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Abstract: In the view of granular computing, some general uncertainty measures are proposed 

through single-granulation by generalizing Shannon’s entropy. However, in the practical 

environment we need to describe concurrently a target concept through multiple binary relations. 

In this paper, we extend the classical information entropy model to a multi-granulation  

entropy model (MGE) by using a series of general binary relations. Two types of MGE are 

discussed. Moreover, a number of theorems are obtained. It can be concluded that the  

single-granulation entropy is the special instance of MGE. We employ the proposed model to 

evaluate the significance of the attributes for classification. A forward greedy search algorithm 

for feature selection is constructed. The experimental results show that the proposed method 

presents an effective solution for feature analysis. 
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1. Introduction 

Uncertainty analysis represents one of the most significant challenging tasks in intelligent computation. 

Since Shannon introduced the information entropy to measure the uncertainty of the system, a series of 

measures were proposed for machine learning, data mining and pattern recognition, etc. [1–3].  

In the field of granular computing, Yu et al. introduced the fuzzy entropy for attribute reduction [4]. 

Hu et al. presented kernel entropy by extended Yu’s work [5]. In [6], the authors defined neighborhood 

entropy by using a neighborhood relation. In the view of granular computing, there are two modules in 

the entropy methodology mentioned above: (1) granulation of data (samples) into a set of information 

granules according to the relation of objects; (2) calculating the sum of the uncertainty quantity of all 
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the information granules. We will give an example to illustrate this two-step process in detail in Section 2. 

It shows that granulation plays a key role in these entropy models. However, the classical information 

entropy theory utilizes solely the granularity structure of the given data, which is expressed by one 

suitable binary relation. The neighborhood entropy is only based on the neighborhood granulation; the 

fuzzy entropy on the fuzzy granulation; and the kernel entropy on the kernel granulation. In [7], Qian 

at el. proposed that there is a contradiction between two different binary relations in some data analysis 

issues. In other words, the decision or the view of each of decision makers may be independent for the 

same object in the process of some decision making. Accordingly, Qian et al. proposed  

multi-granulation rough set (MGRS) according to a user’s different requirements or targets of problem 

solving. Since then, many researchers have extended the classical MGRS by using various generalized 

binary relations. Lin et al. [8] proposed a covering-based pessimistic multi-granulation rough set. Xu et al. [9] 

proposed another generalized version, called variable precision multi-granulation rough set. There are two 

essential problems to be addressed when employing the rough sets model to real-world applications as  

similar as the information entropy model: (1) information granulation [10,11]; (2) approximate classification 

realized in the presence of such induced information granules [12,13]. The idea of multi-granulation is 

expressed through the approximation classification realizing. For example, one of the contributions in 

MGRS is to describe the lower and upper approximations by the multiple equivalence relations instead 

of the single equivalence relation. As a matter of fact, we can construct the multi-granulation structure in 

the process of the information granulation. Based on this idea, the contribution of this paper includes: 

(1) we extend the classical information entropy model to a multi-granulation entropy model (MGE) by 

using a series of general binary relations; (2) moreover, a number of theorems are obtained; (3) furthermore, 

we employ the proposed model to evaluate the significance of the attributes for classification. A forward 

greedy search algorithm for feature selection is constructed. The experimental results show that the 

proposed method presents an effective solution for feature analysis. 

The paper is organized as follows: in Section 2, some basic concepts about entropy in the view of 

granular computing are briefly reviewed. In Section 3, the MGE model is proposed. A series of theorems 

about MGE is discussed. Section 4 shows the applications of MGE to feature evaluating and feature 

selection. Numeric experiments are reported in Section 5. Finally, Section 6 concludes the paper. 

2. Entropy in the View of Granular Computing 

Knowledge representation is realized via the information system ( IS ) which is a tabular form, similar 

to databases. An information system is pair  AUIS , , where  nxxxU ,,, 21  is a nonempty finite set 

of objects, A is a nonempty finite set of attributes, and aa VUf : is a mapping for any Aa , where

aV is called the value set of a . 

Relations, as a fundamental concept in mathematics, represent the connections of a set elements in 

the domain. A binary relation onU can be represented as a matrix. The matrix  
nnijr


RM is 

called the relation matrix of R on the universeU . The matrix  
nnijr


RM  is denoted as: 
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In the classical set theory, the relations take values in the set 1,0 . In this case the relation matrix is 

a Boolean matrix. In the fuzzy set theory, the relations take values in the interval 1,0 . In this paper, we 

use a general binary relation R to denote any instantiated relation, such as fuzzy relation and kernel  
relation, etc. The fuzziness of relations is the essential characteristic in these cases. Therefore,  1,0ijr

in our study. 
Given an information system  AUIS ,  and a binary relation R ,  nxxxU ,,, 21  , Uxi  the  

information granule  Rix  is defined as:  
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With each sample, we express the information granule in the form of fuzzy sets. Here, we give an 

instance about kernel entropy to illustrate the information entropy model in the view of kernel  

granulation [5]: 
Example 1. Given an information system  AUIS , as follows: 

Table 1. IS description. 

 1a  2a  

1x  0.1 0.4 

2x  0.2 0.3 

where  21 , xxU  and  21 , aaA  , the two modules in the kernel entropy methodology are as  

follows, respectively: 

(1) Information granulation: 

The kernel relation is computed with Gaussian kernel as follows, where ji xx  is the Euclidean 

distance between samples ix and jx : 















 


2

2

2
exp


ji

ij

xx
r  (3) 

Hence, we have 37.02112  rr and 12211  rr if   is set to 0.1. The kernel granules can be constructed 

according Equation (2).  

(2) Calculating the kernel entropy: 

The cardinality of  Rix  is computed in the form of    


n

j ijRi rx
1

. Thus, the expected cardinality of

 Rix  is computed as follows, where U is cardinality of setU .  

    
U

x
xCard Ri

Ri   (4) 
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The kernel entropy is defined as follows:  
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Then, the kernel entropy of this IS is   55.0
2

37.1
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log
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Remark. To deal with nominal attributes and numerical attributes, which are common in practice, 

we use a extended Euclidean distance as the method introduced in literature [13]. This distance func-

tion is computed as follows: 
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In a real environment, we often need to concurrently describe a target concept through multiple binary 

relations (e.g., neighborhood relation, kernel relation, and fuzzy relation) according to a user’s  

requirements or targets of problem solving. Therefore, we will study the multi-granulation entropy 

model in the next section. 

3. Multi-Granulation Entropy 

In this section, two types of multi-granulation entropy (MGE) are introduced to measure the uncertainty 

of knowledge in information systems. Then, the joint entropy and conditional entropy are presented in 

the view of multi-granulation. A number of theorems will be discussed in detail. 

3.1. Two Types of MGE 

Definition 1. Let  AUIS ,  be an information system, where  nxxxU ,,, 21  is a nonempty  

finite set of objects. Given a set of general binary relations  tRRR ,, 21 , the optimistic granule

 ORix  is computed as follows, where “ ” means “max”: 

   
jRi

t

jORi xx
1
  (8) 

The granule  
jRix is defined in forms of fuzzy set for the “max” operation. The word “optimistic” is 

used to express the idea that the information granulation seeks common ground while reversing  

difference among these general binary relations.  
Definition 2. Let  AUIS , be an information system, where  nxxxU ,,, 21  is a nonempty finite 

set of objects. Given a set of general binary relations  tRRR ,, 21 , the pessimistic granule  ORix  is 

computed as follows, where “ ” means “min”: 
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jRi

t

jPRi xx
1
  (9) 

The granule  
jRix is defined in forms of fuzzy set for the “min” operation. The word “pessimistic” is 

used to express the idea that the information granulation seeks common ground while rejection difference 

among these general binary relations. 
Then, the expected cardinality of  ORix and  PRix are computed as follows, respectively: 

    
U

x
xCard ORi

ORi   (10) 

    
U

x
xCard PRi

PRi   (11) 

Here, we give the definition about the two types of MGE. 
Definition 3. Let  AUIS , be an information system, where  nxxxU ,,, 21  is a nonempty finite 

set of objects. Given a set of general binary relations  tRRR ,, 21 , AB  , the first type of MGE, 

called optimistic multi-granulation entropy (OMGE), is denoted by: 
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ORixCard
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2log
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)(  (12) 

Definition 4. Let  AUIS , be an information system, where  nxxxU ,,, 21  is a nonempty finite 

set of objects. Given a set of general binary relations  tRRR ,, 21 , AB  , the second type of 

MGE, called pessimistic multi-granulation entropy (PMGE), is denoted by: 

  


 
n
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PRixCard

U
BPH

1
2log

1
)(  (13) 

The following example will illustrate the two types of MGE in detail. 
Example 2. Given a nonempty finite set of objects  54321 ,,,, xxxxxU  . Two relation matrixes 

about 1R and 2R are denoted as: 

























11.06.05.04.0

2.018.05.03.0

2.01.019.06.0

1.05.04.012.0

8.06.05.04.01

1RM       ,   

























11.08.05.04.0

3.016.07.03.0

2.02.019.06.0

1.05.08.012.0

1.02.01.06.01

2RM   (14) 

The optimistic and pessimistic relation matrixes are denoted by OM and PM respectively as follows: 
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OM       ,   
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Every row of the matrixes denotes the information granule (e.g.,  
54321

1

8.06.05.06.01

xxxxx
x OR  ). 

OMGE and PMGE are computed according to Equations (12) and (13): 

     54.0log
1
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Definition 5. Let  AUIS , be an information system, where  nxxxU ,,, 21  is a nonempty finite 

set of objects. Given a set of general binary relations  tRRR ,, 21 , ABB 21, ,the optimistic  

information granules  1PRix and 2PRix are induced by 1B and 2B . The optimistic joint entropy is expressed as: 
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where “ ” means “min”. 

The pessimistic joint entropy is defined as follows: 
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Definition 6. Let  AUIS , be an information system, where  nxxxU ,,, 21  is a nonempty finite 

set of objects. Given a set of general binary relations  tRRR ,, 21 , ABB 21, , the optimistic con-

ditional entropy of 2B to 1B  is expressed as: 

  )()()|( 11212 BOHBBOHBBOH   (20) 

Similarly, we have the pessimistic conditional entropy: 

  )()()|( 11212 BPHBBPHBBPH   (21) 

The conditional entropy reflects the uncertainty of 2B if 1B is given. 

3.2. Some Theorems about MGE 

Theorem 1. Let  AUIS , be an information system, where  nxxxU ,,, 21  is a nonempty finite 

set of objects. Given only one equivalence binary relation  eR , we have: 

 AHAPHAOH   )()(  (22) 

where )( AH is Shannon’s entropy. 

Proof   )()( APHAOH is straightforward. The equivalence binary relation is computed as:  
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It is shown that the MGE is a natural generalization of the Shannon’s entropy in the view of granulation 

by the proof above. In [14,15], the authors generalized Shannon’s entropy to fuzzy entropy, kernel entropy 

and neighborhood entropy, respectively. These entropy models utilize solely the granularity structure 

of the given data, which is expressed by one suitable binary relation. The neighborhood entropy is only 

based on the neighborhood granulation; the fuzzy entropy on the fuzzy granulation; and the kernel entropy 

on the kernel granulation. Hence, it also can be concluded that the single-granulation entropy, such as 

neighborhood entropy, kernel entropy, fuzzy entropy, etc., is the special instance of MGE. 
Theorem 2. Let  AUIS , be an information system, where  nxxxU ,,, 21  is a nonempty finite 

set of objects. Given a set of general binary relations  tRRR ,, 21  ,  21  , we have: 

21
)()(   AOHAOH  (25) 

21
)()(   APHAPH  

(26) 

Proof Uxi  ,  21 , we have    
21   OiOi xx . Therefore,      

21   OiOi xcardxcard . 

Obviously, 
21

)()(   AOHAOH . Similarly,    
21   PiPi xx ,

21
)()(   APHAPH . 

For convenience, the monotonicity of entropy value induced by the set of relations is called the gra-

nulation monotonicity. 
Corollary 1. Let  AUIS , be an information system, where  nxxxU ,,, 21  is a nonempty finite 

set of objects. Given a set of general binary relations  tRRR ,, 21  , we have: 

  )()( APHAOH  (27) 

Proof Uxi  we have        
jj Ri

t

jORiPRiRi

t

j
xxxx

11 
 . Therefore,      ORiPRi xcardxcard  . 

Obviously,   )()( APHAOH . 

Corollary 2. Let  AUIS , be an information system, where  nxxxU ,,, 21  is a nonempty finite 

set of objects. Given a set of general binary relations  tRRR ,, 21  ,  21  , ABB 21, , 

we have: 

22
)|()|( 1212   BBOHBBOH

 (28) 
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21
)|()|( 1212   BBPHBBPH

 (29) 

Proof According to Lemma 4.1 in Ref. [16], we know that the combination of information granules 

by “ ” operator will increase the conditional entropy monotonously. Similarly, it can be concluded that 

the conditional entropy will decrease through combining information granules by “ ” operator. QED 

4. Feature Selection Based on MGE  

One of the most important applications of information entropy theory is to evaluate the classification 

power of the attributes in a decision system by computing the significance of the condition attributes 

for the resulting decision. This entropy-based model was widely used in feature selection algorithms for 

categorical data [17]. However, classical entropy models cannot be used to express multi-granulation 

which represents the different points of view for describing one concept. Here, we show a feature selection 

technique based on MGE. 
If the set of samples is assigned with a decision attribute D , we call this information system

 DCUIS ,, a decision system, where C are conditional attributes. Therefore, as we explain in Definition 6 

that multi-granulation conditional entropy  CDOH | (  CDPH | ) is the uncertainty of D if condition 

attributesC are given, conditional entropy reflects the relevance between condition attributes and decision.  

Definition 7. Let  DCUIS ,, be a decision system, where  nxxxU ,,, 21  is a nonempty finite 

set of objects. Given a set of general binary relations  tRRR ,, 21 , CB  , we thus define signi-

ficance of attribute subset B in the multi-granulation of view: 

             BDOHBOHDOHBDODOHDBOSIG |,  (30) 

             BDPHBPHDPHBDPDPHDBPSIG |,  
(31) 

 DBOSIG ,  is used to evaluate the significance of attribute subset B by the optimistic  

multi-granulation. Similar to  DBOSIG , ,  DBPSIG , is another evaluation measure of the attributes. 

The pessimistic granules, which are formed by the binary relations  , are used to compute 

 DBPSIG , . It is easy to observe that  DBOSIG , (  DBPSIG , ) becomes a symmetric uncertainty 

measure. In fact this is mutual information of B and D defined in Shannon’s information theory if B

and D generate Boolean equivalence relations according to Equation (23) [18]. As it is well-known, 

mutual information is widely applied in evaluating features and constructing decision trees [19,20], the 

classical definition of mutual information can just be used to deal with only one granulation. The  

multi-granulation significance defined here can be used to express lots of views with a series of binary 

relations. Equations (30) and (31) can be used to find the significant features for classification. Actually, it is 

impractical to get the optimal subset of features from 12 n candidates through exhaustive search, where

n is the number of features. The greedy search guided by some heuristics is usually more efficient than 

the plain brute-force exhaustive search. In a forward greedy search, one starts with an empty set of 

attributes, and keeps adding features to the subset of selected attributes one by one. Each selected 

attribute maximizes the increment of significance of the current subset. A forward search algorithm for 

feature selection based on MGE is written as follows. Here, OSIGand PSIGare denoted as SIG uniformly. 

Algorithm 1. Feature selection based on MGE(OMGE or PMGE) 
Input: decision system  DCUIS ,, , binary relations  tRRR ,, 21 and stopping threshold . 
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Output: selected features red . 

1. red  

2. while Cred   

3.  for each  redCai   

4.   compute  DredaSIGsig ii ,  

5.  end for 
6.  find the maximal isig and the corresponding attribute ia  

7.  if  ),( DredSIGsigi  

8.   iaredred   

9.  else 

10.   exit while 

11.  end if 

12. end while 

13. return red  

The time complexity of the algorithm is  mmnO log2 , where n and m are the numbers of features 

and samples, respectively. It is worth noting that the proposed measures of mutual information can be 

incorporated with other search strategies used in other feature selection algorithms, such as ABB (Automatic 

Branch and Bound), probabilistic search [21] and GP (Genetic programming) [22]. In this study, we 

are not going to compare the influence of search strategies on the results of feature selection. Here we 

focus on the comparison of the proposed method when dealing with different evaluation measures.  

5. Experimental Analysis 

In this section, we compare the effectiveness of MGE in evaluating feature quality. The data sets are 

downloaded from the UCI Machine Learning Repository. They are described in Table 2. The numerical 

attributes of the samples are linearly normalized as follows: 

   minmaxmin / xxxxx   (32) 

where minx and maxx are the bounds of the given attribute. Three popular leaning algorithms such as 

CART, liner SVM and RBF SVM are introduced to evaluate the quality of selected features. The  

experiments were run in a 10-fold cross validation mode. The parameters of the linear SVM and RBF 

SVM are taken as the default values (the use of the MATLAB toolkit osu_svm3.00). 

Table 2. Data description. 

ID Data Samples Features Class 
1 wine 178 13 3 
2 wdbc 569 31 2 
3 iono 351 34 2 
4 heart 270 13 2 
5 glass 214 9 7 
6 wpbc 198 33 2 
7 sonar 208 60 2 
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In the experiment, we employ three symmetric membership functions for multi-granulation. One is the 

kernel relation defined as Equation (3) in Example 1; the other two are computed as follows, respectively: 
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Equation (33), called neighborhood relation, is used to compute neighborhood entropy (NE) in 

Ref. [6] where the threshold 0 . According to this definition, the samples in a neighborhood granule 

have the distance is less than the threshold  . Literature [6] has explained that the result is optimum if 

threshold is set between 0.1 and 0.2. In the following, if not specified, 15.0 . Similarly, the fuzzy 

entropy (FE) is proposed based on the fuzzy relation according to Equation (34) [4]. We compare MGE 

with kernel entropy (KE), NE and FE, where the compared methods are the typical single-granulation 

entropy. The parameters of the KE and NE are kept consistent in Ref. [5] and Ref. [6]. We compute the 

significance of single feature with five evaluation functions, such as OMGE, PMGE, KE, NE and FE. 

At the same time, we reported the classification accuracies of the each feature based on the use of the 

linear SVM and RBF SVM. 

Two data sets wine and glass are used in the experiment. There are 13 features in the wine and nine 

features in the glass dataset. The results are given in Figures 1 and 2. As to the wine data, the features 

1, 6, 7, 10, 11, 12, 13 produce higher values of all evaluation functions, as shown in Figure 1a; at the 

same time, we can also find that the classification accuracies of these features are better than others 

(again shown in Figure 1b). As to the glass data, features 2, 3, 4, 8 are better than others in terms of the 

five evaluating functions, corresponding the classification accuracies of features 2, 3, 4, 8 are also 

higher than the other features. These results show that all five evaluating functions can produce good  

estimates of classification ability of the features. It can be concluded that OMGE and PMGE are com-

petent with other entropy models.  

Figure 1. Significance and accuracy of single feature (wine). (a) Significance of a single 

feature computed with different evaluating. (b) Classification accuracies obtained for sin-

gle features when using linear SVM and RBF SVM. 
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Figure 1. Cont. 
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Figure 2. Significance and accuracy of single feature(glass). (a) Significance of a single 

feature computed with different evaluating. (b) Classification accuracies obtained for sin-

gle features when using linear SVM and RBF SVM. 
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The above results show MGE can be used to evaluate single attributes. Now, we show the effective-

ness in attribute reduction. The selected features with different algorithms are presented in Tables 3 and 4, 

respectively. Regarding OMGE, PMGE, FE, NE and KE, the orders of the features presented in the 

tables are the orders that the features are kept being added to the feature space. These orders reflect the 
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relative significance of features in terms of the corresponding measures. Some results can be derived 

from the selected attributes. First, whatever attribute selection techniques have been used, most of the 

attributes in all datasets can be deleted. The reduction rate is high to 90% for some datasets, such as 

sonar and wpbc. Second, some selected attributes are slightly different. Especially, some of the selected 

features are the subset of attributes selected by other models. 

Table 3. Subsets of features selected with OMGE and PMGE. 

Data OMGE PMGE 

wine 7,1,10,13 7,1,11,4 
wdbc 29,22,23,12,9 24,29,23,30,26,9,13,10,28,3,27 
iono 5,6,8,25,28,24,10,21 5,6,34,29,8,23 
heart 13,12,3,11,1,7,4 13,12,3,1,10,4 
glass 3,7,4,9,5 3,7,4,9,5,1 
wpbc 34,2,13,14,7 2,34,13,7,23 
sonar 12,27,21,37,32,30,54 12,16,26,40,48 

Table 4. Subsets of features selected with FE, NE and KE. 

Data FE NE KE 

wine 7, 1, 10,13 7,1,11,4 7,1,10,13 
wdbc 29,22,23,12,9 24,29,23,30,8,27,26,13,10,3,19 29,22,23,9,12 
iono 5,6,8,25,28,24,34,7 5,6,34,29,8,23 5,6,8,25,28,24,34,7 
heart 13,12,3,10,1,7,11,2,8,4 13,12,3,10,1,4,5 13,12,3,10,1,7,11 
glass 3,7,4,9,5 3,7,4,9,5,1 3,7,4,9,5 
wpbc 34,2,13,14,7 2,34,13,7,23 34,2,13,14,7 
sonar 12,27,21,37,32,30,54 12,16,26,40,48 12,16,26,37,22,32,28 

As we know, we consider the ranking of features in feature selection, sometimes, a little difference 

in feature qualities may lead to completely different ranking. Therefore, the great difference between 

these selected features is the difference between the qualities of features computed with diverse granularities. 

In other words, there is a inconsistent relationship between its values under one-granularity and those 

under the another granularity. In [7], the authors give a tentative study that multi-granulation model 

will display its advantage for rule extraction when two granularities process a contradiction relationship. 

We will test this idea by the following experiment. We build classification models with the selected 

features and test their classification performance based on 10-fold cross validation. The average value 

and standard deviation are used to measure the classification performance. We compare the raw data, 

MGE, FE, NE and KE in Tables 5–7, where learning algorithms CART, linear SVM and RBF SVM 

are introduced to evaluate the selected features. 
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Table 5. Classification accuracies based on CART (%). 

Data Raw data OMGE PMGE FE NE KE 

wine 86.4 7.9 92.2 7.5 89.9 8.5 92.2 7.5 89.9 8.5 92.2 7.5 
wdbc 90.3 6.0 93.0 3.8 93.5 3.9 93.0 3.8 94.0 3.2 93.0 3.8 
iono 86.4 7.2 87.5 5.6 88.6 6.5 88.1 6.0 88.6 6.5 88.1 6.0 
heart 77.0 5.5 78.5 7.3 80.4 9.0 75.2 9.2 80.0 7.7 77.8 9.2 
glass 69.2 13.2 65.7 12.9 65.1 14.6 65.7 12.9 65.1 14.6 65.7 12.9 
wpbc 70.2 5.4 70.7 10.3 71.1 11.9 70.7 10.3 71.1 11.9 70.7 10.3 
sonar 57.7 9.2 73.1 12.6 72.2 15.3 73.1 12.6 72.2 15.3 62.6 13.2 

Table 6. Classification accuracies based on liner SVM (%). 

Data Raw data OMGE PMGE FE NE KE 

wine 98.3 2.7 97.2 3.9 94.4 5.2 97.2 3.9 94.4 5.2 97.2 3.9 
wdbc 98.0 1.9 96.1 2.1 96.3 2.1 96.1 2.1 95.9 2.1 96.1 2.1 
iono 87.5 6.4 83.4 5.3 85.0 5.9 85.0 5.3 85.0 5.9 85.0 5.3 
heart 84.1 9.3 83.0 8.9 81.9 7.2 82.9 9.4 82.2 6.0 82.6 8.6 
glass 55.7 7.7 60.4 9.1 57.1 8.7 60.4 9.1 57.1 8.7 60.4 9.1 
wpbc 77.3 5.7 76.3 3.0 76.3 3.0 76.3 3.0 76.3 3.0 76.3 3.0 
sonar 64.4 15.7 64.9 11.6 67.8 15.7 64.9 11.6 67.8 15.7 65.5 13.5 

Table 7. Classification accuracies based on RBF SVM (%). 

Data Raw data OMGE PMGE FE NE KE 

wine 97.8 2.9 96.7 3.9 95.0 4.1 96.7 3.9 95.0 4.1 96.7 3.9 

wdbc 97.0 2.6 96.7 2.1 97.2 2.3 96.7 2.1 97.5 2.5 96.7 2.1 

iono 94.0 4.2 93.7 4.8 92.6 5.7 94.0 4.6 92.6 5.7 94.0 4.6 

heart 79.2 9.6 81.1 7.9 83.3 7.6 82.6 9.4 84.0 7.8 81.5 9.2 

glass 68.3 12.1 62.7 11.9 64.1 11.2 62.7 11.9 64.1 11.2 62.7 11.9 

wpbc 78.9 6.0 74.3 7.4 75.3 7.7 74.3 7.4 75.3 7.7 74.3 7.4 

sonar 58.5 16.0 65.9 14.9 64.1 11.2 65.9 14.9 64.1 11.2 61.1 7.2 

Comparing the performance of raw data and granulation-based selection, we can find although most 

of features have been removed, most of the classification accuracies derived from the reduced data sets 

do not decrease, but increase. It shows there are redundant and irrelevant attributes in the raw data. 

The experimental results show that no matter which classification algorithms are used, MGE is better 

than or equivalent to KE. Table 6 shows that MGE outperforms FE and NE with respect to liner SVM. 

As to CART learning algorithm in Table 5, MGE is better than or equivalent to NE for six of the seven 

databases. It can be concluded that MGE is a better choice for the diverse granularities. Actually, the 

different decision makers have different granulation points of view. Therefore, it is necessary to take 

diverse factors into consideration for granular computing in the real world.  
  



Entropy 2013, 15 2301 

 

 

6. Conclusions  

In this paper, the classical single-granulation entropy theory has been extended. As a result of this 

extension, a multi-granulation entropy model (MGE) has been developed. The uncertainty of the information 

system is defined by using multiple relations on the universe. These relations can be chosen according 

to a user’s requirements or targets of problem solving.  

In MGE model, we introduce OMGE and PMGE to describe the relations between different granularities. 

Based on the mutual information defined through MGE, we proposed the forward greed features selection 

algorithms, which will be helpful for applying this theory to practical issues. MGE provides an  

effective approach in the context of multiple granulations. We conclude that the single-granulation entropy 

is the special instance of MGE. The experimental result shows that MGE will display its advantage for 

rule extraction and knowledge discovery when the different granularities in information systems possess 

a contradiction or inconsistent relationship. 

The future work could move along two directions. First, the existing feature selection algorithms 

based entropy sometimes might not be robust enough for real-world applications. How to improve it is 

an important issue. Second, we will continue to construct MGE models with various binary relations 

for discussing the common properties of this kind of entropy model. 
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