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Abstract: Maximum entropy methods of parameter estimation are appealing because they 

impose no additional structure on the data, other than that explicitly assumed by the analyst. 

In this paper we prove that the data constrained GME estimator of the general linear model is 

consistent and asymptotically normal. The approach we take in establishing the asymptotic 

properties concomitantly identifies a new computationally efficient method for calculating 

GME estimates. Formulae are developed to compute asymptotic variances and to perform 

Wald, likelihood ratio, and Lagrangian multiplier statistical tests on model parameters. 

Monte Carlo simulations are provided to assess the performance of the GME estimator in 

both large and small sample situations. Furthermore, we extend our results to maximum 

cross-entropy estimators and indicate a variant of the GME estimator that is unbiased. 

Finally, we discuss the relationship of GME estimators to Bayesian estimators, pointing out 

the conditions under which an unbiased GME estimator would be efficient. 
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1. Introduction 

Information theoretic estimators have been receiving increasing attention in the econometric-statistics 

literature [1–7]. In other work, [3] proposed an information theoretic estimator based on minimization of 

the Kullback-Leibler Information Criterion as an alternative to optimally-weighted generalized method 

of moments estimation. This specific estimator handles weakly dependent data generating mechanisms 

and under reasonable regulatory assumptions it is consistent and asymptotically normally distributed. 

Subsequently, [1] proposed an information theoretic estimator based on minimization of the 

Cressie-Read discrepancy statistic as an alternative approach to inference in moment condition models. 

In [1] identified a special case of the Cressie-Read statistic—the Kullback-Leibler Information Criterion 

(e.g., maximum entropy)—as being preferred over other estimators (e.g., empirical likelihood) because 

of its efficiency and robustness properties. Special issues of the Journal of Econometrics (March 2002) 

and Econometric Reviews (May 2008) were devoted to this particular topic of information estimators.  

Historically, information theoretic estimators have been motivated in several ways. The Cressie-Read 

statistic directly minimizes an information based concept of closeness between the estimated and 

empirical distribution [1]. Alternatively, the maximum entropy principle is based on an axiomatic 

approach that defines a unique objective function to measure uncertainty of a collection of events [8–10]. 

Interest in maximum entropy estimators stems from the prospect to recover and process information 

when the underlying sampling model is incompletely or incorrectly known and the data are limited, 

partial, or incomplete [10]. To date the principle of maximum entropy has been applied in an abundance 

of circumstances, including in the fields of econometrics and statistics [11–17], economic theory and 

applications [18–24], accounting and finance [25–27], and resources and agricultural economics [28–32]. 

Moreover, widely used econometric software packages are now incorporating procedures to calculate 

maximum entropy estimators in their latest releases (e.g., SAS, SHAZAM, and GAUSSX).  

In most cases, rigorous investigation of small and large sample properties of information theoretic 

estimators have lagged far behind empirical applications [3]. Exceptions include [1–3] who examined 

information theoretic alternatives to generalized method of moments estimation; [14] who derived the 

statistical properties of the generalized maximum entropy estimator in the context of modeling 

multinomial response data; and, [10] who provided asymptotic properties for the moment-constrained 

generalized maximum entropy (GME) estimator for the general linear model (showing it is 

asymptotically equivalent to ordinary least squares). An alternative information theoretic estimator of 

the general linear model (GLM), yet to be rigorously investigated, but that has arisen in empirical 

applications (e.g., [24]), is the purely data-constrained formulation of the generalized maximum entropy 

estimator [10]. In a purely data-constrained formulation the regression model itself, as opposed to 

moment conditions of it, represents the constraining function to the entropy objective function. In the 

maximum entropy framework, unlike ordinary least square or maximum likelihood estimators of the 

GLM, moment constraints are not necessary to uniquely identify parameter estimates. Moreover, there 

exists distinct differences between the data and moment constrained versions of the GME for the GLM. 

For [10] have shown the data-constrained GME estimator to be mean square error superior to the 

moment-constrained GME estimator of the GLM in selected Monte Carlo experiments.  

Our paper contributes to the econometric literature in several ways. First, regularity conditions are 

identified that provide a solid foundation from which to develop statistical properties of the data 

constrained GME estimator of the GLM and hypothesis tests on model parameters. Given the regularity 
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conditions, we define a conditional maximum entropy function to rigorously prove consistency and 

asymptotic normality. As demonstrated in this paper the data-constrained GME estimator is not 

asymptotically equivalent to the moment-constrained GME estimator or ordinary least squares estimator. 

However, the GME estimator is shown to be nearly asymptotically efficient. Moreover, we derive 

formulae to compute the asymptotic variance of the proposed estimator. This allows us to define classical 

Wald, Likelihood Ratio, and Lagrange Multiplier tests for testing hypothesis about model parameters.  

Second, theoretical extensions to unbiased, cross entropy, and Bayesian estimation are also 

identified. Further, we demonstrate that the GME specification can be extended from finite-discrete 

parameter and error spaces to infinite-continuous parameter and error spaces. Alternative formulations 

of the data constrained GME estimator of the GLM under selected regularity conditions, and the 

implications to properties of the estimator, are also discussed.  

Third, to compliment the theoretical results, Monte Carlo experiments are used in comparing the 

performance of the data-constrained GME estimates to least squares estimates for small and medium 

size samples. The performance of the GME estimator is tested relative to selected distributions of the 

errors, to the user supplied supports of the parameters and errors, and to its robustness to model 

misspecification. Monte Carlo experiments are also performed to examine the size and power of the 

Wald, Likelihood Ratio, and Lagrange Multiplier test statistics.  

Fourth, insight into computational efficiency and guidelines for setting boundaries of parameters and 

error support spaces are discussed. The conditional maximum entropy formulation utilized in proof of 

asymptotic properties provides a basis for new computationally efficient method of calculating GME 

estimates. The approach involves a nonlinear search over a K-vector of coefficient parameters, which is 

much more efficient than numerical approaches proposed elsewhere in the literature. Finally, practical 

guidelines for setting boundaries of parameters and error support spaces are analyzed and discussed.  

2. The Data-Constrained GME Formulation 

Let Y X    represent the general linear model with Y being an 1N  dependent variable vector, 

X being a fixed N K  matrix of explanatory variables, β being a 1K  vector of parameters, and ε being 

an 1N   vector of disturbance terms (All of our results can be extended to stochastic X. For example, if 

iX   is iid with ( )iVar X    , a positive definite matrix, then the asymptotic properties are identical to 

those developed below). The GME rule for defining the estimator of the unknown β in the general linear 

model formulation is given by ˆ ˆZp   with 1ˆ ˆ ˆ( , , )Kp p p     derived from the following constrained 

maximum entropy problem: 1 ( , , )Kp p p     

1 1,
Max ln( ) ln( )

: ,

K N

k k i i
k i

k iw
p p w w

p k i  

    
 
 

 

 

subject to:  

Y XZp Vw   

1 kp k  1  

1 iw i  1  

[0], [0], , .k ip w i k    
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In the preceding formulation, the matrices Z and V are K KM  and N NJ  matrices of support 

points for the β and ε vectors, respectively, as:  

11

22

0 00 0
0 00 0  and 

0 00 0 NK

vz
vzZ V

vz

   
    

  
   




      


, 

where 1( , , )k k kMz z z   is a 1M   vector such that 1 2k k kMz z z    and 

1( , ) 1, ,k k kMz z k K     , and similarly 1( , , )i i iJv v v   is a 1J   vector such that 1 2i i iJv v v   

and 1( , ) 1, ,i i iJv v i N      (in their original formulation, [10] required i  to be contained in a fixed 

interval with arbitrarily high probability. Here we assume such an event occurs with probability). The 

1M   kp vectors and the 1J   iw  vectors are weight vectors having nonnegative elements that sum to 

unity and are used to represent the β and ε vectors as ,Zp  for 1( , , )Kp p p    , and ,Vw  for 

1 ( , , )Jw w w    . 

The basic principle underlying the estimator ˆ ˆZp   for β is to choose an estimate that contains only 

the information available. In this way the maximum entropy estimator is not constrained by any 

extraneous assumptions. The information used is the observed information contained in the data, the 

information contained in the constraints on the admissible values of β, and the information inherent in 

the structure of the model, including the choice of the supports for the k ’s. In effect, the information set 

used in estimation is shrunk to the boundary of the observed data and the parameter constraint 

information. Because the objective function value increases as the weights in pi and wi are more 

uniformly distributed, any deviation from uniformity represents the effect of the data constraints on the 

weighting of the support points used for representing β and . This fact also motivates the interpretation 

of the GME as a shrinkage-type estimator that in the absence of constraints on β will shrink ̂  to the 

centers of the supports defined in the specification of Z. We next establish consistency and asymptotic 

normality results for the GME estimator under general regularity conditions on the specification of the 

estimation problem.  

3. Consistency and Asymptotic Normality of the GME Estimator  

Regularity Conditions. To establish asymptotic results for the GME estimator, we utilize the following 
regularity conditions for the problem of estimating β in Y X   . 

R1. The i 's are iid with 1 i Jc c       for some δ > 0 and large enough finite positive 

1Jc c  .  

R2. The pdf of , ( )i if  , is symmetric around 0 with variance 2 . 

R3. ( , )k kL kH   , for finite  and , 1, ,kL kH k K     . 

R4. X has full column rank.  
R5. 1 ( )N X X is O(1) and the smallest eigenvalue of 1 ( )N X X   for some  > 0, and *N N  , 

where N*
 is some positive integer.  

R6. 
1 ( )N X X  , a finite positive definite symmetric matrix.  

Note that condition R1 states that the support of i  is contained in the interior of some large enough 

closed finite interval 1[ , ]Jc c . Condition R3 states that the true value of parameter k  can be enclosed 
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within some open interval ( , )kL kH  . The conditions R4-R6 on X are familiar analogues to typical 

assumptions made in the least squares context for establishing asymptotic properties of the least squares 

estimator of β. We utilize condition R6 to simplify the demonstration of asymptotic normality, but the 

result can be established under weaker conditions, as alluded to in the proof. Finally, our proof of the 

asymptotic results will utilize symmetry of the disturbance distribution, which is the content of condition R2.  

Reformulated GME Rule. The asymptotic results are derived within the context of the following 

representation of the GME model, represented in scalar notation to facilitate exposition of the proof. The 

GME representation described below is completely consistent with the formulation in Section 2 under 

the condition that the support points represented by the vector vi are chosen to be symmetrically 

dispersed around 0. We use the same vector of support points for each of the i 's, consistent with the iid 

nature of the disturbances, and so henceforth v  refers to the common th  scalar support point in the 

development below. The representation is also more general than the representation in Section II in the 

sense that different numbers of support points can be used for the representation of different k  

parameters. The constrained maximum entropy problem is as follows: 

1 1 1 1, ,
Max ln( ) ln( )

kJK N J

k k i i
k ib p w

p p w w
   

 
         

 

 (1)

subject to: 

C1. 1 2
1

, ,  1, ,
k

k

J

k k k kL k k kJ kHz p b z z z k K


        


    

C2. 
1

( ),  1, ,
J

i i i i iv w e y X b e b i N


      


  

C3. 1 1 2 J Jc v v v c      

C4. 1
2

1 (thus for  odd 0)JJv v J v       

C5. 
1

1, 1, ,
kJ

kp k K


  


  

C6. 
1

1, 1, ,
J

iw i N


  


  

As will become apparent, the nonnegativity restrictions on kp   and iw   are inherently enforced by 

the structure of the optimization problem itself, and thus need not be explicitly incorporated into the 

constraint set.  

Asymptotic Properties. The following theorem establishes the consistency and asymptotic normality of 

the GME estimator of β in the GLM.  

Theorem. Under regularity conditions R1-R5, the GME estimator ˆ ˆZp   is a consistent estimator of β. 

With the addition of regularity condition R6, the GME estimator is asymptotically normally distributed as 

2
1

2
ˆ ~ ,

a

N
N

 



 

  
 

for appropriate definitions of 2 , ,   and   . 
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Proof. Define the maximized entropy function, conditional on b  , as: 

( 1) ( 6)
, :

1 1 1 1

( ) Max ln( ) ln( )
k

C C

J JK N

k k i i
p w b

k i

F p p w w






   

 
          

 
 (2)

The optimal value of 1( , , )i i iJw w w     in the conditionally-maximized entropy function is given by: 

1

1
: 6, ( )

( ) arg max ln( )
J

i i i

J

i i i

w C v w e

w w w








 
   




 


 


, 

which is the maximizing solution to the Lagrangian: 

1 1 1

ln( ) 1 ( )
i

J J J
w

w i i i i i i iL w w w v w e  
  

   
                 

  
. 

The optimal value of iw   is then:  

   
( ( ))

( ( ))

1

( ( )) ( ( )) ,  1, ,
i

i m

e v

i i i J
e v

m

e
w e w e J

e


  





   
 

 
    ,  

(3)

where ( ( ))ie   is the optimal value of the Lagrangian multiplier i  under the condition b  , and 

1

( )
m

v

J
v

m

e
w

e













 . It follows from the symmetry of the vi’s around zero that: 

1 1

( ( ( ))) ( ( ( )))
J J

i iv w e v w e
 

      
 

     (4)

Similarly, the optimal value of 1( , , )
kk k kJp p p   in the conditionally-maximized entropy function 

is given by:  

1

1
: 5,

( ) arg max ln( )
k

Jk

k k k k

J

k k k k

p C z p

p p p









 
   




 


 


, 

which is the maximizing solution to the Lagrangian:  

1 1 1

ln( ) 1
k k k

k

J J J
p

p k k k k k k k kL p p p z p  
  

   
                 

  
. 

The optimal value of kp   is then: 

( )

( )

1

( ) , 1, ,
k k k

k

k k km

z

k k J
z

m

e
p k K

e

 

 





 





  , 
(5)

where ( )k k   is the optimal value of the Lagrangian multiplier k  under the condition k kb  .  

Substituting the optimal solutions for the kp  ’s and iw  ’s into (2) obtains the conditional maximum 

value function: 
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( )

1 1

( ( ))

1 1

( ) ( ) ln

( ( )) ( ) ln .

k

k k km

i m

JK
z

k k k
k m

N J
e v

i i
i m

F e

e e e

 

 

   

  

 

 

  
      

  
      

 

 
 

Define the gradient vector of 
( )

( ) as ( )
F

F G


 






 so that: 

1

( )
( ) ( ) ( ( )) , 1, ,

N

k k k i ik
ik

F
G e X k K

    
 


    

   , 

and thus ( ) ( ) ( ( ))G X e        , where ( )   and ( ( ))e   are 1K   and 1N   vectors of 

Lagrangian multipliers. It follows that the Hessian matrix of ( )F   is given by:  

2

1 1

1

2 2

2

( ) ( )
( )

( )
0 0

( )
( ( ))0 0

.

( )
0 0 K k

K

F G
H

e
X

 
  

 


   
 

 


 
 

   
 

 
         
 

 
  





   


 

Regarding the functional form of the derivatives of the Lagrangian multipliers appearing in the 
definition of ( )H  , it follows from (C2) that: 

1

( ( ( )))
( ( ))

1
( ( )) ( )

J

i
i

i i

w e
e

e e






 

  

  

 
  

, 

so that from (3): 
1

2 2

1

( ( ))
( ( ( ))) ( )

( )

J
i

i i
i

e
w e e

e





      
  


     


. 

Then, from (C2) 
( )i

ik
k

e
X





 


, and thus: 

1 2 2

1

( )  for 

( ( ( ))) ( )

N
ik i

k J
i

i i

X X
H k

w e e



  
  
 







 



   

. 

Also, based on (C1):  
1

2 2

1

( ) kJ
k k

k k k
k

z p




 
    
  


  


, 

so that: 
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2

1 2 2 2 2

1 1

1
( )

( ( ( ))) ( )
k

N
ik

kk J J
i

i i k k k

X
H

w e e z p

 

 
 
   
    

     
    


    
 


    

. 

Because the denominators of the terms in the definition of the kH  ’s are positive valued, it follows that 

( )H   is a negative definite matrix, because X X  is positive definite.  

Now consider the case where   , so that: 

1

( ) ( ( ( ))), 1, ,
J

i i i i ie y X w e i N


      


       

are iid with mean zero, and thus:  
( ( ))

( ( ))1

1

i

i m

eJ

i J
e

m

e

e

  

  
 





 







 

are iid with mean zero. Because i  is bounded in the interior of 1[ , ]J  , the range of ( ( )) ( )i ie     is 

bounded as well. In addition, ( ( ))ie   is symmetrically distributed around zero because the i ’s are so 

distributed, and, from (4): 
( ( )) ( ( ))

( ( )) ( ( ))1 1

1 1

i i

i m i m

e eJ J

i iJ J
e e

m m

e e

e e

     

     
     



 

 

       
 

 

 
 

 
(6)

It follows that ( ( ( ))) 0iE e   , the ( ) ( ( ))i ie    ’s are iid, and ( )i   has finite variance, say 
2( ( ))iVar    . Then, using a multivariate version of Liapounov's central limit theorem, and given 

condition R6 (asymptotic normality can be established without regularity condition R6. In fact, the 

boundedness properties on the X-matrix stated in R5 would be sufficient. See [33] for a related proof 

under the weaker regularity conditions). 

21 1
( ) ( ( ) ( ( ))) ([0], )d

iG X e N
N N

          

3.1. Consistency  

For any τ, represent the conditional maximum value function, ( )F  , by a second order Taylor series 

around β as: 
*1

( ) ( ) ( ) ( ) ( ) ( )( )
2

F F G H                 (7)

where *  lies between τ and β. The value of the quadratic term in the expansion can be bounded by:  

2* *1 1 1
( ) ( )( ) ( ( ))

2 2 sH H N
N

                  (8)

where *1
( ( ))s H

N
   denotes the smallest eigenvalue of 

1
2

* 2

1

1
( ) and 

K

k
k

H a a
N




 
      [34]. The 
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smallest eigenvalue exhibits a positive lower bound given by 2

1 1
( )s

J

X X
C N


 

  
 whatever the value of * . 

The value of the linear term in the expansion is bounded in probability; that is, 0   and for 
( )N N  , there exists a finite ( )A   such that:  

 ( ) ( ) ( ) , 1P G N A              (9)

because 21
( ) ([0], )dG N

N
   . It follows from Equations (7)–(9) that, for all 

:| |
0, ( Max ( ( )) ( )) 1 as P F F N

   
  

 
    . Thus ˆ arg max( ( )) pF


   , and the GME estimator 

of β is consistent.  

3.2. Asymptotic Normality  

Expand G(b) in a Taylor series around β, where ˆ arg max ( )F


   is the GME estimator of β, to obtain: 

*ˆ ˆ( ) ( ) ( )( )G G H        (10)

where *  is between ̂  and β. In general, different *  points will be required to represent the different 

coordinate functions in ˆ( )G  . At the optimum, ˆ( ) [0]G   and ̂  is a consistent estimator of β; 

therefore * p  , and: 

1
1 1ˆ( ) ( ) ( )dN H G
N N

   


     
, 

where d  denotes equivalence of limiting distributions. Using ( )i ie   , note that:  

2 21

1

1 1 1
( ) 0

( ( ))

N
i i

PJ
i

i i

X X
H

N N Nw

 





     
 


  



   

, 

where 2 2

1

( ( )) , 1, ,
J

i iw i N


   


     are iid. It follows from R6 that 
1

( ) pH
N

    with 

1

2 2

1

( ( ))
J

i iE w




  
      

  


     . Recalling that 21
( ) ([0], )dG N

N
   , Slutsky's Theorem [34] 

implies that:  
2

1
2

ˆ( ) ([0], )dN N  



   

Note that holding the support of  constant, one can reduce the interval (c1, cJ ). As 0  , the 

asymptotic variance of ˆ( )N    may tend to zero, but cannot grow without bound. For example, if at 

0, 0     such that 1( ) ( )P k k c    , all 1( , )Jk c c  ( ( ) ( )JP k c k      all 1( , ))Jk c c , 

then 
2

2
0

lim 0


 .  



Entropy 2013, 15 
                            

1765

Also note that, for large samples, the parameters reliance on the supports vanishes. In contrast, the 

supports on the errors influence the computed covariance matrix. Finally, for non-homogenous errors, 

the covariance matrix estimator could be adjusted following a standard White’s covariance correction. 

3.3. Cross-Entropy Extensions  

To extend the previous asymptotic results to the case of cross-entropy maximization [10], first 
suppose that 1k kz z    and/or 1     for some  . Let * * * *, 1, ,  and , 1, ,k kz J J       denote the 

distinct values among the kz  ’s and * ’s, respectively, and let and ka    denote the respective 

multiplicities of the values * * and kz   . From Equations (3) and (5), ( ( ( ))) ( ( ( )))i i im iw e w e     if 

m  and ( ) ( )k k km kp p   if k kmz z . Thus, the maximization problem given by Equation (2) and 

Conditions C1-C6 is equivalent to: 
* ** *

* *

, ,
1 1 1 1

max ln ln
kJK N J

k i
k i

b p w
k ik

p w
p w

a    

    
        
    

 
  

 (11)

with obvious changes being made to C1-C6. The only alterations needed to the preceding proof are:  

*

( ( ))
* *

( ( ))

1

( ( ( ))) ( ( ( ))) , 1, , ,  and 
i

i m

e

i i i J
e

m
m

e
w e w e J

e


  






   
  

  

   


  
(12)

*

( )
*

( )

1

( ) , 1, ,
k k k

k

k k km

z
k

k k J
z

km
m

a e
p k K

a e

 

 





 






  . (13)

 

(13)

More generally, the same representation (11)-(13) applies for any 0, 0ka    . Furthermore, 

Equations (12) and (13) are homogeneous of degree zero in *1( , , )
J

   and *1,( , )
k

k kJ
a a , respectively. 

Thus, without loss of generality, the normalization conditions: 
**

1 1

1 and 1
kJJ

ka
 

   
 

 

can be imposed.  

Using Equations (11), (12), and (13), we have characterized the maximum cross entropy solution. 

Upon substitution of Equations (11)–(13) in the appropriate arguments, all results, including the results 

in the next section on statistical testing, apply to the maximum cross-entropy paradigm.  

4. Statistical Tests  

The GME estimator ˆ ˆZp   is consistent and asymptotically normally distributed. Therefore, 

asymptotically valid normal and 2  test statistics can be used to test hypotheses about β. For empirical 

implementation of such tests a consistent estimate of the asymptotic covariance matrix of ̂  will be required. 

An estimate of 1
2

1

N
  is straightforwardly obtained by calculating 1 1ˆ ˆ( ) ( ) ( )M X X M   , where:  
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2 21

1

ˆ( )
ˆ ˆ( ( ( ))) ( )

N
i i

J
i

i i

X X
M

w e e


   

 





 
  
  
 


  


. 

An estimate of the variance, 2
 , of the i ’s can be constructed as 2 2

1

1ˆ ˆˆ ( ) ( ( ))
N

i
i

e
N   



  . Then 

the asymptotic covariance matrix of ̂  can be estimated by: 

 2 1 1ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( ) ( )Var M X X M      .  

Alternatively, ξ can be estimated by:  

2 21

1

1 1ˆ ˆ( )
ˆ ˆ( ( ( ))) ( )

N

J
i

i i

N w e e
 

   







  


. 

Then:  


2

1

2

ˆˆ ( )ˆ( ) ( )
ˆ ˆ( )

Var X X 


 
  . 

4.1. Asymptotically Normal Tests  

Because 


0ˆ

ˆ( )

k k
Z

kk

T
Var

 




  is asymptotically N(0,1) under the null hypothesis 0

0 : k kH   , the 

statistic Tz can be used to test hypotheses about the values of the k ’s.  

4.2. Wald Tests  

Wald tests of linear restrictions on the elements of β can be expressed in the usual form. Let 

0 :H R r   be the null hypothesis to be tested, where R is a L × K matrix with rank ( )R L K  . Then 
2

2

1ˆ( ) (0, ( ) )dN R r N R R


 

   . Thus, the Wald test statistic has a 2  limiting distribution as:  

 1 2ˆ ˆ ˆ( ) ( ( ( )) ) ( ) d
W LT R r R Var R R r   

     

under the null hypothesis H0. Similarly, for nonlinear restrictions ( ) [0]g   , where ( )g   is a 

continuously differentiable L-dimensional vector function with ( )g b
bq 
  and rank ( ( ))q L K   , it 

follows that: 

 1 2ˆ ˆ ˆ ˆ ˆ( ) ( ( ) ( ) ( )) ( ) d
W LT g q Var q g     

  . 

4.3. Likelihood Ratio Tests  

To establish a pseudo-likelihood ratio test of functional restrictions on the β vector, first note that: 

11 1 1 1ˆ( ) ( ) ( ) ( )
2

dF F G G
N N

   





   
       

, 
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which follows from Equations (7) and (10) and the fact that 1 ( ) p
N H     . Thus:  

  2

2

ˆ ˆ2 ( ) ˆ( ) ( )
ˆˆ ( )

d
KF F



    
 

 . 

Now let ˆ
R  be a restricted GME estimator of β. Thus, 

:

ˆ arg max( ( ))R
b Rb r

F b


  for a linear null 

hypothesis 0
: ( ) 0

ˆ: ,  or arg max( ( ))R
b g b

H R r F b 


   for a general null hypothesis 0 : ( ) [0]H g   . As 

before, let L = rank ( )R K  for a linear hypothesis or L = rank ( ( ))q K   for a general hypothesis. 

Then:  

  2

2

ˆ ˆ2 ( ) ˆ ˆ( ) ( )
ˆˆ ( )

d
R LF F



    
 

  

under the null hypothesis.  

Lagrange Multiplier Tests 

Define R, r, g, J, and ˆ
R  as above. Then a Lagrangian multiplier test of functional restrictions on β 

can be based on the fact that: 

1 2

2

1 ˆ ˆ( ) ( ) ( )
ˆˆ ( )

d
R R L

R

G X X G


  
 


   

under the null hypothesis.  

5. Monte Carlo Simulations  

A Monte Carlo experiment was conducted to explore the sampling behavior of test situations based 

on the Generalized Maximum Entropy Estimator. The data were generated based on a linear model 

containing an intercept term, a dichotomous explanatory variable, and two continuously measured 

explanatory variables. The results of the Monte Carlo experiment also add additional perspective to 

simulation results relating the bias and mean square error to the maximum entropy estimator generated 

previously by [10].  
The linear model Y = Xβ + is specified as 1 2 32 1 1 3Y X X X        , where 1X  is a discrete 

random variable such that 1 ~
iid

iX  Bernoulli(.5), observations on the pair of explanatory random variables 

2 3( , )i iX X  are generated from iid outcomes of    2 1 .5,5 .5 1N  
    that are censored at the mean ±3 

standard deviations, and outcomes of the disturbance term are defined as 
12

1

6i
i

U


 
    , where ~

iid

iU  

Uniform(0,1). The support points for the disturbance terms were specified as V = (−10, 0, 10)' (recall C2 and 

C3) for all experiments. Three different sets of support points were specified for the β-vector, given by:  
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2 2 6
3 1 5 ,5 1 3
1 3 7

3 1 5
4 0 4 ,4 0 4

0 4 8

I

II

Z

Z

 
    
 

 
   
 

 

and:  

10 0 10
10 0 10
10 0 10
10 0 10

IIIZ

 
   
 

 

(recall C1). The support points in ZI were chosen to be most favorable to the GME estimator, where the 

elements of the true β-vector are located in the center of their respective supports and the widths of the 

supports are relatively narrow. The supports represented by ZII are tilted to the left of β1 and β2 and to the 

right of β3 and β4 by 1 unit, with the widths of the supports being the same as their counterparts in ZI . The 

last set of supports represented by ZIII are wider and effectively define an upper bound of 10 on the 

absolute values of each of the elements of β.  
To explore the respective sizes of the various tests presented in Section IV, the hypothesis 0 2:H c   

was tested using the TZ test, and the hypothesis 0 2 3: ,H c d    was tested using the Wald, 

pseudo-likelihood, and Lagrange Multiplier tests, with c and d set equal to the true values of β2 and β3, 

i.e., c = 1 and d = −1. Critical values of the tests were based on their respective asymptotic distributions 

and a 0.05 level of significance. An observation on the power of the respective tests was obtained by 

performing a test of significance whereby c = d = 0 in the preceding hypotheses. All scenarios were 

analyzed using 10,000 Monte Carlo repetitions, and sample sizes of n = 25, 100, 400, and 1,600 were 

examined. In the course of calculating values of the test statistics, both unrestricted and restricted  

(by β2 = c and/or β3 = d) GME estimators needed to be calculated. Therefore, bias and mean square error 

measures relating to these and the least squares estimators were calculated as well. Monte Carlo results 

for the test statistics and for the unrestricted GME and OLS estimators are presented in Tables 1 and 2, 

respectively, while results relating to the restricted GME and OLS estimators are presented in Table 3. 

Because the choice of which asymptotic covariance matrix to use in calculating the TZ and Wald tests 

was inconsequential, only the results for the second suggested covariance matrix representation are 

presented here. 

Regarding properties of the test statistics, their behavior under a true H0 is consistent with the 

behavior expected from the respective asymptotic distributions when n is large (sample size of 1600), 

their sizes being approximately .05 regardless of the choice of support for β. The sizes of the tests remain 

within 0.01 of their asymptotic size when n decreases to 400, except for the Lagrange Multiplier test 

under support ZII, which has a slightly larger size. Across all support choices and ranging over all sample 

sizes from small to large, the sizes of the TZ and Wald tests remain in the 0−0.10 range; for ZI supports 

and small sample sizes, the sizes of the tests are substantially less than 0.05. Results were similar for the 

pseudo-likelihood and Lagrange Multiplier tests, except for the cases of ZII support and n ≤ 100, where 

the size of the test increased as high as 0.36 for the pseudo-likelihood test and 0.73 for the Lagrange 

multiplier test when n = 25.  
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Table 1. Rejection Probabilities for True 2 3( 1, 1)    and False 2 3( 0)    Hypotheses. 

Supports Tz  WALD  Pseudo-Likelihood
 Lagrange 

Multiplier 

 H0  H0  H0  H0 

ZI 
β2 = 1  β2 = 0 

 

 

β2 = 1 

β3 = −1 

 

 

β2 = 0 

β3 = 0 

 

 

β2 = 1 

β3 = −1 

 

 

β2 = 0 

β3 = 0 

 

 

β2 = 1 

β3 = −1 

 

 

β2 = 0 

β3 = 0 

n = 25 0.000  0.825  0.004  0.998  0.021  1.000  0.059  1.000 
n = 100 0.017  0.999  0.022  1.000  0.038  1.000  0.056  1.000 
n = 400 0.041  1.000  0.042  1.000  0.048  1.000  0.053  1.000 

n = 1600 0.047  1.000  0.046  1.000  0.049  1.000  0.050  1.000 
ZII                

n = 25 0.101  0.047  0.080  0.894  0.357  0.980  0.734  0.995 
n = 100 0.085  0.996  0.067  1.000  0.114  1.000  0.172  1.000 
n = 400 0.053  1.000  0.048  1.000  0.058  1.000  0.066  1.000 

n = 1600 0.052  1.000  0.052  1.000  0.055  1.000  0.057  1.000 
ZIII                

n = 25 0.038  0.670  0.070  0.967  0.097  0.980  0.088  0.972 
n = 100 0.045  0.999  0.050  1.000  0.057  1.000  0.052  1.000 
n = 400 0.045  1.000  0.050  1.000  0.051  1.000  0.050  1.000 

n = 1600 0.051  1.000  0.051  1.000  0.052  1.000  0.051  1.000 

The powers of the tests were all substantial in rejecting false null hypotheses except for the TZ test in 

the case of ZII support and the smallest sample size, the latter result being indicative of a notably biased 

test. Overall, the choice of support did impact the power of tests for rejecting the errant hypotheses, 

although the effect was small for all but the TZ test.  

In the case of unrestricted estimators and the most favorable support choice (ZI ), the GME estimator 

dominated the OLS estimator in terms of MSE, and GME superiority was substantial for sample sizes of 

n ≤ 100 (Table 2). The GME-ZI estimator and, of course, the OLS estimator, were unbiased, with the 

GME-ZI estimator exhibiting substantially smaller variances for smaller n. The choice of support has a 

significant effect on the bias and MSE of the GME estimator for small sample sizes. Neither the 

GME-ZII or GME-ZIII estimator dominates the OLS estimator, although the GME-ZIII estimator is 

generally the better estimator across the various sample sizes. When n = 25, the GME-ZII estimator offers 

notable improvement over OLS for estimating three of the four elements of β, but is significantly worse 

for estimating β2. For larger sample sizes, the GME-ZII estimator is generally inferior to the OLS 

estimator. Although the centers of the ZIII support are on average further from the true β’s than are the 

centers of the ZII support, the wider widths of the former result in a superior GME estimator. 
The results for the restricted GME estimators in Table 3 indicate that under the errant constraints 

2 3 0   , the GME dominates the OLS estimator for all sample sizes and for all support choices. The 

superiority of the GME estimator is substantial for smaller sample sizes, but dissipates as sample size 

increases. The results suggest a misspecification robustness of the GME estimator that deserves  

further investigation.  
  



Entropy 2013, 15 
                            

1770

Table 2. ˆ( )iE   and Mean Square Error Measures–Unrestricted Estimators. 

Estimator 
 β1 = 2  β2 = 1  β3 = −1  β4 = 3 

 1
ˆ( )E    MSE  2

ˆ( )E    MSE  3
ˆ( )E    MSE  4

ˆ( )E    MSE 
GME-ZI                 
n = 25  2.000  0.015  1.001  0.038  −1.001  0.028  3.000  0.006

n = 100  2.003  0.034  1.003  0.026  −1.000  0.011  2.999  0.004
n = 400  2.000  0.032  1.001  0.009  −1.000  0.003  3.000  0.002 

0.001n = 1600  2.000  0.014  1.000  0.002  −1.000  0.001  3.000  
GME-ZII                 
n = 25  1.022  0.977  0.484  0.309  −0.840  0.058  3.182  0.040

n = 100  1.306  0.519  0.826  0.056  −0.966  0.013  3.139  0.023
n = 400  1.672  0.141  0.960  0.010  −0.996  0.003  3.066  0.006

n = 1600  1.892  0.026  0.991  0.002  −1.000  0.001  3.022  0.001
GME-ZIII                 

n = 25  1.278  0.757  0.946  0.131  −0.881  0.069  3.092  0.028
n = 100  1.709  0.252  0.995  0.037  −0.978  0.014  3.046  0.011
n = 400  1.914  0.068  0.999  0.010  −0.996  0.003  3.015  0.003

n = 1600  1.978  0.017  0.999  0.002  −0.999  0.001  3.004  0.001
OLS                 

n = 25  1.997  1.342  1.002  0.181  −1.002  0.066  3.001  0.065
n = 100  2.009  0.283  1.003  0.041  −1.000  0.014  2.998  0.014
n = 400  2.001  0.068  1.001  0.010  −1.000  0.003  3.000  0.003

n = 1600  2.000  0.017  1.000  0.003  −1.000  0.001  3.000  0.001

Table 3. ˆ( )iE   and Mean Square Error Measures – Restricted Estimators Under the Errant 
Restriction 2 3 0   . 

Estimator 
 β1 = 2  β4 = 3 

 1
ˆ( )E    MSE  4

ˆ( )E    MSE 

GME-ZI         

n = 25  2.078 0.041 2.681  0.011
n = 100  2.340 0.191 2.630  0.142
n = 400  2.689 0.537 2.600  0.196

n = 1600  2.898 0.832 2.520  0.232
GME-ZII    

n = 25  1.064 0.915 2.885  0.018
n = 100  1.603 0.234 2.772  0.056
n = 400  2.330 0.169 2.630  0.140

n = 1600  2.776 0.628 2.543  0.210
GME-ZIII    

n = 25  1.686 0.589 2.750  0.084
n = 100  2.468 0.542 2.601  0.172
n = 400  2.842 0.823 2.530  0.225

n = 1600  2.958 0.948 2.508  0.243
OLS    

n = 25  3.011 3.342 2.497  0.342
n = 100  3.013 1.575 2.497  0.274
n = 400  3.005 1.138 2.499  0.256

n = 1600  2.999 1.030 2.500  0.251
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Asymmetric Error Supports 

We present further Monte Carlo simulations to show that regularity condition R2, which assumes 

symmetry of the disturbance term, is not a necessary condition for identification of the GME slope 

parameters. It is demonstrated below that if the supports of the error distribution asymmetric, then only 

the intercept term of the GME regression estimator is asymptotically biased.  
The Monte Carlo experiments that follow are identical to those above except for specification of the 

user supplied support points for the error terms and the underlying true error distribution. To illustrative 

the impact of asymmetric errors, experiments are based on one set of support points symmetric about 

zero, ( 10,0,10)IV   , and two sets of support points not symmetric about zero, ( 5,5,15)IIV    and 

( 5,0,15)IIIV   . The support VII is a simple translation of VI by five positive units in magnitude and 

retaining symmetry centered about 5. The asymmetric support VIII translates the truncation points by five 

positive units in magnitude, but retains the center support point 0. The true error distribution is generated 

in two ways: a symmetric distribution specified as a N(0,1) distribution truncated at (−3,3) and an 

asymmetric distribution specified as a Beta(3,2) translated and scaled from support (0,1) to (−3,3) with 

mean 0.6. Supports on the parameter coefficients terms are retained as ZI, providing symmetric support 

points about the true coefficient values.  

Monte Carlo experiments presented in Table 4 and 5 are generated for sample sizes 25, 100, and 400 

with 1,000 replications for each sample size. Consider when the true distribution is symmetric about 

zero. Slope coefficients for error supports that are not symmetric about zero appear biased in smaller 

sample sizes. However, the bias and MSE of the slope coefficients decrease as the sample sizes 

increases. Next, suppose the true distribution is asymmetric. For symmetric and asymmetric supports 

only the intercept terms are persistently biased, diverging from the true parameter values as the sample 

size increases. These results demonstrate the robustness of GME slope coefficients to asymmetric error 

distributions and user supplied supports.  

Table 4. Mean and MSE of 1,000 Monte Carlo Simulations with True Distribution 

Symmetric. Symmetric and Asymmetric Error Supports and Coefficient Support ZI. 

Estimator 
 β1 = 2 β2 = 1 β3 = −1 β4 = 3 
 E(β1) MSE E(β2) MSE E(β3) MSE E(β4) MSE 

GME-ZI,VI          
25  2.002 0.016 1.003 0.042 −1.000 0.030 2.997 0.007 
100  2.000 0.033 1.001  0.026 −1.002 0.011 3.002 0.004 
400  2.000 0.035 1.001 0.010 −0.998 0.003 2.999 0.002 
GME-ZI,VII          
25  1.259 0.585 0.815 0.101 −1.009 0.048 2.209 0.636 
100  0.208 3.258  0.804 0.071 −0.944 0.020 2.381 0.389 
400  −1.144 9.903 0.868 0.028 −0.959 0.005 2.640 0.132 
GME-ZI,VIII          
25  1.506 0.271 0.875 0.069 −1.005 0.038 2.476 0.282 
100  0.752  1.598 0.875 0.045  −0.961  0.015 2.602 0.163 
400  −0.235 5.024 0.925 0.015 −0.977 0.004 2.794 0.044 
OLS          
25  2.014 1.321 1.007 0.204 −0.998 0.069 2.993 0.065 
100  1.999 0.280 1.001 0.042 −1.002 0.014 3.002 0.014 
400  2.001  0.075 1.001 0.011 −0.997 0.003 2.999 0.003 
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Table 5. Mean and MSE of 1000 Monte Carlo Simulations with True Distribution 

Asymmetric. Symmetric and Asymmetric Error Supports and Coefficient Support ZI. 

 β1=2 β2=1 β3=−1 β4=3 

Estimator E(β1) MSE E(β2) MSE E(β3) MSE E(β4) MSE 

GME-ZI,VI          

25 2.089 0.031 1.038 0.060 −1.005 0.041 3.094 0.018 
100 2.233 0.108 1.023 0.033 −1.006  0.016 3.071 0.010 
400 2.427 0.229 1.015 0.012 −1.004 0.005 3.033 0.004 
GME-ZI,VII         

25 1.358 0.449 0.843 0.103 −1.021 0.057 2.305 0.496 
100 0.410 2.583 0.826 0.073 −0.966 0.019 2.463 0.294 
400 −0.860 8.209 0.890 0.025 −0.966 0.006 2.700 0.092 
GME-ZI,VIII         

25 1.597 0.190  0.905 0.075 −1.019 0.049 2.574 0.193 
100 0.964 1.129 0.889 0.055 −0.967 0.020 2.674 0.112 
400 0.126 3.553 0.946 0.016 −0.981 0.005 2.835 0.030 
OLS         

25 2.600 2.324 1.041 0.261 −1.009 0.097 2.998 0.099 
100 2.616 0.813 1.001 0.052 −0.999 0.020 2.997 0.021 
400 2.610 0.471 1.003 0.013 −1.000 0.005 2.997 0.005 

6. Further Results  

Unbiased GME Estimation. It is apparent from the proof of the theorem in Section 3 that the 

1
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 terms are asymptotically uninformative. It is instructive to note that if these terms are 

deleted from the GME objective function and the resulting objective function is then maximized through 

choosing b and w subject to constraints C2–C4 and C6, the resulting GME estimator is in fact unbiased 
for estimating β. This follows because the i ’s are iid mean zero and symmetrically distributed around 

zero, and the new estimator, say  , is such that    is a symmetric function of the i ’s.  
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is the Bayesian posterior mode estimator of β. We note the following consequences of these 
equivalences. First, if the support points 1, , Jv v  can be chosen so that f  is very close to the true 

distribution of , then the GME estimator should be nearly asymptotically efficient. Second, in finite 

samples the prior information influences ̂  such that ̂  is generally not unbiased. Third, the support 

points used in the GME estimator have no particular relationship to the points of support of the 
distribution of a discrete random variable. The distributions f  and 

k
f  are absolutely continuous for 

any choice of Z and V.  

The previous Monte Carlo results illustrate the Bayesian-like character of the maximum entropy 

results. The GME with reasonably narrow points of support centered on the true values of β dominated 

the OLS estimator and was sometimes far better. On the other hand, the GME performed poorly when 

the points of support were similarly narrow and mis-centered by only one-eighth the range of the points 

of support. In the latter case, mean squared errors were often much worse than OLS and biases were 

often substantial. Finally, wider points of support, even though they were the most mis-centered of the 

cases examined, were quite similar to OLS results for moderate to large sample sizes, and provided some 

degree of improvement over OLS for small samples.  

Finally, the GME approach is a special case of generalized cross entropy, which incorporates a 

reference probability distribution over support points. This allows a direct method of including prior 

information, akin to a Bayesian framework. However, in a classical sense, the empirical estimation 

strategies are inherently different. 
GME Calculation Method. The conditional maximum entropy formulation (2) utilized in the proof of 

asymptotic results represents the basis for a computationally efficient method of obtaining GME 

estimates. In particular, maximizing ( )F   through choice of τ involves a nonlinear search over a vector 

of relatively low dimension (K) as opposed to searching over the (KM + NJ) dimensional space of (p,w) 

values. In the process of concentrating the objective function, note that the needed Lagrange multiplier 

functions ( ) and ( ( ))k K ie     can be expressed as elementary functions for three support points or less, 

and still exist in closed form (using inverse hyperbolic functions) for support vectors having five 

elements. As a point of comparison, the calculation of GME estimates in the Monte Carlo experiment 

with N = 1,600 was completed in a matter of seconds on a 133 mhz personal computer. Such a 

calculation would be intractable, let alone efficient, in the space of (p,w) values. We note further that the 

dual algorithm of [10] would still involve a search over a space of dimension N = 1,600, which would be 

infeasible here and in other problems in which the number of data points is large.  

7. Conclusions  

We have shown that the data-constrained GME estimator of the GLM is consistent and 

asymptotically normal as long as the coefficients and errors obey the constraints of the constrained 

maximum entropy problem. Furthermore, we have demonstrated the possibility that the GME estimator 

can be asymptotically efficient. Thus, depending on the distribution of the errors, GME may be more or 

less efficient than alternatives such as least squares. We performed Monte Carlo tests showing that the 

quality of the GME estimates depends on the quality of the supports chosen. The Monte Carlo results 

suggest that GME with wide supports will often perform better than OLS while providing some 

robustness to misspecification.  
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We have shown how all the conventional types of asymptotic tests can be calculated for GME 

estimates. In the Monte Carlo study these asymptotic tests performed extremely well in samples of 400 

or more. In smaller samples the tests performed less well, particularly when the supports were narrow, 

although some of the results were quite acceptable. We have also demonstrated that all our results can be 

applied to a maximum cross-entropy estimator. While our focus has been on asymptotic properties, we 

have also shown how the entropy terms involving the coefficients play a role analogous to a Bayesian 

prior. Furthermore, these terms are asymptotically uninformative and can be omitted if the researcher 

wishes to use an unbiased GME estimator.  
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