certainly a component of this science, but the backdrop must be formed from the best 

available science, data, and exploration and this would seem to suggest detailed, complicated models 

that delve deeply into the thorny complexities of urban systems. We also need to future-proof urban 

simulation so that it is extensible to: (1) the fact that cities are appearing, developing, changing, and 

even disappearing in new ways; (2) the range of questions that we might wish to pose in simulation, 

which are going to advance, deepen, and shift in focus as our science develops and modeling 

capabilities advance; (3) the sorts and volumes of data that may well become available in the near-term 

and future; (4) the sorts of model approaches that are deployed or developed to explore urban 

processes; and (5) the evolving community of models and meta-models that might emerge under the 

umbrella of a science of cities. Furthermore, we need to acknowledge the reality that urban simulation 

is now inextricably bound to computing, and has been so for many decades. We need to embrace 

extreme computing (whether mobile, parallel, threaded, GPGPU-assisted (general purpose graphics 

processing units), or high-performance) as a fundamental component of our urban simulation pipelines 

and methods, not just as an afterthought once a model has been specified. It would benefit the 

community to develop dedicated computational architectures for running and experimenting with 

urban models. In part, this is the argument proposed by Asanovic and colleagues in introducing the 

thirteen dwarfs [95]. Urban simulation could be a specific dwarf that needs to be carefully addressed at 

all stages in model development and processing. 

We believe that the approach that we have demonstrated here provides a template to support 

advances beyond the limitations that we have just discussed. It has, already, proven useful in many 

‘hard science’ applications, in biology, chemistry, and physics, for example [98,151–154]. It has the 

potential to work with other multi-variable control schemes employed in other sciences [155]. Here, 

we presented just one variable—population—but hopefully the reader can imagine how others could 

be usefully engaged in the same scheme. Its broader utility in urban simulation, where complex socio-

spatial and socio-economic processes comingle with physical phenomena is only beginning to be 

explored [63]. Our work as presented here illustrates that it is potentially quite valuable in moving 

urban modeling beyond the current state-of-the-art. 
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