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Abstract: We propose a thermodynamic interpretation of transfer entropy near equilibrium,
using a specialised Boltzmann’s principle. The approach relates conditional probabilities to
the probabilities of the corresponding state transitions. This in turn characterises transfer
entropy as a difference of two entropy rates: the rate for a resultant transition and another
rate for a possibly irreversible transition within the system affected by an additional source.
We then show that this difference, the local transfer entropy, is proportional to the external
entropy production, possibly due to irreversibility. Near equilibrium, transfer entropy is
also interpreted as the difference in equilibrium stabilities with respect to two scenarios: a
default case and the case with an additional source. Finally, we demonstrated that such a
thermodynamic treatment is not applicable to information flow, a measure of causal effect.
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1. Introduction

Transfer entropy has been introduced as an information-theoretic measure that quantifies the statistical
coherence between systems evolving in time [1]. Moreover, it was designed to detect asymmetry
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in the interaction of subsystems by distinguishing between “driving” and “responding” elements.
In constructing the measure, Schreiber considered several candidates as measures of directional
information transfer, including symmetric mutual information, time-delayed mutual information, as
well as asymmetric conditional information. All these alternatives were argued to be inadequate for
determining the direction of information transfer between two, possibly coupled, processes.

In particular, defining information transfer simply as the dependence of the next state of the receiver
on the previous state of the source [2] is incomplete according to Schreiber’s criteria requiring the
definition to be both directional and dynamic. Instead, the (predictive) information transfer is defined as
the average information contained in the source about the next state of the destination in the context of
what was already contained in the destination’s past.

Following the seminal work of Schreiber [1] numerous applications of transfer entropy have
been successfully developed, by capturing information transfer within complex systems, e.g., the
stock market [3], food webs [4], EEG signals [5], biochemicals [6], cellular automata and
distributed computation in general [7–10], modular robotics [11], random and small-world Boolean
networks [12,13], inter-regional interactions within a brain [14], swarm dynamics [15], cascading
failures in power grids [16], etc. Also, several studies further capitalised on transition probabilities
used in the measure, highlighting fundamental connections of the measure to entropy rate and
Kullback–Leibler divergence noted by Kaiser and Schreiber [17], as well as causal flows [18]. At
the same time there are several recent studies investigating ties between information theory and
thermodynamics [19–23]. This is primarily through Landauer’s principle [24], which states that
irreversible destruction of one bit of information results in dissipation of at least kT ln 2 J of energy
(T is the absolute temperature and k is Boltzmann’s constant.) into the environment (i.e., an entropy
increase in the environment by this amount). (Maroney [25] argues that while a logically irreversible
transformation of information does generate this amount of heat, it can in fact be accomplished by a
thermodynamically reversible mechanism.)

Nevertheless, transfer entropy per se has not been precisely interpreted thermodynamically. Of
course, as a measure of directed information transfer, it does not need to have an explicit thermodynamic
meaning. Yet, one may still put forward several questions attempting to cast the measure in terms more
familiar to a physicist rather than an information theorist or a computer scientist: Is transfer entropy a
measure of some entropy transferred between subsystems or coupled processes? Is it instead an entropy
of some transfer happening within the system under consideration (and what is then the nature of such
transfer)? If it is simply a difference between some entropy rates, as can be seen from the definition
itself, one may still inquire about the thermodynamic nature of the underlying processes.

Obviously, once the subject relating entropy definitions from information theory and thermodynamics
is touched, one may expect vigorous debates that have been ongoing since Shannon introduced the
term entropy itself. While this paper will attempt to produce a thermodynamic interpretation of transfer
entropy, it is out of scope to comment here on rich connections between Boltzmann entropy and Shannon
entropy, or provide a review of quite involved discussions on the topic. It suffices to point out prominent
works of Jaynes [26,27] who convincingly demonstrated that information theory can be applied to the
problem of justification of statistical mechanics, producing predictions of equilibrium thermodynamic
properties. The statistical definition of entropy is widely considered more general and fundamental than
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the original thermodynamic definition, sometimes allowing for extensions to the situations where the
system is not in thermal equilibrium [23,28]. In this study, however, we treat the problem of finding a
thermodynamic interpretation of transfer entropy somewhat separately from the body of work relating
Boltzmann and Shannon entropies—and the reason for this is mainly that, even staying within Jaynes’
framework, one still needs to provide a possible thermodynamic treatment for transfer entropy per se.
As will become clear, this task is not trivial, and needs to be approached carefully.

Another contribution of this paper is a clarification that similar thermodynamic treatment is not
applicable to information flow—a measure introduced by Ay and Polani [18] in order to capture causal
effect. That correlation is not causation is well-understood. Yet while authors increasingly consider
the notions of information transfer and information flow and how they fit with our understanding of
correlation and causality [1,18,29–34], several questions nag. Is information transfer, captured by
transfer entropy, akin to causal effect? If not, what is the distinction between them? When examining the
“effect” of one variable on another (e.g., between brain regions), should one seek to measure information
transfer or causal effect?

Unfortunately, these concepts have become somewhat tangled in discussions of information transfer.
Measures for both predictive transfer [1] and causal effect [18] have been inferred to capture information
transfer in general, and measures of predictive transfer have been used to infer causality [33,35–37]
with the two sometimes (problematically) directly equated (e.g., [29,32,34,38–40]). The study of Lizier
and Prokopenko [41] clarified the relationship between these concepts and described the manner in
which they should be considered separately. Here, in addition, we demonstrate that a thermodynamic
interpretation of transfer entropy is not applicable to causal effect (information flow), and clarify the
reasons behind this.

This paper is organised as follows. We begin with Section 2 that introduces relevant
information-theoretic measures both in average and local terms. Section 3 defines the system and the
range of applicability of our approach. In providing a thermodynamic interpretation for transfer entropy
in Section 4 we relate conditional probabilities to the probabilities of the corresponding state transitions,
and use a specialised Boltzmann’s principle. This allows us to define components of transfer entropy with
the entropy rate of (i) the resultant transition and (ii) the internal entropy production. Sub-section 4.3
presents an interpretation of transfer entropy near equilibrium. The following Section 5 discusses the
challenges for supplying a similar interpretation to causal effect (information flow). A brief discussion
in Section 6 concludes the paper.

2. Definitions

In the following sections we describe relevant background on transfer entropy and causal effect
(information flow), along some technical preliminaries.

2.1. Transfer Entropy

Mutual information IY ;X has been something of a de facto measure for information transfer between
Y andX in complex systems science in the past (e.g., [42–44]). A major problem however is that mutual
information contains no inherent directionality. Attempts to address this include using the previous state
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of the “source” variable Y and the next state of the “destination” variable X ′ (known as time-lagged
mutual information IY ;X′). However, Schreiber [1] points out that this ignores the more fundamental
problem that mutual information measures the statically shared information between the two elements.
(The same criticism applies to equivalent non-information-theoretic definitions such as that in [2].)

To address these inadequacies Schreiber introduced transfer entropy [1] (TE), the deviation from
independence (in bits) of the state transition (from the previous state to the next state) of an information
destination X from the previous state of an information source Y :

TY→X(k, l) =
∑

xn+1,x
(k)
n ,y(l)

p(xn+1, x
(k)
n , y(l)

n ) log2

p(xn+1 | x(k)
n , y

(l)
n )

p(xn+1 | x(k)
n )

(1)

Here n is a time index, x(k)
n and y(l)

n represent past states ofX and Y (i.e., the k and l past values ofX and
Y up to and including time n). Schreiber points out that this formulation is a truly directional, dynamic
measure of information transfer, and is a generalisation of the entropy rate to more than one element to
form a mutual information rate. That is, transfer entropy may be seen as the difference between two
entropy rates:

TY→X(k, l) = hX − hX,Y (2)

where hX is the entropy rate:

hX = −
∑

p(xn+1, x
(k)
n ) log2 p(xn+1 | x(k)

n ) (3)

and hX,Y is a generalised entropy rate conditioning on the source state as well:

hX,Y = −
∑

p(xn+1, x
(k)
n , y(l)

n ) log2 p(xn+1 | x(k)
n , y(l)

n ) (4)

The entropy rate hX accounts for the average number of bits needed to encode one additional state of the
system if all previous states are known [1], while the entropy rate hX,Y is the entropy rate capturing the
average number of bits required to represent the value of the next destination’s state if source states are
included in addition. Since one can always write

hX = −
∑

p(xn+1, x
(k)
n ) log2 p(xn+1 | x(k)

n ) = −
∑

p(xn+1, x
(k)
n , y(l)

n ) log2 p(xn+1 | x(k)
n ) (5)

it is easy to see that the entropy rate hX is equivalent to the rate hX,Y when the next state of destination
is independent of the source [1]:

p(xn+1 | x(k)
n ) = p(xn+1 | x(k)

n , y(l)
n ) (6)

Thus, in this case the transfer entropy reduces to zero.
Similarly, the TE can be viewed as a conditional mutual information I(Y (l);X ′ | X(k)) [17], that is

as the average information contained in the source about the next state X ′ of the destination that was not
already contained in the destination’s past X(k):

TY→X(k, l) = IY (l);X′|X(k) = HX′|X(k) −HX′|X(k),Y (l) (7)

This could be interpreted (following [44,45]) as the diversity of state transitions in the destination minus
assortative noise between those state transitions and the state of the source.
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Furthermore, we note that Schreiber’s original description can be rephrased as the information
provided by the source about the state transition in the destination. That x(k)

n → xn+1 (or including
redundant information x(k)

n → x
(k)
n+1) is a state transition is underlined in that the x(k)

n are embedding
vectors [46], which capture the underlying state of the process. Indeed, since all of the above
mathematics for the transfer entropy is equivalent if we consider the next source state x(k)

n+1 instead
of the next source value xn+1, we shall adjust our notation from here onwards to consider the next source
state x(k)

n+1, so that we are always speaking about interactions between source states yn and destination
state transitions xn → xn+1 (with embedding lengths l and k implied).

Importantly, the TE remains a measure of observed (conditional) correlation rather than direct effect.
In fact, the TE is a non-linear extension of a concept known as the “Granger causality” [47], the
nomenclature for which may have added to the confusion associating information transfer and causal
effect. Importantly, as an information-theoretic measure based on observational probabilities, the TE is
applicable to both deterministic and stochastic systems.

2.2. Local Transfer Entropy

Information-theoretic variables are generally defined and used as an average uncertainty or
information. We are interested in considering local information-theoretic values, i.e., the uncertainty
or information associated with a particular observation of the variables rather than the average over all
observations. Local information-theoretic measures are sometimes called point-wise measures [48,49].
Local measures within a global average are known to provide important insights into the dynamics of
non-linear systems [50].

Using the technique originally described in [7], we observe that the TE is an average (or expectation
value) of a local transfer entropy at each observation n, i.e.,:

TY→X = 〈tY→X(n+ 1)〉 (8)

tY→X(n+ 1) = log2

p(xn+1 | xn,yn)

p(xn+1 | xn)
(9)

with embedding lengths l and k implied as described above. The local transfer entropy quantifies the
information contained in the source state yn about the next state of the destination xn+1 at time step
n+1, in the context of what was already contained in the past state of the destination xn. The measure is
local in that it is defined at each time n for each destination X in the system and each causal information
source Y of the destination.

The local TE may also be expressed as a local conditional mutual information, or a difference between
local conditional entropies:

tY→X(n+ 1) = i(yn;xn+1 | xn) = h(xn+1 | xn)− h(xn+1 | xn,yn) (10)

where local conditional mutual information is given by

i(yn;xn+1 | xn) = log2

p(xn+1 | xn,yn)

p(xn+1 | xn)
(11)

and local conditional entropies are defined analogously:

h(xn+1 | xn) = − log2 p(xn+1 | xn) (12)
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h(xn+1 | xn,yn) = − log2 p(xn+1 | xn,yn) (13)

The average transfer entropy TY→X(k) is always positive but is bounded above by the information
capacity of a single observation of the destination. For a discrete system with b possible observations
this is log2 b bits. As a conditional mutual information, it can be either larger or smaller than the
corresponding mutual information [51]. The local TE however is not constrained so long as it averages
into this range: it can be greater than log2 b for a large local information transfer, and can also in fact
be measured to be negative. Local transfer entropy is negative where (in the context of the history of
the destination) the probability of observing the actual next state of the destination given the source state
p(xn+1 | xn,yn), is lower than that of observing that actual next state independently of the source
p(xn+1 | xn). In this case, the source variable is actually misinformative or misleading about the
state transition of the destination. It is possible for the source to be misleading where other causal
information sources influence the destination, or in a stochastic system. Full examples are described by
Lizier et al. [7].

2.3. Causal Effect as Information Flow

As noted earlier, predictive information transfer refers to the amount of information that a source
variable adds to the next state of a destination variable; i.e., “if I know the state of the source, how much
does that help to predict the state of the destination?”. Causal effect, on the contrary, refers to the extent to
which the source variable has a direct influence or drive on the next state of a destination variable, i.e., “if
I change the state of the source, to what extent does that alter the state of the destination?”. Information
from causal effect can be seen to flow through the system, like injecting dye into a river [18].

It is well-recognised that measurement of causal effect necessitates some type of perturbation or
intervention of the source so as to detect the effect of the intervention on the destination (e.g., see [52]).
Attempting to infer causality without doing so leaves one measuring correlations of observations,
regardless of how directional they may be [18]. In this section, we adopt the measure information flow
for this purpose, and describe a method introduced by Lizier and Prokopenko [41] for applying it on a
local scale.

Following Pearl’s probabilistic formulation of causal Bayesian networks [52], Ay and Polani [18]
consider how to measure causal information flow via interventional conditional probability distribution
functions. For instance, an interventional conditional PDF p(y | ŝ) considers the distribution of y
resulting from imposing the value of ŝ. Imposing means intervening in the system to set the value of the
imposed variable, and is at the essence of the definition of causal information flow. As an illustration of
the difference between interventional and standard conditional PDFs, consider two correlated variables
S and Y : their correlation alters p(y | s) in general from p(y). If both variables are solely caused by
another variable G however, then even where they remain correlated we have p(y | ŝ) = p(y) because
imposing a value ŝ has no effect on the value of y.

In a similar fashion to the definition of transfer entropy as the deviation of a destination from
stochastic independence on the source in the content of the destination’s past, Ay and Polani propose
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the measure information flow as the deviation of the destination X from causal independence on the
source Y imposing another set of nodes S. Mathematically, this is written as:

Ip(Y → X | Ŝ) =
∑
s

p(s)
∑
y

p(y | ŝ)
∑
x

p(x | ŷ, ŝ) log2

p(x | ŷ, ŝ)∑
y′ p(y

′ | ŝ)p(x | ŷ′, ŝ)
(14)

The value of the measure is dependent on the choice of the set of nodes S. It is possible to obtain
a measure of apparent causal information flow Ip(Y → X) from Y to X without any S (i.e., S = �),
yet this can be misleading. In particular, it ignores causal information flow arising from interactions
of the source with another source variable. For example, if x = y XOR s and p(y, s) = 0.25 for
each combination of binary y and s, then Ip(Y → X) = 0 despite the clear causal effect of Y , while
Ip(Y → X | Ŝ) = 1 bit. Also, we may have Ip(Y → X) > 0 only because Y effects S which in turn
effects X; where we are interested in direct causal information flow from Y to X only Ip(Y → X | Ŝ)

validly infers no direct causal effect.
Here we are interested in measuring the direct causal information flow from Y toX , so we must either

include all possible other sources in S or at least include enough sources to “block” (A set of nodes U
blocks a path of causal links where there is a node v on the path such that either:

• v ∈ U and the causal links through v on the path are not both into v, or
• the causal links through v on the path are both into v, and v and all its causal descendants are not

in U .)

all non-immediate directed paths from Y to X [18]. The minimum to satisfy this is the set of all direct
causal sources of X excluding Y , including any past states of X that are direct causal sources. That is,
in alignment with transfer entropy S would include X(k).

The major task in computing Ip(Y → X | Ŝ) is the determination of the underlying interventional
conditional PDFs in Equation (14). By definition these may be gleaned by observing the results of
intervening in the system, however this is not possible in many cases.

One alternative is to use detailed knowledge of the dynamics, in particular the structure of the causal
links and possibly the underlying rules of the causal interactions. This also is often not available in
many cases, and indeed is often the very goal for which one turned to such analysis in the first place.
Regardless, where such knowledge is available it may allow one to make direct inferences.

Under certain constrained circumstances, one can construct these values from observational
probabilities only [18], e.g., with the “back-door adjustment” [52]. A particularly important constraint
on using the back-door adjustment here is that all {s, y} combinations must be observed.

2.4. Local Information Flow

A local information flow can be defined following the argument that was used to define local
information transfer:

f(y → x | ŝ) = log2

p(x | ŷ, ŝ)∑
y′ p(y

′ | ŝ)p(x | ŷ′, ŝ)
(15)

The meaning of the local information flow is slightly different however. Certainly, it is an attribution
of local causal effect of y on x were ŝ imposed at the given observation (y, x, s). However, one must
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be aware that Ip(Y → X | Ŝ) is not the average of the local values f(y → x | ŝ) in exactly the same
manner as the local values derived for information transfer. Unlike standard information-theoretical
measures, the information flow is averaged over a product of interventional conditional probabilities
(p(s)p(y | ŝ)p(x | ŷ, ŝ), see Equation (14) which in general does not reduce down to the probability
of the given observation p(s, y, x) = p(s)p(y | s)p(x | y, s). For instance, it is possible that not all of
the tuples {y, x, s} will actually be observed, so averaging over observations would ignore the important
contribution that any unobserved tuples provide to the determination of information flow. Again, the
local information flow is specifically tied not to the given observation at time step n but to the general
configuration (y, x, s), and only attributed to the associated observation of this configuration at time n.

3. Preliminaries

3.1. System Definition

Let us consider the non-equilibrium thermodynamics of a physical system close to equilibrium. At
any given moment in time, n, the thermodynamic state of the physical system X is given by a vector
x ∈ Rd, comprising d variables, for instance the (local) pressure, temperature, chemical concentrations
and so on. A state vector completely describes the physical macrostate as far as predictions of the
outcomes of all possible measurements performed on the system are concerned [53]. The state space of
the system is the set of all possible states of the system.

The thermodynamic state is generally considered as a fluctuating entity so that transition probabilities
like p (xn+1|xn) are clearly defined and can be related to a sampling procedure. Each macrostate can
be realised by a number of different microstates consistent with the given thermodynamic variables.
Importantly, in the theory of non-equilibrium thermodynamics close to equilibrium, the microstates
belonging to one macrostate x are equally probable.

3.2. Entropy Definitions

The thermodynamic entropy was originally defined by Clausius as a state function S that satisfies

SB − SA =

∫ B

A

dqrev/T (16)

where qrev is the heat transferred to an equilibrium thermodynamic system during a reversible process
from state A to state B. Note that this path integral is the same for all reversible paths between the past
and next states.

It was shown by Jaynes that thermodynamic entropy could be interpreted, from the perspective of
statistical mechanics, as a measure of the amount of information about the microstate of a system that an
observer lacks if they know only the macrostate of the system [53].

This is encapsulated in the famous Boltzmann’s equation S = k logW , where k is Boltzmann’s
constant and W is the number of microstates corresponding to a given macrostate (an integer greater
than or equal to one). While it is not a mathematical probability between zero and one, it is sometimes
called “thermodynamic probability”, noting that W can be normalized to a probability p = W/N , where
N is the number of possible microstates for all macrostates.
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The Shannon entropy that corresponds to the Boltzmann entropy S = k logW is the uncertainty in
the microstate that has produced the given macrostate. That is, given the number W of microscopic
configurations that correspond to the given macrostate, we have pi = 1/W for each equiprobable
microstate i. As such, we can compute the local entropy for each of these W microstates as
− log2 1/W = log2W bits. Note that the average entropy across all of these equiprobable microstates is
log2W bits also. This is equivalent to the Boltzmann entropy up to Boltzmann’s constant k and the base
of the logarithms (see [54,55] for more details).

3.3. Transition Probabilities

A specialisation of Boltzmann’s principle by Einstein [56], for two states with entropies S and S0 and
“relative probability” Wr (the ratio of numbers W and W0 that account for the numbers of microstates
in the macrostates with S and S0 respectively), is given by:

S − S0 = k logWr (17)

The expression in these relative terms is important, as pointed out by Norton [57], because the probability
Wr is the probability of the transition between the two states under the system’s normal time evolution.

In the example considered by Einstein [56,57], S0 is the entropy of an (equilibrium) state, e.g., “a
volume V0 of space containing n non-interacting, moving points, whose dynamics are such as to favor
no portion of the space over any other”, while S is the entropy of the (non-equilibrium) state with the
“same system of points, but now confined to a sub-volume V of V0”. Specifically, Einstein defined the
transition probability Wr = (V/V0)n, yielding

S − S0 = kn log(V/V0) (18)

Since dynamics favour no portion of the space over any other, all the microstates are equiprobable.

3.4. Entropy Production

In general, the variation of entropy of a system ∆S is equal to the sum of the internal entropy
production σ inside the system and the entropy change due to the interactions with the surroundings
∆Sext:

∆S = σ + ∆Sext (19)

In the case of a closed system, ∆Sext is given by the expression

∆Sext =

∫
dq/T (20)

where q represents the heat flow received by the system from the exterior and T is the temperature of the
system. This expression is often written as

σ = ∆S −∆Sext = (S − S0)−∆Sext (21)

so that when the transition from the initial state S0 to the final state S is irreversible, the entropy
production σ > 0, while for reversible processes σ = 0, that is

S − S0 =

∫
dqrev/T (22)
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We shall consider another state vector, y, describing a state of a part Y of the exterior possibly coupled
to the system represented by X . In other words, X and Y may or may not be dependent. In general, we
shall say that σy is the internal entropy production in the context of some source Y , while ∆Sext is the
entropy production attributed to Y .

Alternatively, one may consider two scenarios for such a general physical system. In the first scenario,
the entropy changes only due to reversible transitions, amounting to S − S0. In the second scenario, the
entropy changes partly irreversibly due to the interactions with the external environment affected by y,
but still achieves the same total change S − S0.

3.5. Range of Applicability

In an attempt to provide a thermodynamic interpretation of transfer entropy we make two important
assumptions, defining the range of applicability for such an interpretation. The first one relates the
transition probability Wr1 of the system’s reversible state change to the conditional probability p(xn+1 |
xn), obtained by sampling the process X:

p(xn+1 | xn) =
1

Z1

Wr1 (23)

where Z1 is a normalisation factor that depends on xn. According to the expression for transition
probability (17), under this assumption the conditional probability of the system’s transition from state
xn to state xn+1 corresponds to some number Wr1 , such that S(xn+1)− S(xn) = k logWr1 , and hence

p(xn+1 | xn) =
1

Z1

e(S(xn+1)−S(xn))/k (24)

The second assumption relates the transition probability Wr2 of the system’s possibly irreversible
internal state change, due to the interactions with the external surroundings represented in the state
vector y, to the conditional probability p(xn+1 | xn,yn), obtained by sampling the systems X and Y :

p(xn+1 | xn,yn) =
1

Z2

Wr2 (25)

Under this assumption the conditional probability of the system’s (irreversible) transition from state xn

to state xn+1 in the context of yn, corresponds to some number Wr2 , such that σy = k logWr2 , where σy
is the system’s internal entropy production in the context of y, and thus

p(xn+1 | xn,yn) =
1

Z2

eσy/k (26)

where Z2 is a normalisation factor that depends on xn.

3.6. An Example: Random Fluctuation Near Equilibrium

Let us consider the above-defined stochastic process X for a small random fluctuation
around equilibrium:

xn+1 = Λxn + ξ (27)
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where ξ is a multi-variate Gaussian noise process, with covariance matrix Σξ, uncorrelated in time.
Starting at time n with state xn having entropy S (xn), the state develops into xn+1, with entropy
S (xn+1).

From the probability distribution function of the above multi-variate Gaussian process, we obtain

p (xn+1|xn) =
1

Z
e−

1
2

(xn+1−Λxn)TΣ−1
ξ (xn+1−Λxn) (28)

We now demonstrate that this expression concurs with the corresponding expression obtained under
assumption (24). To do so we expand the entropies around x = 0 with entropy S(0):

S (xn) = S(0)− k1

2
xn

TΣ−1
x xn (29)

where Σx is the covariance matrix of the process X .
Then, according to the assumption (24)

p(xn+1 | xn) =
1

Z1

e(S(xn+1)−S(xn))/k =
1

Z1

e−
1
2(xn+1

TΣ−1
x xn+1−xn

TΣ−1
x xn) =

1

Z̃1

e−
1
2
xn+1

TΣ−1
x xn+1 (30)

where the term e
1
2
xn

TΣ−1xn is absorbed into the normalisation factor being only dependent on xn. In
general [58,59], we have

Σx =
∞∑
j=0

Λj Σξ ΛjT (31)

Given the quasistationarity of the relaxation process, assumed near an equilibrium, Λ → 0, and hence
Σx → Σξ. Then the Equation (30) reduces to

p(xn+1 | xn) =
1

Z̃1

e−
1
2(xn+1

TΣ−1
ξ xn+1) (32)

The last expression concurs with Equation (28) when Λ→ 0.

4. Transfer Entropy: Thermodynamic Interpretation

4.1. Transitions Near Equilibrium

Supported by this background, we proceed to interpret transfer entropy via transitions between states.
In doing so, we shall operate with local information theoretic measures (such as the local transfer
entropy (9)), as we are dealing with (transitions between) specific states yn, xn, xn+1, etc. and not
with all possible state-spaces X , Y , etc. containing all realizations of specific states.

Transfer entropy is a difference not between entropies, but rather between entropy rates or conditional
entropies, specified on average by Equations (2) or (7), or for local values by Equation (10):

tY→X(n+ 1) = h(xn+1 | xn)− h(xn+1 | xn,yn) (33)

As mentioned above, the first assumption (23), taken to define the range of applicability for our
interpretation, entails (24). It then follows that the first component of Equation (33), h(xn+1 | xn),
accounts for S(xn+1)− S(xn):

h(xn+1 | xn) = − log2 p(xn+1 | xn) = − log2

1

Z1

e(S(xn+1)−S(xn))/k (34)

= log2 Z1 −
1

k log 2
(S(xn+1)− S(xn)) (35)
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That is, the local conditional entropy h(xn+1 | xn) corresponds to resultant entropy change of the
transition from the past state xn to the next state xn+1.

Now we need to interpret the second component of Equation (33): the local conditional entropy
h(xn+1 | xn,yn) in presence of some other factor or extra source, yn. Importantly, we must keep both
the past state xn and the next state xn+1 the same—only then we can characterise the internal entropy
change, offset by some contribution of the source yn.

Our second constraint on the system (25) entails (26), and so

h(xn+1 | xn,yn) = − log2 p(xn+1 | xn,yn) = − log2

1

Z2

eσy/k = log2 Z2 −
1

k log 2
(σy) (36)

4.2. Transfer Entropy as Entropy Production

At this stage we can bring two right-hand side components of transfer entropy (33), represented by
Equations (35) and (36), together:

tY→X(n+ 1) = log2

Z1

Z2

+
1

k log 2
(− (S(xn+1)− S(xn)) + σy) (37)

When one considers a small fluctuation near an equilibrium, Z1 ≈ Z2, as the number of microstates
does not change much in the relevant macrostates. This removes the additive constant. Then, using the
expression for entropy production (21), we obtain

tY→X(n+ 1) = −∆Sext
k log 2

(38)

If Z1 6= Z2, the relationship includes some additive constant log2
Z1

Z2
.

That is, the transfer entropy is proportional to the external entropy production, brought about by the
source of irreversibility Y . It captures the difference between the entropy rates that correspond to two
scenarios: the reversible process and the irreversible process affected by another source Y . It is neither
a transfer of entropy, nor an entropy of some transfer—it is formally a difference between two entropy
rates. The opposite sign reflects the different direction of entropy production attributed to the source Y :
when ∆Sext > 0, i.e., the entropy increased during the transition in X more than the entropy produced
internally, then the local transfer entropy is negative, and the source misinforms about the macroscopic
state transition. When, on the other hand, ∆Sext < 0, i.e., some of the internal entropy produced
during the transition in X dissipated to the exterior, then the local transfer entropy is positive, and better
predictions can be made about the macroscopic state transitions in X if source Y is measured.

As mentioned earlier, while transfer entropy is non-negative on average, some local transfer
entropies can be negative when (in the context of the history of the destination) the source variable
is misinformative or misleading about the state transition. This, obviously, concurs with the fact that,
while a statistical ensemble average of time averages of the entropy change is always non-negative, at
certain times entropy change can be negative. This follows from the fluctuation theorem [60], the Second
law inequality [61], and can be illustrated with other examples of backward transformations and local
violations of the second law [62,63].

Another observation follows from our assumptions (24) and (26) and the representation (37) when
Z1 ≈ Z2. If the local conditional entropy h(xn+1 | xn), corresponding to the resultant entropy change
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of the transition, is different from the local conditional entropy h(xn+1 | xn,yn) capturing the internal
entropy production in context of the external source Y , then X and Y are dependent. Conversely,
whenever these two conditional entropies are equal to each other, X and Y are independent.

4.3. Transfer Entropy as a Measure of Equilibrium’s Stability

There is another possible interpretation that considers a fluctuation near the equilibrium. Using
Kullback–Leibler divergence between discrete probability distributions p and q:

DKL(p‖q) =
∑
i

p(i) log
p(i)

q(i)
(39)

and its local counterpart:

dKL(p‖q) = log
p(i)

q(i)
(40)

we may also express the local conditional entropy as follows:

h(xn+1 | xn) = h(xn+1,xn)− h(xn) = dKL (p(xn+1,xn)‖p(xn)) (41)

It is known in macroscopic thermodynamics that stability of an equilibrium can be measured with
Kullback–Leibler divergence between the initial (past) state, e.g., xn, and the state brought about by
some fluctuation (a new observation), e.g., xn+1 [64]. That is, we can also interpret the local conditional
entropy h(xn+1 | xn) as the entropy change (or entropy rate) of the fluctuation near the equilibrium.

Analogously, the entropy change in another scenario, where an additional source y contributes to the
fluctuation around the equilibrium, corresponds now to Kullback–Leibler divergence

h(xn+1 | xn,yn) = h(xn+1,xn,yn)− h(xn,yn) = dKL (p(xn+1,xn,yn)‖p(xn,yn)) (42)

and can be seen as a measure of stability with respect to the fluctuation that is now affected by the extra
source y.

Contrasting both these fluctuations around the same equilibrium, we obtain in terms of Kullback–
Leibler divergences:

tY→X(n+ 1) = dKL (p(xn+1,xn)‖p(xn))− dKL (p(xn+1,xn,yn)‖p(xn,yn)) (43)

In these terms, transfer entropy contrasts stability of the equilibrium between two scenarios: the first
one corresponds to the original system, and the second one disturbs the system by the source Y . If, for
instance, the source Y is such that the system X is independent of it, then there is no difference in the
extents of disturbances to the equilibrium, and the transfer entropy is zero.

4.4. Heat Transfer

It is possible to provide a similar thermodynamic interpretation relating directly to the Clausius
definition of entropy. However, in this case we need to make assumptions stronger than Equations (23)
and (25). Specifically, we assume Equations (24) and (26) which do not necessarily entail Equations (23)
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and (25) respectively. For example, setting the conditional probability p(xn+1 | xn) = 1
Z1
e(S−S0)/k does

not mean that W1 = e(S−S0)/k is the transition probability.
Under the new stronger assumptions, the conditional entropies can be related to the heat transferred

in the transition, per temperature. Specifically, assumption (24) entails

h(xn+1 | xn) = log2 Z1 −
1

k log 2
(S(xn+1)− S(xn)) = log2 Z1 −

1

k log 2

∫ xn+1

xn

dqrev/T (44)

where the last step used the definition of Clausius entropy (16). As per (16), this quantity is the same for
all reversible paths between the past and next states. An example illustrating the transition (xn → xn+1)

can be given by a simple thermal system xn that is connected to a heat bath—that is, to a system in
contact with a source of energy at temperature T . When the system X reaches a (new) equilibrium, e.g.,
the state xn+1, due to its connection to the heat bath, the local conditional entropy h(xn+1 | xn) of the
transition undergone by system X represents the heat transferred in the transition, per temperature.

Similarly, assumption (26) leads to

h(xn+1 | xn,yn) = log2 Z2 −
1

k log 2
(σy) = log2 Z2 −

1

k log 2

∫
xn

yn−→xn+1

dq/T (45)

where xn
yn−→xn+1 is the new path between xn and xn+1 brought about by yn, and the entropy produced

along this path is σy. That is, the first and the last points of the path over which we integrate heat transfers
per temperature are unchanged but the path is affected by the source y. This can be illustrated by a
modified thermal system, still at temperature T but with heat flowing through some thermal resistance
Y , while the system X repeats its transition from xn to xn+1.

Transfer entropy captures the difference between expressions (44) and (45), i.e., between the relevant
amounts of heat transferred to the system X , per temperature.

tY→X(n+ 1) = log2

Z1

Z2

+
1

k log 2

(∫
xn

yn−→xn+1

dq/T −
∫ xn+1

xn

dqrev/T

)
(46)

Assuming that Z1 ≈ Z2 is realistic, e.g., for quasistatic processes, then the additive constant disappears
as well.

It is clear that if the new path is still reversible (e.g., when the thermal resistance is zero) then the
source y has not affected the resultant entropy change and we must have∫ xn+1

xn

dqrev/T =

∫
xn

yn−→xn+1

dq/T (47)

and tY→X(n + 1) = 0. This obviously occurs if and only if the source Y satisfies the independence
condition (6), making the transfer entropy (46) equal to zero. In other words, we may again observe that if
the local conditional entropy h(xn+1 | xn) corresponds to the resultant entropy change of the transition,
then X and Y are dependent only when the external source Y , captured in the local conditional entropy
h(xn+1 | xn,yn), brings about an irreversible internal change. If, however, the source Y changed the
path in such a way that the process became irreversible, then tY→X(n+ 1) 6= 0.

Finally, according to Equations (19) and (20), the difference between the relevant heats transferred
is
∫

dq/T , where q represents the heat flow received by the system from the exterior via the source Y ,
and hence

tY→X(n+ 1) = log2

Z1

Z2

− 1

k log 2

∫
dq/T (48)
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In other words, local transfer entropy is proportional to the heat received or dissipated by the system
from/to the exterior.

5. Causal Effect: Thermodynamic Interpretation?

In this section we shall demonstrate that a similar treatment is not possible in general for causal
effect. Again, we begin by considering local causal effect (15) of the source yn on destination xn+1,
while selecting s as the destination’s past state xn:

f(yn → xn+1 | x̂n) = log2

p(xn+1 | ŷn, x̂n)∑
y′n
p(y′n | x̂n)p(xn+1 | ŷ′n, x̂n)

(49)

Let us first consider conditions under which this representation reduces to the local transfer entropy.
As pointed out by Lizier and Prokopenko [41], there are several conditions for such a reduction.

Firstly, yn and xn must be the only causal contributors to xn+1. In a thermodynamic setting, this
means that there are no other sources affecting the transition from xn to xn+1, apart from yn.

Whenever this condition is met, and in addition, the combination (yn,xn) is observed, it follows that

p(xn+1 | ŷn, x̂n) = p(xn+1 | yn,xn) (50)

simplifying the numerator of Equation (49).
Furthermore, there is another condition:

p(yn | x̂n) ≡ p(yn | xn) (51)

For example, it is met when the source yn is both causally and conditionally independent of the
destination’s past xn. Specifically, causal independence means p(yn) ≡ p(yn | x̂n), while conditional
independence is simply p(yn) ≡ p(yn | xn). Intuitively, the situation of causal and conditional
independence means that inner workings of the system X under consideration do not interfere with
the source Y . Alternatively, if X is the only causal influence on Y , the condition (51) also holds, as Y is
perfectly “explained” byX , whetherX is observed or imposed on. In general, though, the condition (51)
means that the probability of yn if we impose a value x̂n is the same as if we had simply observed the
value xn = x̂n without imposing in the system X .

Under the conditions (50) and (51), the denominator of Equation (49) reduces to p(xn+1 | xn),
yielding the equivalence between local causal effect and local transfer entropy

f(yn → xn+1 | x̂n) = tY→X(n+ 1) (52)

In this case, the thermodynamic interpretation of transfer entropy would be applicable to causal effect
as well.

Whenever one of these conditions is not met, however, the reduction fails. Consider, for instance,
the case when the condition (51) is satisfied, but the condition (50) is violated. For example, we may
assume that there is some hidden source affecting the transition to xn+1. In this case, the denominator
of Equation (49) does not simplify much, and the component that may have corresponded to the entropy
rate of the transition between xn and xn+1 becomes

log2

∑
y′n

p(y′n | xn)p(xn+1 | ŷ′n, x̂n) (53)
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The interpretation of this irreducible component is important: the presence of the imposed term ŷ′n
means that one should estimate individual contributions of all possible states y of the source Y , while
varying (i.e., imposing on) the state xn. This procedure becomes necessary because, in order to estimate
the causal effect of source y, in presence of some other hidden source, one needs to check all possible
impositions on the source state y. The terms of the sum under the logarithm in Equation (53) inevitably
vary in their specific contribution, and so the sum cannot be analytically expressed as a single product
under the logarithm. This means that we cannot construct a direct thermodynamic interpretation of
causal effect in the same way that we did for the transfer entropy.

6. Discussion and Conclusions

In this paper we proposed a thermodynamic interpretation of transfer entropy: an
information-theoretic measure introduced by Schreiber [1] as the average information contained
in the source about the next state of the destination in the context of what was already contained in
the destination’s past. In doing so we used a specialised Boltzmann’s principle. This in turn produced
a representation of transfer entropy tY→X(n + 1) as a difference of two entropy rates: one rate for a
resultant transition within the system of interest X and another rate for a possibly irreversible transition
within the system affected by an addition source Y . This difference was further shown to be proportional
to the external entropy production, ∆ext, attributed to the source of irreversibility Y .

At this stage we would like to point out a difference between our main result, tY→X(n+ 1) ∝ −∆ext,
and a representation for entropy production discussed by Parrondo et al. [22]. The latter work
characterised the entropy production in the total device, in terms of relative entropy, the Kullback–Leibler
divergence between the probability density ρ in phase space of some forward process and the probability
density ρ̃ of the corresponding and suitably defined time-reversed process. The consideration of
Parrondo et al. [22] does not involve any additional sources Y , and so transfer entropy is outside of
the scope of their study. Their main result characterised entropy production as k dKL (ρ‖ρ̃), which is
equal to the total entropy change in the total device. In contrast, in our study we consider the system of
interest X specifically, and characterise various entropy rates of X , but in doing so compare how these
entropy rates are affected by some source of irreversibility Y . In short, transfer entropy is shown to
concur with the entropy produced/dissipated by the system attributed to the external source Y .

We also briefly considered a case of fluctuations in the systemX near an equilibrium, relating transfer
entropy to the difference in stabilities of the equilibrium, with respect to two scenarios: a default case
and the case with an additional source Y . This comparison was carried out with Kullback–Leibler
divergences of the corresponding transition probabilities.

Finally, we demonstrated that such a thermodynamic treatment is not applicable to information flow,
a measure introduced by Ay and Polani [18] in order to capture a causal effect. We argue that the
main reason is the interventional approach adopted in the definition of causal effect. We identified
several conditions ensuring certain dependencies between the involved variables, and showed that the
causal effect may also be interpreted thermodynamically—but in this case it reduces to transfer entropy
anyway. The highlighted difference once more shows a fundamental difference between transfer entropy
and causal effect: the former has a thermodynamic interpretation relating to the source of irreversibility
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Y , while the latter is a construct that in general assumes an observer intervening in the system in a
particular way.

We hope that the proposed interpretation will further advance studies relating information theory and
thermodynamics, both in equilibrium and non-equilibrium settings, reversible and irreversible scenarios,
average and local scopes, etc.
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