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Abstract:

 We derive expressions for the invariant length element and measure for the simple compact Lie group [image: there is no content] in a coordinate system particularly suitable for treating entanglement in quantum information processing. Using this metric, we compute the invariant volume of the space of two-qubit perfect entanglers. We find that this volume corresponds to more than [image: there is no content] of the total invariant volume of the space of two-qubit gates. This same metric is also used to determine the effective target sizes that selected gates will present in any quantum-control procedure designed to implement them.
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1. Introduction

Unitary transformations of the states of two quantum bits (qubits) play a prominent role in quantum information processing and computation [1]. Physically, these quantum logic gates are generated by interactions between qubits and thus the vast majority of them are entangling operations, meaning that they can change the degree to which the states of two qubits are strongly correlated or entangled. The entangling two-qubit operations, together with suitable single-qubit gates, are also essential for universal quantum computation.

Two-qubit operations are elements of the Lie group [image: there is no content] and so are conveniently represented by [image: there is no content] unitary matrices of unit determinant. A comprehensive survey of such two-qubit gates is offered by their geometric theory, which was formulated by Zhang et al. [2]. This uses both the Cartan decomposition of [image: there is no content] and the theory of local invariants of two-qubit operations [3] to provide a very useful geometric classification of the two-qubit gates in terms of their local equivalence classes. These classes are the two-qubit operations that are equivalent up to single-qubit transformations, and thus each class is characterised by its unique nonlocal content and thus its unique entangling capabilities. The geometric theory of two-qubit gates has recently been utilised in the context of the physical generation of these gates using an optimal-control approach [4].

The geometric theory also provides a useful framework for the characterisation of the specific two-qubit gates of most interest in quantum computing. These include not only familiar logical operations like CNOT and SWAP, but also perfect entanglers, gates that are capable of creating a maximally-entangled state out of some initial product state. Where these gates are located in [image: there is no content], and the nature of the regions they are in, are issues that can only be properly understood when the geometric structure of [image: there is no content] is determined.

This geometry will have a major impact on the implementation of any working quantum computer. In constructing its gates, we need to know where they are in [image: there is no content] and how likely it is that we can generate them. For instance, it was shown [2] that perfect entanglers occupy exactly half of the volume of the space of all local equivalence classes of two-qubit gates. This naively suggests that if one randomly picks a nonlocal gate, there will be a [image: there is no content] probability that it is a perfect entangler. This same picture also implies that all gates are equally probable; picking a gate at random is just as likely to produce a gate locally-equivalent to a CNOT gate as it is to give one locally-equivalent to a SWAP.

However, this view ignores the local (i.e., single-qubit) operations that are factored out from the local equivalence classes. These operations are represented by the [image: there is no content] subgroup whose curvature contributes to the overall geometry of [image: there is no content], and thus to the distribution of locally-equivalent gates. To incorporate this curvature so as to correctly determine how the local equivalence classes are distributed, we must find an invariant Haar measure for [image: there is no content].

These considerations motivate the present work. We first focus on the derivation of the metric structure of [image: there is no content], specifically its invariant length element and its Haar measure. We would like to point out that even though calculations using the Haar measure for various Lie groups, including [image: there is no content], have been carried out in the past [5,6,7], they were not performed in the representation particularly applicable to dealing with entanglement in quantum information processing, namely, one that reflects the natural factorisation of [image: there is no content] into the single-qubit [image: there is no content] and purely nonlocal (two-qubit) [image: there is no content] parts. This factorisation leads to a reduction from fifteen-dimensional [image: there is no content] to a three-dimensional space in which all locally-equivalent gates live, and we discuss the form of the length element and measure for two particular choices of coordinates for this space.

We then use these derived geometric quantities to proceed towards our main objective: the calculation of the invariant volumes of the regions containing particular gates of interest in quantum information processing. First, we determine the total volume of the region occupied by perfect entanglers, and find the rather surprising result that these gates make up over [image: there is no content] of [image: there is no content] (thus quantifying the statement that most of the two-qubit operations are perfect entanglers). We then consider regions containing the gates most often used in quantum computing and find that their volume depends on where the gate is, and thus determine how big a “target” each gate would present to any quantum control technique designed to generate them. These calculations show that out of all two-qubit gates, those locally-equivalent to the B-gate (introduced and described in [8]) present the largest effective targets.

The content of this paper has the following structure. After a discussion of the decomposition and parametrisation of [image: there is no content] in Section 2, we focus on its geometric properties in Section 3, where we derive the invariant length element and Haar measure for the group, presenting the results in both the original parametrisation and in the context of the representation of two-qubit gates offered by the local invariants due to Makhlin [3]. We then use this Haar measure to find the volume of the space of perfect entanglers in Section 4. Section 5 gives the invariant volumes of regions surrounding particular gates of interest, and shows explicitly that these volumes are entirely dependent on where the gate is located. The conclusion of the paper (Section 6) is followed by two supplementary appendices where we review two methods for finding an invariant measure, the first (A) using the methods of linear algebra and the second (B) using the properties of metric spaces.



2. Decomposition and Parametrisation of [image: there is no content]

All unitary gates operating on two-qubit states are described by a [image: there is no content] unitary matrix, an element of the compact group [image: there is no content]. Any such matrix may be written as an element of [image: there is no content] multiplied by a complex number of modulus 1, so the sixteen parameters we use to specify any gate are the phase of this [image: there is no content] prefactor (an angle modulo [image: there is no content]) and the fifteen real parameters of [image: there is no content].

Which fifteen parameters we choose is largely up to us; for instance, we could use the [image: there is no content] polar coordinates [5] or the analogues of the Euler angles familiar from classical mechanics [6]. However, for our purposes, it is much more convenient to utilise the Cartan decomposition of the Lie algebra of the group (e.g., [9,10,11,12]); this allows us to write any element of [image: there is no content] as a combination of matrices in [image: there is no content] and the maximal Abelian subgroup [image: there is no content] (which henceforth we will refer to as [image: there is no content] for brevity’s sake).

The utility of this decomposition is apparent when we realise that, in the basis [image: there is no content], any operation that affects only the first qubit is represented by [image: there is no content], and one affecting only the second is [image: there is no content], where [image: there is no content] and [image: there is no content] are each [image: there is no content] unitary matrices. These local operations, which act separately and independently on the two qubits, are therefore described by matrices in [image: there is no content]. The operations that entangle the two qubits must then be entirely determined by the matrices from the Abelian subgroup [image: there is no content].

With all of this in hand, we choose the decomposition of [image: there is no content] such that our matrices take the form



[image: there is no content]



(1)




where [image: there is no content] and [image: there is no content] are [image: there is no content] matrices in [image: there is no content] and A is in the maximal Abelian subgroup [image: there is no content] of [image: there is no content]. We can now parametrise the subgroups in the following way: let [image: there is no content] and [image: there is no content] be 3-dimensional vectors given in terms of spherical coordinates and Cartesian unit vectors by


[image: there is no content]=αsinθcosϕe^x+sinθsinϕe^y+cosθe^z=αα^[image: there is no content]=βsinλcosξe^x+sinλsinξe^y+cosλe^z=ββ^



(2)




with [image: there is no content], [image: there is no content] and [image: there is no content]. Then if [image: there is no content] are the usual Pauli matrices, a generic element of [image: there is no content] may be written as


k[image: there is no content],[image: there is no content]=exp-i2[image: there is no content]·σ→⊗exp-i2[image: there is no content]·σ→=Icosα2-iα^·σ→sinα2⊗Icosβ2-iβ^·σ→sinβ2



(3)




The two [image: there is no content] matrices in equation (1) can then be parametrised by four vectors [image: there is no content]1, [image: there is no content]1, [image: there is no content]2 and [image: there is no content]2 via


[image: there is no content]=k[image: there is no content]1,[image: there is no content]1,[image: there is no content]=k[image: there is no content]2,[image: there is no content]2



(4)




This takes care of twelve of the fifteen coordinates necessary to specify any [image: there is no content] element; the remaining three, [image: there is no content], [image: there is no content] and [image: there is no content], parametrise the matrix A through


A[image: there is no content],[image: there is no content],[image: there is no content]=exp-i2∑j=13cjσj⊗σj=∏j=13I⊗Icoscj2-iσj⊗σjsincj2



(5)




To ensure that each U is given by a unique set of coordinates, we must restrict [image: there is no content], [image: there is no content] and [image: there is no content] to the Weyl chamber given by


0≤[image: there is no content]≤[image: there is no content]≤[image: there is no content]≤π2andπ2<[image: there is no content]<π,0≤[image: there is no content]≤[image: there is no content]<π-[image: there is no content]



(6)




i.e., within the tetrahedron whose vertices are at [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] [2], as shown in Figure 1.
Now that we have defined the coordinates and determined their ranges of values, we can choose an orientation; in this paper, we take the one such that the ordering



x=x1,…,x15=[image: there is no content]1,[image: there is no content]1,[image: there is no content]2,[image: there is no content]2,c→=α1,θ1,ϕ1,β1,λ1,ξ1,α2,θ2,ϕ2,β2,λ2,ξ2,[image: there is no content],[image: there is no content],[image: there is no content]



(7)




forms a right-handed coordinate system.
We now want to find a Haar measure for [image: there is no content] in terms of these fifteen parameters. The basic method for finding such a measure for an N-dimensional simple compact Lie group G is reviewed in the appendices, and the first step is to compute the Maurer–Cartan form Θ and write it in terms of the N Hermitian Lie algebra generators [image: there is no content] and N coordinate 1-forms [image: there is no content] as



[image: there is no content]



(8)




E is therefore a real [image: there is no content] matrix whose determinant gives us our invariant measure (up to an overall factor):


[image: there is no content]



(9)




where [image: there is no content]. Two of the ways of motivating this particular form of the measure are covered in the appendices, but both require us to somehow compute the determinant of E, which for [image: there is no content] is a [image: there is no content] matrix.




Figure 1. (Colour online) The Weyl chamber in [image: there is no content][image: there is no content][image: there is no content]-space. The perfect entanglers make up the region highlighted in red.
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3. The Invariant Length Element and Haar Measure for [image: there is no content]

In this section, we derive expressions for the invariant length element [image: there is no content] and the Haar measure [image: there is no content] for [image: there is no content]. Both of these have been found before not just for [image: there is no content], but for [image: there is no content] and, indeed, for a great variety of simple compact Lie groups (see, for example [5,6,7] and references therein). However, the novelty of our approach is that these quantities will be in forms that are particularly suited for the description of two-qubit gates, namely, in the coordinate system defined in the previous section, which separates the purely local gates in [image: there is no content] from the entangling gates in [image: there is no content].


3.1. The Length Element

We choose to do the computation by first finding an invariant length element [image: there is no content] for [image: there is no content]; since this will give the metric tensor via [image: there is no content], we may then use the relation [image: there is no content]. We could also have explicitly found the full [image: there is no content] matrix [image: there is no content] and then computed its determinant; this can be done using methods similar to those in [6,7]. However, we found that the computation was somewhat simpler using [image: there is no content] instead; we now describe the calculation that leads to this.

First, define the three 1-forms Θ1,2,[image: there is no content] by



[image: there is no content]=k1-1d[image: there is no content],










[image: there is no content]=d[image: there is no content]k2-1










Θ[image: there is no content]=A-1dA=dAA-1



(10)




(the latter holding because [image: there is no content] is Abelian). It is straightforward to show that the [image: there is no content] Maurer–Cartan form Θ can be written as


Θ=k2-1A-1[image: there is no content]A+Θ[image: there is no content]+[image: there is no content][image: there is no content]



(11)




and that the invariant length, given (see Appendix B) by


[image: there is no content]=-trΘ[image: there is no content]Θ



(12)




can be expressed as


[image: there is no content]=-tr[image: there is no content][image: there is no content][image: there is no content]-tr[image: there is no content][image: there is no content][image: there is no content]-trΘ[image: there is no content][image: there is no content]Θ[image: there is no content]-tr[image: there is no content][image: there is no content]Θ[image: there is no content]+Θ[image: there is no content][image: there is no content][image: there is no content]-tr[image: there is no content][image: there is no content]Θ[image: there is no content]+Θ[image: there is no content][image: there is no content][image: there is no content]-trA-1[image: there is no content]A[image: there is no content][image: there is no content]+[image: there is no content][image: there is no content]A-1[image: there is no content]A



(13)




The traces can be evaluated quickly if we choose an orthonormal basis for [image: there is no content]; we take the fifteen generators [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content], which satisfy


[image: there is no content]



(14)




[image: there is no content] is spanned by the six matrices [image: there is no content] and [image: there is no content] by the three matrices [image: there is no content], so the matrices k and A are


k[image: there is no content],[image: there is no content]=exp-i∑j=13αjT0j+βjTj0










[image: there is no content]



(15)




Using these, we can explicitly compute [image: there is no content], [image: there is no content], A and Θ[image: there is no content], and thus the length element in equation (13). The first three terms give the invariant length elements of [image: there is no content] (twice) and [image: there is no content], and the next two terms vanish because the two subspaces are orthogonal to each other. The remaining term—the last—can be most conveniently written using what we know about [image: there is no content]: the Maurer–Cartan form for this group has the form


Θ[image: there is no content]=ei[image: there is no content]·σ→/2de-i[image: there is no content]·σ→/2=-i2∑iζi[image: there is no content]σi



(16)




where the three 1-forms [image: there is no content] are


ζx[image: there is no content]=sinθcosϕdα+2sinα2sinα2sinϕ+cosα2cosθcosϕdθ+2sinα2sinθsinα2cosθcosϕ-cosα2sinϕdϕζy[image: there is no content]=sinθsinϕdα+2sinα2-sinα2cosϕ+cosα2cosθsinϕdθ+2sinα2sinθsinα2cosθsinϕ+cosα2cosϕdϕζz[image: there is no content]=cosθdα-2sinα2cosα2sinθdθ-2sin2α2sin2θdϕ



(17)




The invariant length element for [image: there is no content] is therefore


[image: there is no content]=ds[image: there is no content]2[image: there is no content]1+ds[image: there is no content]2[image: there is no content]1+ds[image: there is no content]2[image: there is no content]2+ds[image: there is no content]2[image: there is no content]2+d[image: there is no content]⊗d[image: there is no content]+d[image: there is no content]⊗d[image: there is no content]+d[image: there is no content]⊗d[image: there is no content]-ζx[image: there is no content]1⊗ζx-[image: there is no content]2+ζx-[image: there is no content]2⊗ζx[image: there is no content]1+ζx[image: there is no content]1⊗ζx-[image: there is no content]2+ζx-[image: there is no content]2⊗ζx[image: there is no content]1cos[image: there is no content]cos[image: there is no content]-ζy[image: there is no content]1⊗ζy-[image: there is no content]2+ζy-[image: there is no content]2⊗ζy[image: there is no content]1+ζy[image: there is no content]1⊗ζy-[image: there is no content]2+ζy-[image: there is no content]2⊗ζy[image: there is no content]1cos[image: there is no content]cos[image: there is no content]-ζz[image: there is no content]1⊗ζz-[image: there is no content]2+ζz-[image: there is no content]2⊗ζz[image: there is no content]1+ζz[image: there is no content]1⊗ζz-[image: there is no content]2+ζz-[image: there is no content]2⊗ζz[image: there is no content]1cos[image: there is no content]cos[image: there is no content]-ζx[image: there is no content]1⊗ζx-[image: there is no content]2+ζx-[image: there is no content]2⊗ζx[image: there is no content]1+ζx[image: there is no content]1⊗ζx-[image: there is no content]2+ζx-[image: there is no content]2⊗ζx[image: there is no content]1sin[image: there is no content]sin[image: there is no content]-ζy[image: there is no content]1⊗ζy-[image: there is no content]2+ζy-[image: there is no content]2⊗ζy[image: there is no content]1+ζy[image: there is no content]1⊗ζy-[image: there is no content]2+ζy-[image: there is no content]2⊗ζy[image: there is no content]1sin[image: there is no content]sin[image: there is no content]-ζz[image: there is no content]1⊗ζz-[image: there is no content]2+ζz-[image: there is no content]2⊗ζz[image: there is no content]1+ζz[image: there is no content]1⊗ζz-[image: there is no content]2+ζz-[image: there is no content]2⊗ζz[image: there is no content]1sin[image: there is no content]sin[image: there is no content]



(18)




where


ds[image: there is no content]2[image: there is no content]=dα⊗dα+4sin2α2dθ⊗dθ+4sin2α2sin2θdϕ⊗dϕ



(19)




is the [image: there is no content] invariant length element.


3.2. The Haar Measure

The metric tensor [image: there is no content] can be extracted from equation (18), and, when considered as a [image: there is no content] matrix, has an associated determinant. A lengthy but straightforward calculation gives the result



detg=sin2β22sin[image: there is no content]+[image: there is no content]sin[image: there is no content]-[image: there is no content]sin[image: there is no content]+[image: there is no content]sin[image: there is no content]-[image: there is no content]sin[image: there is no content]+[image: there is no content]sin[image: there is no content]-[image: there is no content]×256sin2α12sinθ1sin2β12sinλ1sin2α22sinθ2sin2β22sinλ22



(20)




Since [image: there is no content], this allows us to determine, up to a proportionality constant, the Haar measure we want; to reflect the decomposition of [image: there is no content] into two copies of [image: there is no content] and [image: there is no content]=SU(4)[SU(2)⊗SU(2)], we write it as


[image: there is no content]=dμ[image: there is no content][image: there is no content]1∧dμ[image: there is no content]β1→∧dμ[image: there is no content]α2→∧dμ[image: there is no content]β2→∧dμ[image: there is no content][image: there is no content],[image: there is no content],[image: there is no content]



(21)




where dμ[image: there is no content] is the normalised [image: there is no content] Haar measure in spherical coordinates


dμ[image: there is no content](α,θ,ϕ)=18π2sin2α2sinθdα∧dθ∧dϕ



(22)




and dμ[image: there is no content] is the normalised Haar measure for the Abelian subgroup given by


dμ[image: there is no content][image: there is no content],[image: there is no content],[image: there is no content]=48πsin[image: there is no content]+[image: there is no content]sin[image: there is no content]-[image: there is no content]sin[image: there is no content]+[image: there is no content]sin[image: there is no content]-[image: there is no content]×sin[image: there is no content]+[image: there is no content]sin[image: there is no content]-[image: there is no content]d[image: there is no content]∧d[image: there is no content]∧d[image: there is no content]



(23)




(Conveniently, the quantity in the absolute value above is manifestly nonnegative when ([image: there is no content],[image: there is no content],[image: there is no content]) lies in the Weyl chamber, so taking the absolute value is redundant and we drop it from now on.) It is straightforward to confirm that these measures both integrate to unity over [image: there is no content] and [image: there is no content] respectively. The normalised Haar measure on [image: there is no content] is therefore the wedge product of the five measures given:


[image: there is no content]=3256π9∏i=12sin2αi2sinθisin2βi2sinλi×∏1≤j<k≤3sincj+cksincj-ckd15x



(24)




Two elements U and [image: there is no content] of [image: there is no content] are locally equivalent to one another if one can be obtained from the other via either left or right multiplication by an element of [image: there is no content]. In other words, when U and [image: there is no content] are decomposed into the form given in equation (1), they have the same matrix A. Thus, any local equivalence class [U]∈[image: there is no content] is uniquely determined by coordinates ([image: there is no content],[image: there is no content],[image: there is no content]) in the Weyl chamber, and so the invariant measure for the space of these classes is obtained by integrating over all the [image: there is no content] parameters. The result is the normalised Haar measure on [image: there is no content]:



dμ[image: there is no content]=M[image: there is no content][image: there is no content],[image: there is no content],[image: there is no content]d[image: there is no content]∧d[image: there is no content]∧d[image: there is no content]



(25)




where


M[image: there is no content][image: there is no content],[image: there is no content],[image: there is no content]=48π∏1≤j<k≤3sincj+cksincj-ck



(26)




Alternatively, using some trigonometric identities and a bit of algebra, we may rewrite this in a form somewhat more useful for computations:


M[image: there is no content][image: there is no content],[image: there is no content],[image: there is no content]=3πcos2[image: there is no content]cos4[image: there is no content]+cos2[image: there is no content]cos4[image: there is no content]+cos2[image: there is no content]cos4[image: there is no content]-cos4[image: there is no content]cos2[image: there is no content]-cos4[image: there is no content]cos2[image: there is no content]-cos4[image: there is no content]cos2[image: there is no content]



(27)




As this measure involves only elementary functions, computing the invariant volume of a region in [image: there is no content] can often be done exactly, as we will show in Section 4 and Section 5.


3.3. Local Invariants

We have just derived expressions for the measure and metric in terms of the three parameters [image: there is no content], [image: there is no content] and [image: there is no content]; although both these expressions are (relatively) simple in form, they are only useful if we actually have values for these three coordinates. In practice, however, extracting [image: there is no content], [image: there is no content] and [image: there is no content] from an arbitrary [image: there is no content] matrix U may be difficult. Fortunately, there are three far easier to obtain alternative parameters that can be used as coordinates on [image: there is no content].

If we change from the standard computational basis [image: there is no content] to the Bell basis



1200-i11,-i201+10,1201-10,1200+i11



(28)




then our [image: there is no content] matrices become UB=Q†UQ=Q†[image: there is no content]A[image: there is no content]Q, where


[image: there is no content]



(29)




The eigenvalues of the matrix [image: there is no content] determine all the local invariants of U, also called the Makhlin invariants [3]. The characteristic equation of m is


[image: there is no content]



(30)




and so [image: there is no content] and [image: there is no content] give local invariants. These are complex numbers, so instead we may take as local invariants the three real numbers


[image: there is no content]=Retr2(m)16,[image: there is no content]=Imtr2(m)16,[image: there is no content]=tr2(m)-tr[image: there is no content]4



(31)




m, [image: there is no content] and their traces are readily computable using the simplest of matrix operations, and so values for [image: there is no content], [image: there is no content] and [image: there is no content] can be easily obtained for any [image: there is no content].
Since these are local invariants, they must be functions only of [image: there is no content], [image: there is no content] and [image: there is no content]; some computation shows that they are, and have the explicit forms



[image: there is no content]=14cos2[image: there is no content]+cos2[image: there is no content]+cos2[image: there is no content]+cos2[image: there is no content]cos2[image: there is no content]cos2[image: there is no content][image: there is no content]=14sin2[image: there is no content]sin2[image: there is no content]sin2[image: there is no content][image: there is no content]=cos2[image: there is no content]+cos2[image: there is no content]+cos2[image: there is no content]



(32)




These can be used to embed the Weyl chamber into [image: there is no content][image: there is no content][image: there is no content]-space. However, the Weyl chamber is no longer a simple tetrahedron in these coordinates, but rather an elongated “Eye of Sauron” shape [13,14], as shown in Figure 2.


These functions are bijective when [image: there is no content], [image: there is no content] and [image: there is no content] lie within the Weyl chamber and we use the following inverse map ([image: there is no content],[image: there is no content],[image: there is no content])↦([image: there is no content],[image: there is no content],[image: there is no content]): first, find [image: there is no content], [image: there is no content] and [image: there is no content], the roots of the cubic equation



z3-[image: there is no content]z2+4g12+g22-1z+[image: there is no content]-4[image: there is no content]=0



(33)




ordered so that [image: there is no content]≤[image: there is no content]≤[image: there is no content]. Then [image: there is no content]=[image: there is no content]([image: there is no content])/2, [image: there is no content]=[image: there is no content]([image: there is no content])/2 and [image: there is no content] is given by either [image: there is no content]([image: there is no content])/2 if [image: there is no content]≥0 or π-[image: there is no content]([image: there is no content])/2 if [image: there is no content]<0. (As used here, [image: there is no content] is the principal value of the arccosine function, lying between 0 and π.)
The Haar measure in terms of the local invariants has the relatively simple form



dμ[image: there is no content][image: there is no content],[image: there is no content],[image: there is no content]=3πd[image: there is no content]∧d[image: there is no content]∧d[image: there is no content]g12+g22



(34)




However, the form of the length element is much more complicated in [image: there is no content], [image: there is no content] and [image: there is no content] than it is in [image: there is no content], [image: there is no content] and [image: there is no content]: the Jacobian matrix J, which gives the coordinate transformation between c→T=([image: there is no content],[image: there is no content],[image: there is no content]) and g→T=([image: there is no content],[image: there is no content],[image: there is no content]), is defined by [image: there is no content] and has the entries


J1i=-121+cos2cjcos2cksin2ci,j,k≠i,j<k










J2i=12cos2cisin2cjsin2ck,j,k≠i,j<k










J3i=-2sin2ci



(35)




The Euclidean length element [image: there is no content] therefore becomes [image: there is no content], and this can be written purely in terms of the local invariants:


JJT=2ρ-4g12+2g22+[image: there is no content][image: there is no content][image: there is no content][image: there is no content]-6[image: there is no content][image: there is no content]6ρ-2[image: there is no content][image: there is no content][image: there is no content][image: there is no content]-6[image: there is no content][image: there is no content]ρ+2g12-4g22-[image: there is no content][image: there is no content]-2[image: there is no content][image: there is no content]6ρ-2[image: there is no content][image: there is no content]-2[image: there is no content][image: there is no content]16ρ+2-2g32



(36)




where [image: there is no content]. Inverting this matrix is possible but not particularly illuminating, so we do not do it here. However, it illustrates the key feature, that this part of [image: there is no content] can be written explicitly in terms of the local invariants without needing to solve equation (33).
Unfortunately, the cross-terms in equation (18)—those involving the ζ-forms—depend on the local invariants through [image: there is no content] and [image: there is no content], and writing these explicitly in terms of [image: there is no content], [image: there is no content] and [image: there is no content] leads to an extremely complicated form for the length element. Although this part of [image: there is no content] will not figure into any calculation at a fixed point in [image: there is no content], if one is to compute the invariant distance between two arbitrary points in [image: there is no content], it is this form that must be used if we choose the local invariants as coordinates.



Figure 2. (Colour online) The Weyl chamber in [image: there is no content][image: there is no content][image: there is no content]-space, with the region of perfect entanglers highlighted in red.
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3.4. Extension to [image: there is no content]

We have so far discussed only the two-qubit gates that lie in [image: there is no content] and we will continue to concentrate on this group for the remainder of this article; however, as stated in the introduction, a general two-qubit gate will be an element of [image: there is no content], so we digress momentarily to explain how all of the results just obtained may be easily extended to all of [image: there is no content].

This is done through the decomposition [image: there is no content], where the first term in the Cartesian product contributes to an overall phase factor:



U=eiχ[image: there is no content]A[image: there is no content]



(37)




with [image: there is no content], [image: there is no content] and A as before and [image: there is no content] (considered as a group with addition modulo [image: there is no content]). The invariant length element and Haar measure of [image: there is no content] are therefore obtained from those of [image: there is no content] via, respectively, the addition of [image: there is no content] to equation (18) and the wedge product of [image: there is no content] with equation (21).
However, the coordinates [image: there is no content], [image: there is no content] and [image: there is no content] as given in equation (31) will depend on χ, and so must be redefined so as to be independent of not only the [image: there is no content] local gates, but also the [image: there is no content] phase. Luckily, this is accomplished by simple division by the determinant of U [2]:



[image: there is no content]=Retr2(m)16detU,[image: there is no content]=Imtr2(m)16detU,[image: there is no content]=tr2(m)-tr[image: there is no content]4detU



(38)




This modification ensures that the coordinate transformation from ([image: there is no content],[image: there is no content],[image: there is no content]) to ([image: there is no content],[image: there is no content],[image: there is no content]) given by equation (32) remains the same. Thus, all our results for [image: there is no content] will easily extend to [image: there is no content]; however, for the remainder of this article, we shall once again concern ourselves only with [image: there is no content].



4. Perfect Entanglers

The elements of [image: there is no content] that perfectly entangle two-qubit states all lie within the subset of the Weyl chamber bounded by the planes [image: there is no content]+[image: there is no content]=π/2, [image: there is no content]-[image: there is no content]=π/2 and [image: there is no content]+[image: there is no content]=π/2. This region is the interior of the 7-faced polyhedron with vertices at [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], the red volume illustrated in Figure 1.

At any specific point in the [image: there is no content] orbit, this region fills exactly half of the Weyl chamber: if both [image: there is no content] and [image: there is no content] are constant, then [image: there is no content], and the space is flat. The Euclidean volume—calculated with the normalised measure 24π3d[image: there is no content]∧d[image: there is no content]∧d[image: there is no content] —is [image: there is no content].

However, if we are more concerned with those [image: there is no content] elements that entangle the two qubits, we are not concerned with what the volume of the entangling chamber is at a specific point in [image: there is no content]; in fact, since this subgroup only consists of local gates, we are not interested at all in the values of [image: there is no content] and [image: there is no content], but rather only in those values of A where ([image: there is no content],[image: there is no content],[image: there is no content]) is in the perfectly-entangling chamber.

Therefore, the total volume in [image: there is no content] occupied by the space of perfect entanglers is obtained by integrating the Haar measure around the full [image: there is no content] orbit, i.e., all values of ([image: there is no content]1,[image: there is no content]1,[image: there is no content]2,[image: there is no content]2), as well as the values of [image: there is no content], [image: there is no content] and [image: there is no content] giving the perfect entanglers. Since the four [image: there is no content] measures are already normalised, and M[image: there is no content]([image: there is no content],[image: there is no content],[image: there is no content]) is symmetric around [image: there is no content]=π/2, the integral over the subset of perfect entanglers is



VPE=2∫[image: there is no content][image: there is no content]d[image: there is no content]∫π/2-[image: there is no content][image: there is no content]d[image: there is no content]∫0[image: there is no content]d[image: there is no content]+∫[image: there is no content][image: there is no content]d[image: there is no content]∫0π/2-[image: there is no content]d[image: there is no content]M[image: there is no content][image: there is no content],[image: there is no content],[image: there is no content]=83π,



(39)




so we obtain the rather surprising result that the perfect entanglers occupy over [image: there is no content] of [image: there is no content]!
There are two important remarks to make concerning this result: first, we chose to do the computation in [image: there is no content][image: there is no content][image: there is no content]-space because, in these coordinates, the Haar measure has a relatively simple form and the boundary of the region of perfect entanglers is bounded by planes, making the integral of [image: there is no content] very straightforward. We could also have chosen to do the integral in [image: there is no content][image: there is no content][image: there is no content]-space using equation (34), but the region of perfect entanglers—the red “pupil” in Figure 2—has boundaries much more complicated than planes, and so the volume integral would be much more difficult to calculate. However, the invariance of our measure ensures that we would obtain the same result of [image: there is no content] if we did use the Makhlin invariants.

Secondly, we have shown that perfect entanglers make up a majority of all two-qubit gates. From the point of view of quantum information processing, this is good news, because it suggests that it may be easier than expected to create a perfectly-entangling gate. In fact, if we are able to pick a two-qubit gate purely at random, we would get a perfect entangler nearly 85% of the time!

It is this second point that we will address in more detail in the next section: the computation of the invariant volumes of specific regions in [image: there is no content], those surrounding the types of gates of particular interest to quantum computing, e.g., the CNOT and SWAP gates.

Note added in proof: During the refereeing process following the submission of this manuscript, we became aware of [15], in which two of our results—the form of the Haar measure on [image: there is no content] and the volume of the space of perfect entanglers—were independently obtained. However, the technique used in the aforementioned article differs greatly from ours: the measure was obtained by using results from the theory of random matrices [16], which gives only its form on [image: there is no content] and not on the entirety of [image: there is no content]. In contrast, our approach is geometrically motivated and gives much more general results: we obtain the measure on [image: there is no content] by first constructing an invariant length element for [image: there is no content] and then using the associated metric to find a Haar measure for the entire group. The measure on [image: there is no content] follows from integration around the orbit of [image: there is no content]. However, in both cases, once a measure on [image: there is no content] is obtained, the computation of the volume of the space of perfect entanglers readily follows.



5. Uses in Quantum Control

The implementation of any two-qubit quantum computer requires, of course, quantum gates that operate on the two qubits. Creating such gates presents a formidable technical challenge; one must devise a system in which an element of [image: there is no content] can evolve from an initial state (most usually the identity element, but in principle any [image: there is no content] matrix) to a final state that is the desired gate.

In practice, however, we cannot create a gate exactly. We can only end up within a certain neighbourhood of a given gate. For example, an arbitrary element of [image: there is no content] depends on fifteen parameters [image: there is no content]; if the gate we want is located at the exact point [image: there is no content], we will only ever be able to evolve to a matrix within a certain parameter range around this point, for example, a cubic region [image: there is no content].

The likelihood of us being able to evolve the gate into this region depends on its size: the greater the volume of the region, the bigger a target it presents for us to shoot at. Certain gates may be easier to implement with greater precision if the target volume over a given parameter range is large; if it is small, then it may be quite difficult to end up inside the volume, and we may have to increase the parameter range (and thus lose precision) in order to finish near the desired gate.

So how do we determine the target sizes? If [image: there is no content] were a flat space, then all target sizes would be the same for a given parameter range; for example, the cubic region described above would have volume [image: there is no content] regardless of what [image: there is no content] was. But we know that [image: there is no content] has a non-Euclidean metric, and is not flat. Therefore, the volume of a region—obtained by integration of the Haar measure—can depend on both the location of the final gate and the range of parameters describing its neighbourhood. The resulting volumes will tell us how large a target the selected gates present for the range of parameters we choose, and can therefore be used as an indication of how difficult a gate is to achieve with precision.


5.1. Volumes of Target Cubes

As above, we are only concerned with gates that are equivalent up to local [image: there is no content] operations, so any target volume we compute will include an integration over all of this subgroup. Thus, we will only have to compute integrals over regions of [image: there is no content], since all points in this Abelian group are indeed distinct modulo local single-qubit operations. So if [image: there is no content] is the equivalence class of the gate U, and [image: there is no content] is a neighbourhood of [image: there is no content] in [image: there is no content], the volume in [image: there is no content] that this region occupies is



V([image: there is no content])=∫SU(2)⊗SU(2)×SU(2)⊗SU(2)×[image: there is no content]dμ=∫[image: there is no content]dμ[image: there is no content]



(40)




The nonzero curvature of [image: there is no content] makes it likely that regions in [image: there is no content] that are described by the same range of coordinates might not have the same volumes. Specifically, if we choose ([image: there is no content],[image: there is no content],[image: there is no content]) as our coordinates in [image: there is no content], a cube of side length a centred at a point [image: there is no content] in the Weyl chamber will not only have a volume different from [image: there is no content], but this volume will also vary depending on where it is centred.

The following results illustrate these properties. In all cases, the region integrated over is a cube of side length a centred on the five basic gates discussed in [4] (plus two others, for illustrative purposes) and whose sides are parallel to the [image: there is no content], [image: there is no content] and [image: there is no content] axes:


	[image: there is no content] at [image: there is no content], with [image: there is no content]:



[image: there is no content]



(41)




For small a, this is [image: there is no content].


	[image: there is no content] at [image: there is no content], with [image: there is no content]:



[image: there is no content]



(42)




For small a, this is [image: there is no content].


	[image: there is no content] at [image: there is no content], with [image: there is no content]:



[image: there is no content]



(43)




For small a, this is [image: there is no content].


	[image: there is no content] at [image: there is no content], with [image: there is no content]:



[image: there is no content]



(44)




For small a, this is 12[image: there is no content]/π+O([image: there is no content]).


	[image: there is no content]/[image: there is no content] at [image: there is no content], with [image: there is no content]:



[image: there is no content]



(45)




For small a, this is [image: there is no content].


	[image: there is no content] at [image: there is no content], with [image: there is no content]:



[image: there is no content]



(46)




For small a, this is [image: there is no content].


	Gate at [image: there is no content], with [image: there is no content]:



[image: there is no content]



(47)




For small a, this is [image: there is no content].




(The upper bounds on the values of a in the above expressions come from the fact that if the cubes are too big, then we cannot use equation (27), since it is valid only in the Weyl chamber. Computing the volumes of larger cubes is possible but difficult, and we do not do it here.)
The volumes for small values of a are included to provide a means of comparison: the smaller the cube is, the closer we are to the exact gate [image: there is no content], and so if we are to implement this gate with any reasonable degree of precision, a will have to be small. The leading-order term in the small-a expansion therefore gives the approximate scaling behaviour for each volume, and we see that the largest volume occurs at the [B-gate] (V∼[image: there is no content]) and the smallest at the identity and [SWAP] gates ([image: there is no content]), with the volumes of all other gates lying in between.

All controlled gates have equivalence classes that lie on the [image: there is no content]-axis between the origin and [image: there is no content]=π/2, and the invariant volume of a cube of side length a around each of them can be computed in the same fashion as the fixed gates above: if the centre of the cube is at [image: there is no content], then if [image: there is no content],



Vc1*,0,0=12π8a+acos(3a)-9acos(a)-3acos(3a)-3acos(a)-3sin(3a)+9sin(a)cos2c1*+3acos(3a)-3acos(a)-6sin(3a)+12sin(2a)-6sin(a)cos4c1*=[image: there is no content]2π3-4cos2c1*+cos4c1*-a21515-26cos2c1*+11cos4c1*+a45040819-1640cos2c1*+905cos4c1*+Oa11



(48)




Thus, for any [image: there is no content], the invariant volume scales as [image: there is no content]. (For [image: there is no content], we recover the previous result shared by the [CNOT] and [CPHASE] gates.)
All of the above gates lie somewhere on the boundary of the Weyl chamber; if we take a cube of side length a that lies entirely within the Weyl chamber, then its volume as a function of its centre [image: there is no content] is



V(c1*,c2*,[image: there is no content])=3a2πsin(a)sin(2a)cos(2c1*)cos(4c2*)-cos(4c1*)cos(2c2*)+cos(2c2*)cos(4[image: there is no content])-cos(4c2*)cos(2[image: there is no content])+cos(4c1*)cos(2[image: there is no content])-cos(2c1*)cos(4[image: there is no content])=12asin(a)sin(2a)M[image: there is no content]c1*,c2*,[image: there is no content]



(49)




For small a, the prefactor is approximately [image: there is no content], the Euclidean volume of the cube, and so in this limit V/[image: there is no content] is M[image: there is no content], and thus tells us how much larger or smaller the actual invariant volume is than the Euclidean volume.
Figure 3 plots M[image: there is no content] for three horizontal slices of the Weyl chamber, at [image: there is no content], [image: there is no content] and [image: there is no content]. These illustrate that M[image: there is no content] vanishes on the boundary of the chamber and peaks in the interior for all [image: there is no content]. Furthermore, this maximum value increases as [image: there is no content] decreases toward zero. In fact, it is on this bottom face that M[image: there is no content] takes on its global maximum of [image: there is no content] at [image: there is no content] and [image: there is no content]. This demonstrates that cubes near the [B-gate] present, for a given side length, the biggest targets.

Figure 3. (Colour online) Cube volumes within the Weyl chamber. The volume factor M[image: there is no content] as a function of [image: there is no content] on horizontal slices with, from left to right, [image: there is no content], [image: there is no content]=π/6 and [image: there is no content]=π/4.
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5.2. Makhlin Invariants and Target Cylinders

As is evident from Figure 2, the boundary of the Weyl chamber in [image: there is no content][image: there is no content][image: there is no content]-space is no longer a collection of flat planes but a curved surface. Computing the volumes of regions that abut the boundary (precisely where many of the gates of interest are located) is therefore likely to be far more difficult than in [image: there is no content][image: there is no content][image: there is no content]-space.

It is possible, however, to find exact expressions for the volumes of some regions that lie entirely within the Weyl chamber. This is most easily done by converting to cylindrical coordinates [image: there is no content] given by [image: there is no content]=ρcosϕ, [image: there is no content]=ρsinϕ and [image: there is no content]=z. The measure in these coordinates is very simple: [image: there is no content]. Using this, we can explicitly compute the volumes of various regions centred on the origin:



Cube of side length a:V=12a2πln2+1Cylinder of height h and axial radius R:V=6RhSphere of radius R:V=3πR2



(50)




For regions not centred on the origin, the volumes of cubes and spheres tend to be more difficult to compute, but a closed-form expression can be found for the volume of a cylinder (with axis in [image: there is no content] direction) of height h and radius R centred at [image: there is no content]. If [image: there is no content], the volume is the same as at the origin, namely, [image: there is no content]. If either [image: there is no content] or [image: there is no content] is nonzero, then ρ*=([image: there is no content])2+([image: there is no content])2 is positive and the invariant volume of the cylinder is



V[image: there is no content],[image: there is no content],g3*=12RhπEρ*RforR≥ρ*12ρ*hπERρ*+R2(ρ*)2-1KRρ*forR<ρ*



(51)




where [image: there is no content] and [image: there is no content] are the complete elliptic integrals of the first and second kind respectively:


K(k)=∫0[image: there is no content]dϕ1-k2sin2ϕ,E(k)=∫0[image: there is no content]dϕ1-k2sin2ϕ



(52)




For small cylinders with [image: there is no content], we find


V[image: there is no content],[image: there is no content],g3*≈3R2h[image: there is no content]2+[image: there is no content]2



(53)




so the volume of the cylinder decreases as we move away from the [image: there is no content]-axis, entirely consistent with the result we obtained in [image: there is no content][image: there is no content][image: there is no content]-space.



6. Conclusions

In order to study the geometric properties of [image: there is no content] in a way that is particularly suitable to a quantum information context—where the emphasis is on the entangling capabilities of two-qubit operations—we have utilised a parametrisation of [image: there is no content] that reflects the natural decomposition of two-qubit gates into local (single-qubit) [image: there is no content] and purely nonlocal (two-qubit) [image: there is no content] factors. The latter (denoted by [image: there is no content]) corresponds to the maximal Abelian subgroup of [image: there is no content] and is parametrised by three real coordinates.

In this parametrisation, we have calculated the invariant length element and the Haar measure of [image: there is no content], with the latter normalised to provide unit total volume of the group. These calculations also show that while the purely nonlocal part of the two-qubit operations is geometrically flat, the local part carries a curvature that is carried over to the curvature of [image: there is no content].

We continue with a discussion of the metric properties of the Abelian subgroup [image: there is no content] of [image: there is no content] in the context of a different choice of coordinates, namely, the Makhlin invariants. Although these invariants are easily determined from a general element of [image: there is no content] and the Haar measure takes a relatively simple form, the invariant length element is far more complicated. Its form can be determined but is not particularly illuminating; however, the results we present are sufficient to allow one to compute the invariant distance between two arbitrary points should the local invariants be selected as the preferred coordinates for [image: there is no content].

These results allow us to compute the invariant volume of any region in the Abelian subgroup [image: there is no content] of [image: there is no content], i.e., any region in the space of local equivalence classes of two-qubit gates. We first apply it to the set of perfect entanglers; these gates, which are capable of creating maximally entangled states out of some product states, correspond to half of the local equivalence classes. We found that the invariant volume of perfect entanglers occupies more than [image: there is no content] of the total volume of two-qubit gates, which means that, in fact, the majority of the two-qubit gates are perfect entanglers. (Our form of the Haar measure on [image: there is no content] and our volume of the space of perfect entanglers are in complete agreement with the recent independently-obtained results in [15].)

Next, we use the Haar measure to find the invariant volumes of locally-equivalent regions around specific gates. All these regions are described by the same range of parameters, but due to the curvature of the space, not all these regions have the same volume. In fact, the invariant volumes depend entirely on where in [image: there is no content] the region lies. We find that the volume is smallest around the identity and SWAP gates and largest at the B-gate, with all other volumes falling in between.

These results are relevant to quantum information processing and its physical implementation in general, and in particular, to recent efforts [4] to use optimal control approach to generate two-qubit quantum operations, where the control objective is any gate of a given entangling power rather than a specific two-qubit gate. In cases where the objective is to achieve a perfect entangling gate, our conclusion that the majority of all gates are perfect entanglers is highly encouraging.

If the objective is to create one of the more familiar logical gates, our results show that generating a SWAP gate with any precision may be difficult due to the low density of gates in its neighbourhood, whereas the high density near the B-gate suggests that it could be relatively easy to generate. Since the B-gate is one of the gates that is needed to create a universal quantum computer, this is also an encouraging result.
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Appendices



A. Haar Measures on Compact Lie Groups

Suppose G is a simple compact N-dimensional Lie group with corresponding Lie algebra g. Let [image: there is no content] be a set of local coordinates on the manifold M underlying G, with [image: there is no content] the associated 1-forms. Given [image: there is no content], we may construct the Maurer–Cartan 1-form Θ as



[image: there is no content]



(A1)




This 1-form is left-invariant and right-covariant; in other words, under the left-translation


[image: there is no content]



(A2)




Θ is unchanged, and under the right-translation


[image: there is no content]



(A3)




Θ transforms via conjugation by W: [image: there is no content].
We want an invariant measure for G, namely, a positive-definite N-form on M that does not change under either the left- or right-translations above, and thus may play the role of a volume element on the group. We construct it by noticing that the wedge product of Θ with itself any number of times is also left-invariant and right-covariant. Thus, if we have a finite-dimensional irreducible representation (irrep) ρ of g, then taking the trace of [image: there is no content] in this irrep returns an N-form that is left-invariant automatically and right-invariant due to the cyclicity of the trace:



trρ[image: there is no content]↦trρW[image: there is no content]W-1=trρ[image: there is no content]



(A4)




Thus, this is an invariant measure for G. For compact Lie groups, any such measure is unique up to an overall multiplicative factor, and is called the Haar measure [image: there is no content] of the group.
Suppose [image: there is no content] is a Hermitian basis for the simple compact Lie algebra g. Since Θ is a 1-form that takes values in g, we may write it (using Einstein summation convention) both in terms of the 1-forms [image: there is no content] and the generators [image: there is no content] as



[image: there is no content]



(A5)




where each of the [image: there is no content] components [image: there is no content] is simply a numerical function of the local coordinates. If we wedge Θ with itself N times, then we obtain


[image: there is no content]=(-i)NEA1μ1…EANμNTA1…TANdxμ1∧…∧dxμN=(-i)NEA1μ1…EANμNTA1…TANϵμ1…μNdNx



(A6)




where ϵ is the N-dimensional Levi–Civita symbol and [image: there is no content] is shorthand for [image: there is no content]. If we think of E as an [image: there is no content] matrix, then


[image: there is no content]=(-i)NdetETA1…TANϵA1…ANdNx



(A7)




We therefore see that


trρ[image: there is no content]=(-i)NtrρTA1…TANϵA1…ANdetEdNx



(A8)




where ρ is any irrep of g. The trace is just an overall multiplicative factor, and since the Haar measure is determined only up to proportionality, we conclude that


[image: there is no content]



(A9)




Taking the absolute value of the determinant ensures that the measure is positive-definite if the proportionality constant is positive. Because G is compact, the integral of this N-form over the underlying manifold M is finite, and so we can fix the constant of proportionality such that this integral is unity. This defines the normalised Haar measure for a compact simple Lie group:


[image: there is no content]=detE(x)dNx∫MdetEx′dNx′



(A10)




An important point: for an arbitrary Lie group G, it is possible that the trace over the generators or the determinant of E could vanish. However, both are nonzero if G is simple, which we have assumed. But this general method may be extended to nonsimple compact Lie groups as well: if [image: there is no content] where each [image: there is no content] is compact and simple, then the product of their normalised Haar measures



[image: there is no content]=dμG1∧dμG2∧…∧dμGM



(A11)




is a positive-definite left- and right-invariant N-form, and thus a normalised Haar measure on G.
As an example, consider [image: there is no content]: this is a nonsimple compact Lie group that is equal to [image: there is no content], where [image: there is no content] is considered as a group under addition modulo [image: there is no content]. Any element of [image: there is no content] has the form [image: there is no content], with [image: there is no content] and [image: there is no content]. Then if dμ[image: there is no content] is the normalised Haar measure for [image: there is no content], then



[image: there is no content]=ndχ2π∧dμ[image: there is no content]



(A12)




is the normalised Haar measure for [image: there is no content].


B. Metric Structures of Simple Lie Groups

Another standard way of obtaining the invariant measure for a compact Lie group is via the natural metric structure of the underlying manifold that is induced by the Maurer–Cartan form. By “metric structure”, we mean a way of measuring lengths and distances in the Lie group: if x and y are the coordinates of the two elements [image: there is no content] and [image: there is no content] in G, then we want a function [image: there is no content] that tells us “how far” [image: there is no content] and [image: there is no content] are from each other.

Since finite lengths can be built up from infinitesimal lengths, we need a quantity [image: there is no content] so that the length of a path Γ connecting two points is [image: there is no content]; this is given by a two-form written in terms of a symmetric metric tensor [image: there is no content] via



[image: there is no content]=[image: there is no content](x)dxμ⊗dxν



(B1)




However, we want this length element to be invariant under the action [image: there is no content], since this gives the coordinate transformations on G. The Maurer–Cartan form gives us everything we need to define such an element: define the N Lie algebra-valued functions [image: there is no content],…,ΘN as the coefficients of the coordinate 1-forms, namely,


[image: there is no content]



(B2)




If we both left- and right-act on [image: there is no content] via [image: there is no content], we know that [image: there is no content]; group multiplication only affects the Lie algebra-valued part of Θ, so


[image: there is no content]



(B3)




Therefore,


[image: there is no content]



(B4)




This is neither invariant nor symmetric in μ and ν; however, it can be made both by taking the trace over an irrep ρ: in other words,


[image: there is no content]



(B5)




satisfies all the properties we need for a metric tensor. Written in terms of the generators and the [image: there is no content] real matrices E, this becomes


[image: there is no content]



(B6)




The trace in the above expression depends on the particular irrep ρ we use; however, one of the properties of simple Lie algebras is that all such traces are proportional to one another. Thus, we may simply pick an irrep [image: there is no content] in which to compute the trace, and all other metrics will differ from it only by an overall constant of proportionality. Thus, let [image: there is no content] denote the trace in equation (B6) using [image: there is no content] and let [image: there is no content] be the resulting metric:



[image: there is no content](x)=[image: there is no content]EAμ(x)EBν(x)



(B7)




(If we choose the adjoint representation, then η is the Killing metric of the Lie algebra.) Readers familiar with the Cartan formalism of general relativity will recognise this; here, η plays the role of the (pseudo)Riemannian flat metric and E gives the components of the vielbein 1-forms.
We now have a systematic way to compute [image: there is no content], the function we need for our invariant measure: first, we note that for simple Lie algebras, η is nonsingular, so



detg=(detη)(detE)2⇒[image: there is no content]



(B8)




Second, the invariant measure can be rewritten as


[image: there is no content]=[image: there is no content]dxμ⊗dxν=-trΘμΘνdxμ⊗dxν=-trΘ[image: there is no content]Θ



(B9)




where the trace is over the chosen irrep [image: there is no content] and [image: there is no content] denotes both matrix multiplication and tensor product, i.e.,


ρΘ[image: there is no content]Θ:=ρΘμ·ρΘνdxμ⊗dxν



(B10)




This formula makes the invariant length extremely straightforward to compute, and once [image: there is no content] is extracted from it, the invariant measure follows.
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