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Abstract: Information Bottleneck-based methods use mutual information as a distortion

function in order to extract relevant details about the structure of a complex system by

compression. One of the approaches used to generate optimal compressed representations

is by annealing a parameter. In this manuscript we present a common framework for the

study of annealing in information distortion problems. We identify features that should

be common to any annealing optimization problem. The main mathematical tools that we

use come from the analysis of dynamical systems in the presence of symmetry (equivariant

bifurcation theory). Through the compression problem, we make connections to the world of

combinatorial optimization and pattern recognition. The two approaches use very different

vocabularies and consider different problems to be “interesting”. We provide an initial

link, through the Normalized Cut Problem, where the two disciplines can exchange tools

and ideas.
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1. Introduction

Our goal in this paper is to investigate the mathematical structure of Information Distortion methods.

There are several approaches to computing the best quantization of the data, and they differ in the

algorithms used, the data they are applied to, and the functions that are optimized by the algorithms. We

will concentrate on the annealing method applied to two different functions: the Information Bottleneck

cost function [1] and the Information Distortion function [2]. By formalizing a common framework in

which to study these two problems, we will exhibit common features of, as well as differences between,

the two cost functions. Moreover, the differences and commonalities we will highlight are based on the

underlying structural properties of these systems rather then on the philosophy behind their derivation.

All results that we present are valid for any system characterized by a probability distribution and in this

sense they present fundamental structural results.

On a more concrete level, our goal is to understand why the annealing algorithms now in use work

as well as they do, but also to suggest improvements to these algorithms. Some results which have been

observed numerically are not expected when applying annealing to a general cost function. We want to

ask what is the special feature of these systems that cause such results.

Our final goal is to provide a bridge between the world of combinatorial optimization and pattern

recognition, and the world of dynamical systems in mathematics. These two areas have different goals,

different sets of “natural questions” and, perhaps most crucially, different vocabularies. We want this

manuscript to contribute to bridging this gap, as we believe that both sides have developed interesting

and powerful techniques that can be used to expand the knowledge of the other side.

We close by introducing the optimization problems we will study. Both approaches attempt to

characterize a system of interest (X,Y ) defined by a probability p(X,Y ) by quantizing (discretizing)

one of the variables (Y here) into a reproduction variable T with few elements. One of the problems

stems from the Information Distortion approach to neural coding [2,3],

max
q∈Δ

FH(q) := IH(T |Y ) + βII(X;T ) (1)

where IH(·) is the conditional entropy, and II(·; ·) is the mutual information [4]. The other problem is

from the Information Bottleneck approach to clustering [1,5,6]

max
q∈Δ

FI(q) := −II(T ;Y ) + βII(X;T ) (2)

which has been used for document classification [7,8], gene expression [9], neural coding [10,11], stellar

spectral analysis [12], and image time-series data mining [13].

The variables (quantizers) q are conditional probabilities q := q(t|y) and Δ is the space of all

appropriate conditional probabilities. We will explain all of the details in the main text, but we want

to sketch the basic idea of the annealing approach here. Since both functions IH(T |Y ) and −II(T ;Y ) are

concave, when β = 0, both problems (1) and (2) admit a homogeneous solution q(t|y) = 1/N , where N

is the number of elements in T . Starting at this solution and increasing β slowly, the optimal solution,

or quantizer, q will undergo a series of phase transitions (bifurcations) as a function of β. We will show

that the parameter β, at which the first phase transition takes place, does not depend on the number of

elements in the reproduction variable T . Annealing in the temperature-like parameter β terminates either
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at some predefined finite value of β, or goes to β = ∞. It is this process and its phase transitions that

we consider in this contribution.

1.1. Outline of the Mathematical Contributions

In Section 2 we start with the optimization problems and identify the space of variables over which

optimization takes place. Since these variables are constrained, we use Lagrange multipliers to eliminate

equality constraints. We also present some results about convexity and concavity of the cost functions.

Our first main question is whether the approach of deterministic annealing [14] can be used for

these optimization problems. Rose and his collaborators have shown that, if the distortion function in

certain class of optimization problems is taken to be the Euclidean distance, the phase transitions of the

annealing function can be computed explicitly. More precisely, the first phase transition can be computed

explicitly, since the quantizer value is known and only the value of the temperature at which this quantizer

loses stability has to be computed. In general, an implicit formula relating critical temperature and the

critical quantizer at which phase transition occurs can be computed.

In Section 4 we will show that the same calculations can be done for our optimization problems. We

relate the critical value of β at which the uniform quantizer q 1
N

loses stability to a certain eigenvalue

problem. This problem can be solved effectively off-line and thus the annealing procedure can start from

this value of β rather then at β = 0. As a consequence, we also show that in both optimization problems

considered here, the quantizer q 1
N

is a local maximum for all β ∈ [0, 1]. In complete analogy with

deterministic annealing, our results extend beyond phase transitions off q 1
N

. As we show in Section 5,

the aforementioned eigenvalue problem implicitly relates all critical values of the parameter β to critical

values of the quantizer q.

We study more closely the first phase transition in Section 6. We show that the eigenvector

corresponding to this phase transition solves the Approximate Normalized Cut problem for some graphs

with vertices corresponding to elements of Y . These graphs have considerable intuitive appeal.

In [15–17] we studied the subsequent phase transitions more closely, using bifurcation theory with

symmetries. We summarize the main results here as well. The symmetry of our problems comes from

the fact that the cost function is invariant under the relabeling of the elements of the representation

variable T . Such a symmetry is characterized by the permutation group SN and its subgroups. Since

this is a structural symmetry, it does not require the symmetry of the underlying probability distribution

p(X,Y ). These results are valid for arbitrary probability distributions.

2. Mathematical Formulation of the Problem

The variables q over which the optimization takes place are conditional probabilities q(t|y). In order

for the problems (1) and (2) to be well defined, we must fix the number of elements of T . Let this

number be N and let the number of elements in Y be K. Then there are NK conditional probabilities

q(t|y) which satisfy ∑
t

q(t|y) = 1 for all y (3)

These equations form an equality constraint on the maximization problems (1) and (2). We also have

to satisfy inequality constraints q(t|y) ≥ 0 since q(t|y) are probabilities. We notice that, for a fixed y,
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the space of admissible values q(t|y) is the unit N − 1 simplex ΔN−1 in RN . We denote this simplex

as Δy, to also indicate that it is related to variable y, and suppressing the dimension for simplicity of

notation. It follows from (3) that the set of all admissible values of q(t|y) is a product of such simplices

(see Figure 1), which we call Δ,

Δ := Δy1 ×Δy2 × . . .×ΔyK

Figure 1. The space Δ of admissible vectors q can be represented as a product of simplices,

one simplex for each yi ∈ Y . The figure shows the case when the reproduction variable T

has three elements (N = 3). Each triangle represents a unit simplex in R3 and the constraint

q(1|yi) + q(2|yi) + q(3|yi) = 1, q(t|yi) ≥ 0. The green point represents the position

of a particular q. To clarify the illustration: The part of q in simplex 4, q(t|3), is almost

deterministic (shown at a vertex), while the next q, q(t|4) is almost uniform (shown almost

at the center of simplex 4).

� � � �

� � � �� � � � �

�

�

q(1|y1) + q(2|y1) + q(3|y1) = 1 q(1|y2) + q(2|y2) + q(3|y2) = 1 . . . q(1|yN ) + q(2|yN ) + q(3|yN ) = 1

At this point we want to comment on a successful implementation of the annealing algorithm by

Slonim and Tishby [6]. In their approach they start the annealing procedure with N = 2 at q(t|y) = 1
2

for all t = 1, 2 and y at β = 0. After increasing β they split q(t|y), for t = 1, 2, into two parts, q(t1|y)
and q(t2|y) by setting

q(t1|y) = q(1|y)(1
2
+ εα(t, y)), q(t2|y) = q(1|y)(1

2
− εα(t, y))

where α(t, y) is random perturbation and ε is small. If under the fixed point iteration at new value

of β the values q(t1|y) and q(t2|y) converge to the same value (1/4 in this case), then the process is

repeated; if, on the other hand, these values diverge, a presence of a bifurcation is asserted. Note, that

this process changes N from 2 to 4 repeatedly. This changes the optimization problem, because the space

of admissible quantizers q doubled. It is not clear a priori that phase transition detected in problem with

2K variables also occurs at the same value of β in problem with 4K variables. Numerically, however, this

seems to be the case not only at the first phase transition, but at every phase transition. One of the results

of Section 4 will be an explanation of this phenomena. We will show that the parameter β, at which the

first phase transition takes place, does not depend on the number of elements in the reproduction variable

T . This provides a justification for Slonim’s algorithm, at least for the first phase transition.

Since the optimization problems (1) and (2) are constrained, we first form the Lagrangian,

L = F +
K∑
k=1

λk

(
N∑
t=1

q(t|yk)− 1

)
(4)

which incorporates the vector of Lagrange multipliers λ, imposed by the equality constraints from the

constraint space Δ. Here F = FH for (1) or F = FI for (2),
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Lemma 2.1 The function IH(T |Y ) is a strictly concave function of q(t|y) and the functions II(X;T ) and
II(Y ;T ) are convex, but not strictly convex, functions of q(t|y).

Proof. For concavity of IH(T |Y ) and convexity of II(Y ;T ), see [2]. Proof of the convexity of II(X;T )

is analogous.

This Lemma implies that for β = 0 in both (1) and (2), there is a trivial solution q(t|y) = 1/N for all

t and y. We denote this solution as q 1
N

.

What we want to emphasize here is that II(Y ;T ) and II(X;T ) are not strictly convex functions. Recall

that a function f is convex provided

sf(u) + (1− s)f(v) ≤ f(su+ (1− s)v) (5)

for all u,v and 0 ≤ s ≤ 1. The function f is strictly convex if the inequality in (5) is strict for u �= v

and 0 < s < 1.

To show that II(Y ;T ) is not strictly convex, we take q(t|yk) = at independent on k (see Figure 2). In

order for this q to satisfy q ∈ Δ we require that numbers at are chosen with
∑

t at = 1. Using the facts

that p(y, t) = q(t|y)p(y) and p(t) =
∑

y p(y, t) = at
∑

y p(y), we evaluate at q = qa the function

II(T ;Y ) =
∑
y,t

p(y, t) log
p(y, t)

p(y)p(t)

=
∑
y,t

atp(y) log
atp(y)

p(y)at

= 0

This implies that in Δ there is an N−1 dimensional linear space spanned by vectors a = (a1, a2, . . . , aN)

with
∑

t at = 1, such that for all q in this space II(T ;Y )(q) = 0. Since II(T ;Y ) ≥ 0, this function does

not have a unique minimum and thus is not strictly convex. �

Figure 2. The function I(T ;Y ) is not strictly convex. There are three vectors q depicted in

the figure. The red point in the middle of each simplex represents the point q 1
N

with N = 3.

The blue point and the white points have the property that q(t|y) does not depend on y, only

on t. At all three points the function I(T ;Y ) is equal to zero.

XXX

1

322 3
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32

yKy1 y2

This result has consequences for the function FI(q). As we will see in Lemma 3.1, FI(q) = 0 at

all points where II(T ;X)(q) = 0. This lack of strict convexity has important consequences for phase

transitions for FI . Since IH(T |Y ) is strictly concave, this problem will not affect the function FH .
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Maxima of (1) and (2) are critical points of the Lagrangian, that is, points q where the gradient of (4)

is zero. We now switch our search from maxima to critical points of the Lagrangian. Obviously, minima

and saddle points are also critical points and therefore we must always check whether a given critical

point is indeed a maximum of the original problem (1) or (2). We want to use the language of bifurcation

theory which deals with qualitative changes in the structure of system dynamics given by differential

equations or maps. Therefore we will now reformulate the optimization problems (1) and (2) as a system

of differential equations under a gradient flow,(
q̇

λ̇

)
= ∇q,λL(q, λ, β) (6)

In this equation, the NK × 1 vector q representing the quantizer, and the K × 1 vector of the

Langrange multipliers (see Equation (4)) are viewed as functions of some independent variable s, which

parameterizes curves of solutions (q(s), λ(s)) to either (1) or (2). Thus, the derivatives implicit in (q̇, λ̇)

are with respect to s. The critical points of the Lagrangian are the equilibria of (6), since those are the

places where the gradient of L is equal to zero. By the same token, the maxima of (1) and (2) correspond

to stable (in q) equilibria of the gradient flow (6). More technically, these are points for which the Hessian

d2F is negative definite on the kernel of the Jacobian of the constraints [18,19].

As β increases from 0, the solution q 1
N

is initially a maximum of (1) and (2). We are interested

in the smallest value of β, say β = β∗, where q 1
N

ceases to be a maximum. This corresponds to a

change in the number of critical points in the neighborhood of q 1
N

as β passes through β = β∗. The

value β∗ is called a bifurcation value and the new sets of critical points emanating from q 1
N

are called

bifurcating branches. This question can be posed at any other point besides q 1
N

as well: When do such

bifurcations happen? We will formulate the answer in the language of differential equations. If the

linearization of the flow at equilibrium has eigenvalues with nonzero real part, the implicit function

theorem implies that this equilibrium exists for all values of the parameter in a small neighbourhood.

Since the number of equilibria then does not change locally, this implies that a bifurcation does not

occur at such a point. Therefore, a necessary condition for bifurcation is that the real part of some

eigenvalue of the linearization of the flow at an equilibrium crosses zero [20]. Therefore, we need to

consider eigenvalues of the (NK + K) × (NK + K) Hessian d2L. Since d2L is a symmetric matrix,

bifurcation can only be caused by one of its real eigenvalues crossing zero, and therefore we must find

values of (q, β) at which d2L is singular, or, equivalently, has a nontrivial kernel.

The form of d2L is simple:

d2L =

⎡
⎢⎢⎢⎢⎢⎢⎣

B1 0 . . . I

0 B2 . . . I
...

...
...

...

0 . . . BN I

I I . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

where I is the identity matrix and Bi is

Bi :=
∂2L

∂q(ti|yk)∂q(ti|yl) =
∂2F

∂q(ti|yk)∂q(ti|yl)
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The block diagonal matrix consisting of all matrices Bi represents the matrix of second derivatives

(Hessian) of F .

In [15,17] we showed that there are two types of generic bifurcations: saddle-node, in which a set of

equilibria emerge simultaneously, and pitchfork-like, in which new equilibria emanate from an existing

equilibrium. The first kind of bifurcation corresponds to a value of β, and corresponding q, for which

d2L is singular, but d2F is non-singular; the second kind of bifurcation happens at β and q where d2F

is singular. Our primary focus here is on bifurcations off q 1
N

, and more generally off an existing branch,

we will focus on the second kind of bifurcation. Therefore, we will investigate only the case in which

the eigenvalues of the smaller NK ×NK Hessians d2FH and d2FI are zero to determine the location of

pitchfork-like bifurcations.

2.1. Derivatives

In order to simplify notation we will denote

qνk := q(t = ν|y = yk)

To determine d2FH and d2FI from (1) and (2), we need to determine the quantities d2IH(T |Y ), d2II(X;T )

and d2II(Y ;T ). The first two were computed in [2]:

∂2IH(T |Y )

∂qηl∂qνk
= − 1

ln2

p(yk)

qνk
δνηδkl (7)

and

∂2II(X;T )

∂qηl∂qνk
=

δνη
ln2

(∑
i

p(xi, yk) p(xi, yl)∑
k qνkp(xi, yk)

− p(yk)p(yl)∑
k qνkp(yk)

)
(8)

where δνη = 1 if ν = η and zero otherwise. We computed the derivative of the term −d2II(Y ;T ) in [19]

−∂2II(Y ;T )

∂qηl∂qνk
=

δνη
ln2

(
p(yk)p(yl)

p(ν)
− δlkp(yk)

qνk

)
(9)

The formulas (7)–(9) show that we can factor δνη out of both d2FH = d2IH(T |Y ) + βd2II(X;T ) and

d2FI = −d2II(Y ;T ) + βd2II(X;T ). This implies that the NK ×NK matrices d2FH and d2FI are block

diagonal, with N blocks, with each K × K block Bi corresponding to a particular value (class) of the

reconstruction variable T .

2.2. Symmetries

The optimization problems (1) and (2) have symmetry. We capitalize on this symmetry to solve

these problems better. The symmetries arise from the structure of q ∈ Δ and from the form of the

functions FH and FI : permuting subvectors qν does not change the value of FH and FI . This symmetry

is characterized as an invariance under the action of the permutation group, SN , or one of its subgroups

Sl1 × Sl2 × . . .× Slz ,
∑

lk = N .

We will capitalize upon the symmetry of SN by using the Equivariant Branching Lemma to determine

the bifurcations of stationary points, which includes local solutions, to (1) and (2).
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In [15] we clarified the bifurcation structure for a larger class of constrained optimization problems

of the form

max
q∈Δ

F (q, β)

as long as F satisfies the following:

Proposition 2.2 The function F (q, β) is of the form

F (q, β) =
N∑
ν=1

f(qν , β)

for some smooth scalar function f , where the vector q ∈ Δ ⊂ RNK is decomposed into N subvectors
qν ∈ RK .

The annealing problems (1) and (2) satisfy this Proposition. Any F satisfying Proposition 2.2 has the

following properties.

1. F is SN -invariant, where the action of SN on q permutes the subvectors qν of q.

2. The NK ×NK Hessian d2F is block diagonal, with N, K ×K blocks.

3. The Kernel at a Bifurcation

In this section we investigate and compare the kernels of the NK ×NK Hessians d2FI and d2FB.

3.1. The Kernel of the Information Bottleneck

Our first observation is that FI is highly degenerate as a consequence of the fact that both II(Y ;T ) and

II(X;T ) are not strictly convex in q.

Lemma 3.1 Select a collection of numbers a1, . . . , aK such that ai ≥ 0 and
∑K

i=1 ai = 1. Let qa ∈ RNK

be a vector consisting of vectors qja ∈ RN , j = 1, . . . K such that qja is a constant vector with entries aj .
In other words, select q(t|y) = at independent on y. Then

FI(qa) = FI(q 1
N
) = 0 for all β

Proof. We evaluate at q = qa the function

−II(T ;Y ) + βII(T ;X) = −
∑
y,t

p(y, t) log
p(y, t)

p(y)p(t)
+ β

∑
x,t

p(x, t) log
p(x, t)

p(x)p(t)

= −
∑
y,t

atp(y) log
atp(y)

p(y)at
+ β

∑
x,t,y

q(t|y)p(x, y) log
∑

y q(t|y)p(x, y)
p(x)at

= β
∑
x,t,y

q(t|y)p(x, y) log at
∑

y p(x, y)

p(x)at

= 0

Since q 1
N

is a particular case of qa, the Lemma is proved. �
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Now we prove a generalization of this Lemma. We will say that q has symmetry described by Sl1 ×
Sl2 × . . .× Slz (a subgroup of SN ) if

q = (q1, . . . , q1, q2 . . . q2, . . . , qz, . . . , qz)
T (10)

where z is the total number of “blocks” of sub-vectors, with the sub-vector qi repeating li times in the

ith block. At such vector q, the matrix d2F has z groups of blocks Bi, and all blocks in each group are

identical. In particular, the first l1 blocks B1 = . . . = Bl1 are the same, then next l2 blocks are the same,

and so on.

Theorem 3.2 Consider an arbitrary pair (q, β), where q admits a symmetry Sl1 ×Sl2 × . . .×Slz . Then,
at a fixed value of β, there is a linear manifold of dimension

(l1 − 1) + (l2 − 1) + . . .+ (lz − 1)

passing through q, such that the function FI is constant on this manifold.

Proof. The quantizer q must take the form given by (10). Let

w = (c1q1, c2q1, . . . , cl1q1, q2 . . . q2, . . . , qz, . . . , qz)
T

where the constants ci are nonnegative and
∑

i ci = l1. We will show that

FI(q) = FI(w)

We separate FI(w) into two parts

FI(w) = −
∑
y,t

p(y, t) log
p(y, t)

p(y)p(t)
+ β

∑
x,t

p(x, t) log
p(x, t)

p(x)p(t)

=
∑
t≤l1

[
−
∑
y

p(y, t) log
p(y, t)

p(y)p(t)
+ β

∑
x

p(x, t) log
p(x, t)

p(x)p(t)

]

+
∑
t>l1

[
−
∑
y

p(y, t) log
p(y, t)

p(y)p(t)
+ β

∑
x

p(x, t) log
p(x, t)

p(x)p(t)

]

= F 1
I (w) + F 2

I (w)

Since the vectors w and q agree for all t > l1 we have

F 2
I (q) = F 2

I (w)

Observe first that

F 1
I (y) = −

∑
y,t≤l1

q1(t|y)p(y) log q1(t|y)p(y)
p(y)p(t)

+ β
∑

x,y,t≤l1

q1(t|y)p(x, y) log
∑

y q1(t|y)p(x, y)
p(x)p(t)

= l1

(
−
∑
y

q1(t|y)p(y) log q1(t|y)p(y)
p(y)p(t)

+ β
∑
x,y,

q1(t|y)p(x, y) log
∑

y q1(t|y)p(x, y)
p(x)p(t)

)

= l1G
1(y)
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where G1(y) is the function inside the parentheses on the last line. Now we evaluate F 1
I (w)

F 1
I (w) = −

∑
y,t≤l1

ctq1(t|y)p(y) log ctq1(t|y)p(y)
p(y)ctp(t)

+ β
∑

x,y,t≤l1

ctq1(t|y)p(x, y) log
ct
∑

y q1(t|y)p(x, y)
p(x)ctp(t)

= −
∑
t≤l1

ct
∑
y

p(t, y) log
p(t, y)

p(y)p(t)
+ β

∑
t≤l1

ct
∑
x,y

q1(t|y)p(x, y) log
∑

y q1(t|y)p(x, y)
p(x)p(t)

=
∑
t≤l1

ctG
1(y)

Since
∑

t≤l1
ct = l1 by assumption, we have F 1

I (y) = F 1
I (w) and therefore

FI(w) = FI(y)

Since
∑

t≤l1
ct = 1, the solutions w form a l1−dimensional linear manifold. The same argument can be

applied to q2, . . . , qz to finish the proof. �

Now we spell out the consequences of this degeneracy for dimker d2FI . Since the manifolds of

constant value of FI are linear, the second derivative along these manifolds must vanish. Note that in

Theorem 3.2 we required that the solutions lie in Δ. Therefore, ker d2L must vanish along this manifold,

rather then ker d2FI . In the following paragraphs, our first two results are concerned with ker d2FI , the

third—with ker d2L.

First we will show the result for a single block of d2FI .

Lemma 3.3 Fix an arbitrary quantizer q and an arbitrary class ν. Then the K × 1 vector qν := q(T =

ν|Y ) is in the kernel of the νth block Bν of d2FI for any value of β.

Proof. To show that the vector qν , defined in the statement of the Lemma, is in the kernel of d2F ν
I (q),

the νth-block of d2FI , we compute the lth row of this matrix. From (8) and (9) we see that

[d2F ν
I qν ]l =

1

ln2

(∑
k

p(yl)p(yk)qνk
p(ν)

−
∑
k

δlk
qνkp(yk)

qνk

)

+
β

ln2

∑
k

(∑
i

p(xi, yk)p(xi, yl)qνk
p(xi, ν)

− p(yk)p(yl)qνk
p(ν)

)

=
1

ln2
(p(yl)− p(yl)) +

β

ln2
(
∑
i

p(xi, yl)

p(xi, ν)

∑
k

qνkp(yk, xi)

−p(yl)

p(ν)

∑
k

qνkp(yk))

=
β

ln2

(∑
i

p(xi, yl)− p(yl)

)
= 000

This shows that qν is in the kernel of block ν of d2FI . �

Corollary 3.4 For an arbitrary pair (q, β), the dimension of ker d2FI is at least N , the number of
classes of T .
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Proof. Given qν as in Lemma 3.3, we define vectors {ui}Ni=1 ∈ RNK by

u1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

q1

000

000
...

000

⎞
⎟⎟⎟⎟⎟⎟⎠

, u2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

000

q2

000
...

000

⎞
⎟⎟⎟⎟⎟⎟⎠

, ... , uN =

⎛
⎜⎜⎜⎜⎜⎜⎝

000

000

000
...

qN

⎞
⎟⎟⎟⎟⎟⎟⎠

By Lemma 3.3, {ui}Ni=1 ∈ ker d2FI(q, β). Clearly these vectors are linearly independent. �

Now we investigate the consequences of Theorem 3.4 for the dimensionality of the kernel of d2L.

Theorem 3.5 Consider an arbitrary pair (q, β), where q admits a symmetry Sl1 × Sl2 × . . .× Slz . Then
the dimension of ker d2LI at such point is at least

d(q) := (l1 − 1) + (l2 − 1) + . . .+ (lz − 1)

Proof. Since q admits the stated symmetry it has the form (10). There are l1 − 1 vectors of the form

v(1) := u1 − ul, l = 2, . . . , l1.

Direct computation shows that, since ui ∈ ker d2FI , each vector v(1) ∈ ker d2L. Similar argument

shows that there are li − 1 vectors v(i) ∈ ker d2L for i = 2, . . . , z.

Corollary 3.6 If q has no symmetry, i.e., q = (q1, q2, . . . , qK) and all qi �= qj for i �= j, then the
dimension of ker d2LI is d(q) = 0. In other words, d2LI is non-singular.

Lemma 3.7 At a phase transition (q, β) of system (2) we have dim ker d2LI ≥ d(q) + 1.

Proof. This follows from the fact that the degeneracy of the kernel of dimension d(q) is a consequence

of the existence of a d(q)-dimensional manifold of solutions on which FI is constant. The existence of

kernel with this dimension therefore does not indicate a phase transition. For that, the kernel must be at

least d(q) + 1-dimensional. �

3.2. The Kernel of the Information Distortion

We want to contrast the degeneracy of d2FI with the non-degeneracy of d2FH .

Theorem 3.8 There is no value of q such that the matrix d2FH(q, β) is singular for all β in some interval.

Proof. If ∃q such that for each β in some interval I , d2FH is singular, then

(
d2IH(T |Y ) + βd2II(T ;Y )

)
W (β) = 000

for some NK×1 vector valued function W (β). Thus, 1
β
W (β) = −(d2IH(T |Y ))−1d2II(T ;Y )W (β), from

which it follows that W (β) is a 1
β

-eigenvector of the fixed matrix −(d2IH(T |Y ))−1d2II(T ;Y ) for every

β ∈ I . This is a contradiction, since −(d2IH(T |Y ))−1d2II(T ;Y ) has at most NK distinct eigenvalues. �

Lemma 3.9 At the phase transition (q, β) for system (1) we have dim ker d2LH ≥ 1.
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4. Bifurcations off the Uniform Solution q 1
N

In this section we want to illustrate the close analogy between Deterministic Annealing with

Euclidean distortion function and Information Distortion. Our goal is to find values of (q, β) for which

the problems (1) and (2) undergo phase transition. Given the joint probability distribution p(x, y), we

can find the values of β explicitly for q = 1/N in terms of eigenvalues of a certain stochastic matrix.

Secondary phase transitions that occur at values of q �= 1/N cannot be computed explicitly and we must

resort to numerical continuation along the branches of equilibria. An eigenvalue problem, implicitly

relating quantities q �= 1/N and β at which phase transition occurs, can still be obtained. This is

completely analogous to results of Rose [14] for a different class of optimization problems.

We start by deriving a general eigenvalue problem which computes the pair (q, β). We seek to

compute (q, β) for which the NK×NK matrix of second derivatives d2F has a nontrivial kernel. This is

a necessary condition for a bifurcation to occur. We first discuss the Hessian of (1), d2FH := d2FH(q, β),

evaluated at q and at some value of the annealing parameter β. Thus, we need to find pairs (q, β) where

d2FH has a nontrivial kernel. For that, we solve the system

d2FHw = (d2IH(T |Y ) + βd2II(X;T ))w = 0 (11)

for any nontrivial w ∈ RNK . We rewrite (11) as an eigenvalue problem,

(−d2IH(T |Y ))−1d2II(X;T )w =
1

β
w (12)

Since −II(Y ;T ) = IH(T |Y )− IH(T ), then, for the Hessian d2FI , we find pairs (q, β) for which

d2FIw = (d2IH(T |Y )− d2IH(T ) + βd2II(X;T ))w = 0

Multiplying by (−d2IH(T |Y ))−1 leads to a generalized eigenvalue problem

(−d2IH(T |Y ))−1d2II(X;T )w = (I − (−d2IH(T |Y ))−1d2IH(T ))
1

β
w (13)

Since d2IH(T |Y ) is diagonal, we can explicitly compute the inverse

[(−d2IH(T |Y ))−1](νk),(ηl) = δηνδlkln2
qνk
p(yk)

. (14)

Next, we compute the explicit forms of the NK ×NK matrices

U(q) := (−d2IH(T |Y ))−1d2II(X;T )

and

A(q) := (−d2IH(T |Y ))−1d2IH(T )

Since both of these matrices are block diagonal, with one block corresponding to a class of T , we will

compute the νth block of these matrices. Using (7)–(9) we get that the (l, k)th element of the νth block

of U(q) is

uν
lk :=

∑
i

p(xi, yk)p(xi, yl)

p(xi, ν)p(yl)
qνl − p(yk)

p(ν)
qνl
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and the (l, k)th element of the νth block of A(q) is

aνlk :=
p(yk)qνl
p(ν)

(15)

We observe that the matrix U(q) can be written as U(q) = Q(q) − A(q), where the (l, k)th element of

the νth block of matrix Q(q) is

rνlk :=
∑
i

p(xi, yk)p(xi, yl)qνl
p(xi, ν)p(yl)

(16)

Therefore the problems (12) and (13) become generalized eigenvalue problems,

(Q(q)− A(q))w = λw for system (1) (17)

and

(Q(q)− A(q))w = (I − A(q))λw for system (2) (18)

respectively.

In the eigenvalue problems (17) and (18), the matrices Q(q) and A(q) change with q. On the other

hand, we know that for all β ∈ [0, β̂) for some β̂ > 0, both problems (1) and (2) have a maximum at

the uniform solution q 1
N

[19], i.e., when q(t|y) = 1/N for all t and y. We now determine when this

extremum ceases to be the maximum.

We evaluate matrices Q(q) and A(q) at q 1
N

to get

rνlk =
∑
i

p(xi, yk)p(xi, yl)

p(xi)p(yl)
=

∑
i

p(yk|xi)p(xi|yl)

and

aνlk = p(yk)

Let 1 be a vector of ones in RN . We observe that

A(q 1
N
)1 = 1

and that the lth component of Q(q 1
N
)1

[Q(q 1
N
)1]l =

∑
k

∑
i

p(yk|xi)p(xi|yl)

=
∑
i

p(xi|yl)
∑
k

p(yk|xi)

=
∑
i

p(xi|yl)

= 1

Therefore, we obtain one particular eigenvalue-eigenvector pair (0,1) of the eigenvalue problems (17)

and (18):

Q(q 1
N
)− A(q 1

N
)1 = 0 and Q(q 1

N
)− A(q 1

N
)1 = 0 = (I − A(q 1

N
))1

Since the eigenvalue λ corresponds to 1/β, this solution indicates a bifurcation at β = ∞. We are

interested in finite values of β.
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Theorem 4.1 Let 1 = λ1 ≥ λ2 ≥ λ3 . . . λK be eigenvalues of a block of the matrix Q(q 1
N
).

Then the solution q 1
N

of the maximization problems (1) and (2) ceases to be a maximum at
β = 1

λ2
. The corresponding eigenvector to λ2 (and all λk for k ≥ 2) is perpendicular to the vector

p := (p(y1), p(y2), . . . , p(yn))
T .

Proof. We note first that the range of matrix A(q 1
N
) is the linear space spanned by vector 1, and its

kernel is the linear space

W := {w ∈ RN | 〈p,w〉 = 0}
where p = (p(y1), . . . , p(yn)).

We now check that the space W is invariant under the matrix Q(q 1
N
), which means that Q(q 1

N
)W ⊂

W . It will then follow that all eigenvectors of Q(q 1
N
) − A(q 1

N
), except 1, belong to W and are actually

eigenvectors of Q(q 1
N
) alone. So, assume w = (w1, . . . , wN) ∈ W , which means

∑
k

wkp(yk) = 0

We compute the l-th element [Q(q 1
N
)w]l of vector Q(q 1

N
)w:

[Q(q 1
N
)w]l =

∑
k

∑
i

p(yk|xi)p(xi|yl)wk

The vector Q(q 1
N
)w belongs to W if, and only if, its dot product with p is zero. We compute the

dot product

Q(q 1
N
)w · p =

∑
l,i,k

p(yk|xi)p(xi|yl)wkp(yl)

=
∑
i,k

p(yk|xi)wk

∑
l

p(xi|yl)p(yl)

=
∑
k

wk

∑
i

p(yk|xi)p(xi)

=
∑
k

wkp(yk)

The last expression is zero, since w ∈ W .

This shows that all other eigenvectors of Q(q 1
N
)−A(q 1

N
), except 1, belong to W and are eigenvectors

of Q(q 1
N
) alone. Since bifurcation values β are reciprocal to eigenvalues λi, the result follows. �

Corollary 4.2 The value β at which the first phase transition occurs does not depend on the number of
classes, N . It only depends on the properties of the matrix Q.

Observe that, since d2F has N identical blocks at q 1
N

and each block has a zero eigenvalue at

β = 1/λi, we get that

dimker d2FH ≥ N

at such a value of β. This is a consequence of the symmetry. For the Information Bottleneck function

FI , as a consequence of Lemma 3.4, each block has a zero eigenvalue for any value of β. At the instance
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of the first phase transition at (q 1
N
, β = 1/λi), each block of FI admits an additional zero eigenvalue,

and therefore

dimker d2FI ≥ 2N

Notice that the matrix Q(q 1
N
) is transpose of a stochastic matrix, since the sum of all elements in the

lth row, ∑
k

∑
i

p(yk|xi)p(xi|yl) = 1

Therefore all eigenvalues satisfy −1 ≤ λi ≤ 1. In particular, λ2 ≤ 1. This proves

Corollary 4.3 For both problems (1) and (2), the solution q 1
N

is stable for all β ∈ [0, 1].

Remark 4.4 The matrix Q := Q(q 1
N
) has an interesting structure and interpretation (see Figure 3). Let

G be a graph with vertices yk and let the oriented edge yl → yk have a weight
∑

i p(yk|xi)p(xi|yl). The

matrix Q is the transpose of a Markov transition matrix on the elements {yk}. The weight attached to

each edge is a sum of all the contributions along all the paths yl → xi → yk over all i. This structure is

key to associating the annealing problem to the normalized cut problem discussed in Section 6.

Figure 3. The graph G with vertices labelled by elements of Y . The oriented edges in G have

weights obtained from the weights in the graph of the joint distribution p(X, Y ). The weight

of the solid edge in G is computed by summing the edges on the left side of the picture.

yl

yk

X Y

y2

y4

yl

y2
y4

yk

G

5. Bifurcations in the General Case

To find the discrete values of the pairs (q, λ) that solve the eigenvalue problems (17) and (18) for a

general value of q, we transform the problems (17) and (18) one more time. Let C be a block diagonal

matrix of size NK × NK whose νth block is a K × K diagonal matrix, diag(p(yk)). Instead of the

eigenvalue problem (17), we consider

C(Q(q)− A(q))C−1w = λw (19)
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and instead of the problem (18), we consider

C(Q(q)− A(q))C−1w = C(I − A)C−1λw (20)

Clearly, these problems have the same eigenvalues as the problems (17) and (18) respectively, and the

eigenvectors are related via the diagonal matrix C.

Let

V (q) := CQ(q)C−1 and B(q) := CA(q)C−1

Then the (l, k)th element of the νth block of the NK ×NK matrix V (q) is

vνlk :=
∑
i

p(xi, yk)p(xi, yl)qνl
p(xi, ν)p(yk)

(21)

and for the NK ×NK matrix B, we have that

bνlk =
p(ν, yl)

p(ν)
(22)

Lemma 5.1 The matrix V (q) is stochastic for any value of q.

Proof. We sum the kth column of V (q) to get

∑
l

vlk =
∑
l

∑
i

p(xi, yk)p(xi, yl)qνl
p(xi, ν)p(yk)

=
∑
i

p(xi, yk)

p(xi, ν)p(yk)

∑
l

p(xi, yl)qνl

=
∑
i

p(xi|yk)p(yk)
p(xi, ν)p(yk)

∑
l

p(xi|yl)p(yl, ν)

=
∑
i

p(xi|yk)
p(xi, ν)

p(xi, ν)

=
∑
i

p(xi|yk)

= 1

�

Lemma 5.2 The νth block of the matrices in the eigenvalue problems (19) and (20) have solutions
{λ = 0, Pν = (p(y1, ν), . . . , p(yK , ν))

T} that correspond to the eigenvalue-eigenvector pair (1, Pν) of
the stochastic matrix V ν(q), the νth block of the NK × NK matrix V (q). All other eigenvalues are
eigenvalues of the problem

V ν(q)u = λu

and the corresponding eigenvectors lie in the space W ν = {u ∈ RK | ∑j[u]j = 0}.
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Proof. To show the first part of the Lemma, we multiply the lth row of νth block of V (q) − B(q) by

the vector Pν := (p(y1, ν), . . . , p(yK , ν))
T . We get

(V (q)− B(q))νPν =
∑
i,k

p(xi, yk)p(xi, yl)qνlp(yk, ν)

p(xi, ν)p(yk)
−

∑
k

p(yl)qνlp(yk, ν)

p(ν)

=
∑
i

p(xi, yl)qνl
p(xi|ν)p(ν)

∑
k

p(xi|yk)p(yk)p(yk, ν)
p(yk)

−p(yl)qνl
p(ν)

∑
k

p(yk, ν) (23)

=
∑
i

p(xi, yl)qνl
p(xi|ν) p(xi|ν)− p(yl)qνl

= qνl
∑
i

p(xi, yl)− p(yl)qνl = 0

= 0

Observe that the above computation shows that V ν(q)Pν = Pν , and so Pν is a 1-eigenvector of the

stochastic matrix V ν(q). This finishes the first part of the proof.

To prove the second case, we will show that W ν = kerBν(q) and that W ν is invariant under V ν(q).

To see that W ν = kerBν(q), it is enough to realize that every row of Bν(q) is a multiple of 111, the K × 1

vector of ones. In other words, bνkl from (22) is independent of k. Clearly, 111 is perpendicular to W ν .

Since the range of Bν(q) is one-dimensional, dimkerBν(q) = K − 1. It follows easily that

ker Bν(q) = W ν (24)

To finish the proof, we show that W is invariant under any stochastic matrix, and in particular to the

matrix V ν(q). Let S be a K ×K stochastic matrix. Then, if w ∈ W then

Sw = (s1,1[w]1 + . . .+ s1,K [w]K , s2,1[w]1 + . . .+ s2,K [w]K , . . . , sK,1[w]1 + . . .+ sK,K [w]K)
T .

Adding up the elements in vector Sw, we get∑
i

S[w]i = s1,1[w]1 + . . .+ s1,K [w]K + . . . sK,1[w]1 + . . .+ sK,K [w]K

= (s1,1 + . . .+ sK,1)[w]1 ++ . . .+ (s1,K + . . .+ sK,K)[w]K (25)

= [w]1 + [w]2 + . . .+ [w]K = 0,

and so Sw ∈ W . �

Theorem 5.3 Fix an arbitrary q ∈ Δ. Let 1 = λ1 = λ2 = ... = λN ≥ λN+1 ≥ λN+2 . . . ≥ λKN be a
union of eigenvalues of the stochastic matrices V ν(q) for all ν. Then the values of β for which d2FH(q)

has a nontrivial kernel (or where dim ker d2FI(q) ≥ d(q) + 1, see Lemma 3.5) are

1

λN+1

≤ 1

λN+2

≤ . . . ≤ 1

λKN
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Proof. The only difference between d2FH and d2FI is the N dimensional kernel of the latter matrix.

Therefore we will only consider d2FH in this proof.

As discussed above, d2FH(q) has a nontrivial kernel if and only if there is a block which has a

nontrivial kernel. We will use the previous Lemma to discuss such a block.

Note that λ = 0 corresponds to β = ∞, and so this scenario is unimportant for the bifurcation

structure of the problems (1) and (2).

Since W ν is a K−1 dimension invariant subspace of RK , there must be K−1 eigenvectors of V ν(q)

in W ν . The 0-eigenvector Pν is not in W ν , so all other eigenvectors not corresponding to λ = 0 must be

in W ν . Since V ν(q) is stochastic and λ = 0 corresponds to the eigenvalue 1 of V ν(q), then the β values

at which bifurcation occurs are reciprocals to the eigenvalues of V ν(q) for each ν. That means β ≤ 1.

Since there are N blocks, there will be at least N eigenvalues of d2FH(q) equal to 1. �

We used Theorem 5.3 to determine the β values where bifurcations occur from the uniform solution

branch (q 1
N
, β). The results are presented in Figure 4.

Figure 4. Theorem 5.3 can be used to determine the β values where bifurcations can occur

from (q 1
N
, β). A joint probability space on the random variables (X, Y ) was constructed

from a mixture of four Gaussians as in [2]. For this data set, and for either F = FH or

F = FI , we predict bifurcation from the branch (q 1
4
, β), at each of the 15 β values given in

this figure. By Theorem 4.1, q 1
4

ceases to be a solution at β ≈ 1.038706.
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6. Normalized Cuts and the Bifurcation off q 1
N

There is a vast literature devoted to problems of clustering. Many clustering problems can be

formulated in the language of graph theory. Objects which one desires to cluster are represented as

a set of nodes V of a graph G = (V,E), and the weights w associated to edges represent the degree of

similarity of two adjacent nodes. Finding a good clustering in such a formulation is equivalent to finding
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a cut in the graph G, which divides the set of nodes V into sets representing individual clusters. A cut in

the graph is simply a collection of edges that are removed from the graph.

A bi-partitioning of the graph is the problem in which a cut divides the graph into two parts, A and

B. We define

cut(A,B) =
∑

u∈A,v∈B
w(u, v) (26)

There are efficient algorithms to solve minimal cut problem, where one seeks a partition into sets A and

B with minimal cut value. When using the minimal cut as a basis for a clustering algorithm, one often

finds that the minimal cut is achieved by separating one node from the rest of the graph G. Including

more edges into the cut increases the cost, hence these singleton solutions will be favored.

To counteract that, Shi and Malik [21] studied image segmentation problems and proposed a

clustering based on minimizing the normalized cut (Ncut):

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(27)

where

assoc(A, V ) =
∑

u∈A,t∈V
w(a, t)

Shi and Malik [21] have shown that the problem of minimizing the normalized cut is NP-complete.

However, they proposed an approximate solution, which can be found efficiently. We briefly review their

argument: Let

d(i) =
∑
j

w(i, j)

be the total connection from node i to all other nodes. Let n = |V | be the number of nodes in the graph

and let D be an n × n diagonal matrix with values d(i) on the diagonal. Let W be an n × n symmetric

matrix with

W (i, j) = wij

Let x be an indicator vector with xi = 1 if node i is in A, and xi = −1 otherwise. Then Shi and

Malik [21] show that the minimal cut can be computed by minimizing the Rayleigh quotient over a

discrete set of admissible vectors y:

min
x

Ncut(x) = min
y

yT (D −W )y

yTDy
(28)

with components of y satisfying yi ∈ {1,−b} for some constant b, and under the additional constraint

yTD1 = 0 (29)

If one relaxes the first constraint yi ∈ {1,−b} and allows for a real valued vector y, then the problem

is computationally tractable. The computation of the real valued vector y is the basis of the Approximate
normalized cut. Once this vector is computed, vertices of G which correspond to positive entries of y

will be assigned to the set A, and vertices which correspond to negative entries of y will be assigned to

the set B. The relaxed problem is solved by the solution of a generalized eigenvalue problem,

(D −W )y = μDy (30)
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that satisfies the constraint (29). We repeat here an argument of Shi and Malik’s [21], which shows

that (28) with the constraint (29) is solved by the second smallest eigenvector of the problem (30). In

fact, the smallest eigenvalue of (30) is zero and corresponds to an eigenvector y0 = 1. The argument

starts with rewriting (30) as

D−1/2(D −W )D−1/2z = μz

and realizing that z0 = D1/21 is a 0-eigenvector of this equation. Further, since D−1/2(D−W )D−1/2 is

symmetric, all other eigenvectors are perpendicular to z0. Translating back to problem (30), one gets the

corresponding vector y0 and all other eigenvectors satisfying yTD1 = 0. We want to observe that this is

the only place when the symmetry of matrix W is used.

In Theorem 4.1 we showed that the bifurcating direction v of one block of d2F is the eigenvector

corresponding to the second largest eigenvalue of a stochastic matrix Q. In Remark 4.4 we interpreted

the matrix QT as a transition matrix of a Markov chain and we associated a directed graph G to this

Markov chain. The graph G had vertices labelled by the elements of Y and the weight of the edge

yl → yk was defined by

[Q]lk =
∑
x

p(yk|x)p(x|yl)

Note that these weights are not symmetric. We will symmetrize the graph G by multiplying the weight

matrix Q := Q(q 1
N
) by a diagonal matrix C = diag(p(yk)). The resulting graph H (Figure 5) has a

weight matrix CQ whose lkth element is

∑
x

p(yk|x)p(x|yl)p(yl) =
∑
x

p(yk, x)p(x, yl)

p(x)
(31)

We form an undirected graph H with vertices labelled by elements of Y and the edge weight wlk given

by (31).

Figure 5. Graph G on the left is an oriented graph. We obtain unoriented graph H on the

right by multiplying all edges emanating from yi by p(yi). In the figure all weighs along

solid edges are multiplied by p(y1) and all weights along the dashed edges are multiplied

by p(y2).

H
y2

y1

G

y2

y1

The following Theorem, relating the bifurcating direction v2 of matrix Q to the solution of the

Approximate Normalized Cut of graph H , was proved in [22]. We use the notation of Theorem 4.1
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Theorem 6.1 ([22]) The eigenvector v2, along which the solution q = 1/N bifurcates at β2 = 1/λ2,
induces the Approximate Normal Cut of the graph H .

This Theorem shows that the bifurcating eigenvector solves the Approximate Normal Cut for the

graph H , rather than the original graph G. This suggest an important inverse problem. Given a graph H

for which we want to compute the Approximate Normal Cut, can we construct the graph G (given by the

set of vertices, edges and weights), such that the bifurcating eigenvector would compute the Approximate

Normal Cut for H? This problem, which is beyond the scope of this paper, was addressed in [22], where

an annealing algorithm was designed to compute the Approximate Normal Cut using these techniques.

The reader is referred to the original paper for more details.

Remark 6.2 In [15] we show that the bifurcating direction for d2LH at the first phase transition from

q 1
N

is a vector of the form

u := ((N − 1)v,−v, . . . ,−v)T

where v := v2 is the second eigenvector of the block B1 (all the block are identical by symmetry). In

this expression v ∈ RN and there are K vectors of size K in vector u. Then the quantizer q shortly after

passing a bifurcation value of β has the form

q = q 1
N
+ εu (32)

Let us denote by A the set of yi such that the i-th component of v is negative, and by B the set of yi such

that the i-th component of v is positive. Note that A and B correspond to the Approximate Ncut for both

graphs G and H . If we verbalize q(t|y) as “the probability that y belongs to class t”, then (32) shows

that, after bifurcation

• the probability that y ∈ A belongs to class 1 is less than 1/N and the probability that it belongs to

classes 2, . . . , N is more then 1/N ;

• the probability that y ∈ B belongs to class 1 is more than 1/N and the probability that it belongs

to classes 2, . . . , N is less then 1/N .

This describes the correspondence between the first bifurcation and Approximate Ncut.

7. Conclusions

The main goal of this contribution was to show that information-based distortion annealing problems

have an interesting mathematical structure. The most interesting aspects of that mathematical structure

are driven by the symmetries present in the cost functions—their invariance to actions of the permutation

group SN , represented as relabeling of the reproduction classes. The second mathematical structure that

we used successfully was bifurcation theory, allowing us to identify and study the discrete points at

which the character of the solutions to the cost function changed. The combination of those two tools

allowed us to compute explicitly in Section 4 the value of the annealing parameter β at which the initial

maximum q 1
N

of (1) and (2) loses stability. We concluded that, for a fixed system p(X,Y ), this value

is the same for both problems, that it does not depend on the number of elements of the reproduction
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variable T and that it is always greater than 1. In Section 5 we further introduced an eigenvalue problem

which links together the critical values of β and q for phase transition off arbitrary intermediate solutions.

Even though the cost functions FI and FH have similar properties, they also differ in some important

aspects. We have shown that the function FI is degenerate since its constitutive functions II(Y ;T ) and

II(X;T ) are not strictly convex. That introduces additional invariances that are always preserved, which

makes phase transitions more difficult to detect, and post-transition directions more difficult to determine.

Specifically, in addition to actions by the group of symmetries, the cost function FI is invariant to

altering a solution by a vector in the ever-present kernel (identified in Corollary 3.4). In contrast, FH

is strictly convex except at points of phase transitions. The theory we developed allows us to identify

bifurcation directions, and determine their stability. Despite the presence of a high dimensional null

space at bifurcations, the symmetries restrict the allowed transitions to multiple 1-dimensional transition,

all related by group transformations.

Finally, in Section 6 we showed that the direction in which a phase transition occurs can be linked

to an Approximate Normalized Cut problem of graphs arising naturally from the data structure given

by p(X,Y ). This connection will allow future studies of information distortion methods to include

powerful approximate techniques developed in Graph Theory. It will also allow the transition of

the methods we developed here into tools that may be used to create new approximations for the

Approximate Normalized Cut problem.

Previously we have shown that for both problems the global optimum (β → ∞) is deterministic [3],

and that the combinatorial search for the solution is NP-complete [23]. The main problem that still

remains unresolved is whether the global optimum can always be achieved by the annealing process

from the uniform starting solution. Proving this may be equivalent to stating that NP = P , so it is

unlikely. However, the relatively straightforward annealing problem, when combined with the power of

equivariant bifurcation theory, may be a fruitful method for approaching NP -hard problems.
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