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Abstract: An achievable rate region for line networks with edge and node capacity
constraints and broadcast channels (BCs) is derived. The region is shown to be the capacity
region if the BCs are orthogonal, deterministic, physically degraded, or packet erasure with
one-bit feedback. If the BCs are physically degraded with additive Gaussian noise then
independent Gaussian inputs achieve capacity.
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1. Introduction

Consider a line network with edge and node capacity constraints as shown in Figure 1. “Supernode” u,
u = 1, 2, 3, 4, consists of two nodes ui, uo where the “i” represents “input” and “o” represents “output”.
More generally, for N supernodes V = {1, 2, . . . , N} we have 2N nodes

Vio = {1i, 1o, 2i, 2o, . . . , Ni,No} (1)

and 2(N − 1) +N directed edges

Eio = {(1o, 2i), (2o, 3i), . . . , ((N − 1)o,Ni}
∪ {(No, (N − 1)i), . . . , (3o, 2i), (2o, 1i}
∪ {(1i, 1o), (2i, 2o), . . . , (Ni,No)} (2)
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Every edge (a, b) is labeled with a capacity constraint C(a,b) and for simplicity we write C(ui,uo) as Cu.

Figure 1. A line network with edge and node capacity constraints.
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Let

u→ D(u) = {v(1), v(2), . . . , v(L)} (3)

denote a multicast traffic session, where u, v(1), . . . , v(L) are supernodes. The meaning is that a source
message is available at supernode u and is destined for supernodes in the set D(u). Since u takes on
N values and D(u) can take on 2N−1 − 1 values, there are up to N(2N−1 − 1) multicast sessions.
We associate sources with input nodes ui and sinks with output nodes uo. Such line networks are
special cases of discrete memoryless networks (DMNs) and we use the capacity definition from [1]
(Section III.D). The capacity region was recently established in [2]. A binary linear network code
achieves capacity and progressive d-separating edge-cut (PdE) bounds [3] provide the converse.

The goal of this work is to extend results from [2] to wireless line networks by using insights from
two-way relaying [4], broadcasting with cooperation [5], and broadcasting with side-information [6].
The model is shown in Figure 2 where the difference to Figure 1 is that node uo transmits over a
two-receiver broadcast channel (BC) P (yu−1, yu+1|xu) to nodes (u − 1)i and (u + 1)i (see [7]). The
channel outputs at node ui are

Yu−1,u = fu−1,u(Xu−1, Zu−1) (4)

Yu+1,u = fu+1,u(Xu+1, Zu+1) (5)

for some functions fu−1,u(·) and fu+1,u(·), and where the Zu, u = 1, 2, . . . , N , are statistically
independent. We permit the noise random variables Zu to be common to Yu,u−1 and Yu,u+1 for generality.
The edges (ui, uo) are the usual links with capacityCu. Such line networks are again special cases DMNs
and we use the capacity definition from [1] (Section III.D).

Figure 2. A line network with broadcasting and node capacity constraints.
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The paper is organized as follows. Section 2 reviews the capacity region for line networks derived
in [2]. Section 3 gives our main result: an achievable rate region for line networks with BCs. Section 4
shows that this region is the capacity region for orthogonal, deterministic, and physically degraded BCs,
and packet erasure BCs with feedback. We further show that for physically degraded Gaussian BCs
the best input distributions are Gaussian. Section 5 relates our work to recent work on relaying and
concludes the paper.

2. Review of Wireline Capacity

We review the main result from [2]. Let m(u → D(u)) and R(u → D(u)) denote the message bits
and rate, respectively, of traffic session u → D(u). We collect the bits going through supernode u into
the following 8 sets:

m
(u)
LR = {m(i→ D(i)) : 1 ≤ i ≤ u− 1,D(i) ∩ {u+ 1, . . . , N} 6= ∅, u /∈ D(i)} (6)

m
(u)
RL = {m(i→ D(i)) : u+ 1 ≤ i ≤ N,D(i) ∩ {1, . . . , u− 1} 6= ∅, u /∈ D(i)} (7)

mLRu = {m(i→ D(i)) : 1 ≤ i ≤ u− 1,D(i) ∩ {u+ 1, . . . , N} 6= ∅, u ∈ D(i)} (8)

mRLu = {m(i→ D(i)) : u+ 1 ≤ i ≤ N,D(i) ∩ {1, . . . , u− 1} 6= ∅, u ∈ D(i)} (9)

mu = {m(i→ D(i)) : 1 ≤ i ≤ u− 1,D(i) ∩ {u+ 1, . . . , N} = ∅, u ∈ D(i)}⋃
{m(i→ D(i)) : u+ 1 ≤ i ≤ N,D(i) ∩ {1, . . . , u− 1} = ∅, u ∈ D(i)} (10)

mu,LR = {m(u→ D(u)) : D(u) ∩ {1, . . . , u− 1} 6= ∅},D(u) ∩ {u+ 1, . . . , n} 6= ∅}} (11)

mu,R = {m(u→ D(u)) : D(u) ∩ {1, . . . , u− 1} = ∅},D(u) ∩ {u+ 1, . . . , n} 6= ∅}} (12)

mu,L = {m(u→ D(u)) : D(u) ∩ {1, . . . , u− 1} 6= ∅},D(u) ∩ {u+ 1, . . . , n} = ∅}} (13)

The idea is that

• m(u)
LR and m(u)

RL represent traffic flowing from left-to-right and right-to-left, respectively, through
supernode u without being required at supernode u;

• mLRu, mRLu represent traffic flowing from left-to-right and right-to-left, respectively, through
supernode u but required at supernode u also;

• mu represents traffic from the left and right, respectively, and destined for supernode u but not
destined for any nodes on the right and left (so this traffic “stops” at supernode u on its way from
the left or right);

• mu,LR, mu,R, and mu,L represent traffic originating at supernode u and destined for nodes on both
the left and right, right only, and left only, respectively.

The non-negative message rates are denoted R(u)
LR, R(u)

RL, RLRu, RRLu, Ru, Ru,LR, Ru,R, and Ru,L.
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Theorem 1 (Theorem 1 in [2]) The capacity region of a line network with supernodes u = 1, 2, . . . , N

is specified by the inequalities

max(R
(u)
LR, R

(u)
RL) +RLRu +RRLu +Ru +Ru,LR +Ru,R +Ru,L ≤ Cu (14)

R
(u)
RL +RRLu +Ru,LR +Ru,L ≤ Cu,u−1 (15)

R
(u)
LR +RLRu +Ru,LR +Ru,R ≤ Cu,u+1 (16)

Remark 1 The converse in [2] follows by PdE arguments [3] and achievability follows by using
rate-splitting, routing, copying, and “butterfly” binary linear network coding. We review both the PdE
bound and the coding method after Examples 1 and 2 below.

Remark 2 Inequalities (15) and (16) are classic cut bounds [8] (Section 14.10). If we have no node
constraints (Cu =∞) then (15) and (16) are routing bounds, so routing is optimal for this case (see [9]).

Example 1 Consider N = 3 for which we have 9 possible multicast sessions. The network is as in
Figure 1 but where the nodes 4i and 4o are removed, as well as the edges touching them. For supernode
u = 1 we collect 7 of these sessions into 2 sets as follows. (We abuse notation and write u → {v} as
u→ v.)

m1 : 2→ 1, 2→ {1, 3}, 3→ 1, 3→ {1, 2} (17)

m1,R : 1→ 2, 1→ 3, 1→ {2, 3} (18)

Sessions 2 → 3 and 3 → 2 are missing from (17) and (18) because they do not involve supernode 1.
Similarly, for supernode 2 we collect the 9 sessions into 8 sets:

m
(2)
LR : 1→ 3, m

(2)
RL : 3→ 1, mLR2 : 1→ {2, 3}, mRL2 : 3→ {1, 2} (19)

m2 : 1→ 2, 3→ 2, m2,LR : 2→ {1, 3}, m2,R : 2→ 3, m2,L : 2→ 1 (20)

Finally, for supernode 3 we have the 2 sets

m3 : 1→ 3, 1→ {2, 3}, 2→ 3, 2→ {1, 3} (21)

m3,L : 3→ 1, 3→ 2, 3→ {1, 2} (22)

The inequalities of Theorem 1 are

u = 1 :

{
R1 +R1,R ≤ C1

R1,R ≤ C1,2

(23)

u = 2 :


max(R

(2)
LR, R

(2)
RL) +RLR2 +RRL2 +R2 +R2,LR +R2,R +R2,L ≤ C2

R
(2)
RL +RRL2 +R2,LR +R2,L ≤ C2,1

R
(2)
LR +RLR2 +R2,LR +R2,R ≤ C2,3

(24)

u = 3 :

{
R3 +R3,L ≤ C3

R3,L ≤ C3,2

(25)
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We discuss the 7 inequalities (23)–(25) in more detail. Consider first the converse. We write a classic
cut as (S,Sc), where S is the set of nodes on one side of the cut and Sc is the set of nodes on the other
side of the cut. The inequalities with the edge capacities C1,2, C2,1, C2,3, C3,2 are classic cut bounds. For
example, the cut (S,Sc) = ({1i, 1o}, {2i, 2o, 3i, 3o}) gives the bound R1,R ≤ C1,2.

The inequalities with the “node” capacities C1, C2, C3 in (23)–(25) are not classic cut bounds. To see
this, consider the bound R1 +R1,R ≤ C1. A classic cut bound would require us to choose {1o, 2o, 3o} ⊆
Sc because m1 and m1,R generally include messages with positive rates for all supernodes. But then the
only way to isolate the edge (1i, 1o) is to choose S = {1i} which gives the too-weak bound R1,R ≤ C1.

We require a stronger method and use PdE bounds. We use the notation in [3]: Ed is the edge cut, Sd
is the set of sources whose sum-rate we bound, π(·) is the permutation that defines the order in which
we test the sources. Consider the edge cut Ed = {(1i, 1o)}, the source set Sd with the traffic sessions
(17) and (18), and any permutation π(·) for which the sessions (17) appear before the sessions (18).
After removing edge (1i, 1o) the PdE algorithm removes edge (1o, 2i) because node 1o has no incoming
edges. We next test if the sessions (17) are disconnected from one of their destinations; indeed they are
because one of these destinations is node 1o. The PdE algorithm now removes the remaining edges in the
graph because the nodes 2i, 2o, 3i, 3o are not the sources of messages in (18). As a result, the remaining
sessions (18) are disconnected from their destinations and the PdE bound gives R1 + R1,R ≤ C1. The
bound on C3 follows similarly. The bound on C2 is more subtle and we develop it in a more general
context below (see the text after Example 2).

For achievability, note that all 7 inequalities are routing bounds except for the bound on C2 in (24).
To approach this bound, we use a classic method and XOR the bits in sessions 1→ 3 and 3→ 1 before
sending them through edge (2i, 2o). More precisely, we combine m(1→ 3) and m(3→ 1) to form

m(1→ 3)⊕m(3→ 1) (26)

by which we mean the bits formed when the smaller-rate message bits are XORed with a corresponding
number of bits of the larger-rate message. The remaining larger-rate message bits are appended so that
m(1 → 3) ⊕ m(3 → 1) has rate max(R(1 → 3), R(3 → 1)). The message (26) is sent to node 2o

together with the remaining messages received at node 2i. We must thus satisfy the bound on C2 in (24).
For the routing bounds there are two subtleties. First, node 2o forwards to the left the uncoded bits

m(3→ {1, 2}), m(2→ {1, 3}), andm(2→ 1). However, it must treatm(1→ 3)⊕m(3→ 1) specially
because it cannot necessarily determine m(3 → 1) and m(1 → 3). But if R(1 → 3) > R(3 → 1) then
node 2o can remove the appended bits in (26) and communicate m(3→ 1) to node 1i at rate R(3→ 1),
rather than max(R(1 → 3), R(3 → 1)). If R(1 → 3) ≤ R(3 → 1) then no bits should be removed
and node 2o again communicates m(3 → 1) to node 1i at rate R(3 → 1). The bits node 2o forwards to
the right are treated similarly. In summary, the rates for messages m(3 → 1) and m(1 → 3) on edges
(2o, 1i) and (2o, 3i), respectively, are simply the classic routing rates.

The second routing subtlety is more straightforward: after node 1i receives the XORed bits, it can
recover m(3→ 1) by subtracting the bits m(1→ 3) that it knows. Finally, node 1i transmits m(3→ 1)

to node 1o. Node 3i operates similarly.
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Example 2 Consider Figure 1 with N = 4 for which there are 28 possible multicast sessions. For
supernode 1 we collect 19 of these sessions into 2 sets as follows.

m1 : 2→ 1, 2→ {1, 3}, 2→ {1, 4}, 2→ {1, 3, 4},
3→ 1, 3→ {1, 2}, 3→ {1, 4}, 3→ {1, 2, 4},
4→ 1, 4→ {1, 2}, 4→ {1, 3}, 4→ {1, 2, 3} (27)

m1,R : 1→ 2, 1→ 3, 1→ 4,

1→ {2, 3}, 1→ {2, 4}, 1→ {3, 4},
1→ {2, 3, 4} (28)

The 9 sessions not involving supernode 1 are missing. The rate bounds for supernode 1 are given by
(14)–(16) with u = 1. The messages and rate bounds for supernode 4 are similar.

Similarly, for supernode 2 we collect 26 of 28 sessions into 8 sets as follows.

m
(2)
LR : 1→ 3, 1→ 4, 1→ {3, 4} (29)

m
(2)
RL : 3→ 1, 3→ {1, 4}, 4→ 1, 4→ {1, 3} (30)

mLR2 : 1→ {2, 3}, 1→ {2, 4}, 1→ {2, 3, 4} (31)

mRL2 : 3→ {1, 2}, 3→ {1, 2, 4}, 4→ {1, 2}, 4→ {1, 2, 3} (32)

m2 : 1→ 2, 3→ 2, 3→ {2, 4}, 4→ 2, 4→ {2, 3} (33)

m2,LR : 2→ {1, 3}, 2→ {1, 4}, 2→ {1, 3, 4} (34)

m2,R : 2→ 3, 2→ 4, 2→ {3, 4} (35)

m2,L : 2→ 1 (36)

Sessions 3 → 4 and 4 → 3 are missing. The rate bounds for supernode 2 are given by (14)–(16) with
u = 2. The messages and rate bounds for supernode 3 are similar.

The converse and coding method for N > 3 are entirely similar to the case N = 3. However, we have
not yet developed the PdE bound for N = 3 and edge cut Ed = {(2i, 2o)}. We do this now but in the
more general context of N ≥ 2 and Ed = {(ui, uo)} for any u.

So consider the PdE bound with Ed = {(ui, uo)} and Sd having all the traffic sessions (6)–(13) except
for (7). We choose π(·) so that the sessions (8)–(10) appear first, the sessions (6) and (11)–(12) appear
second, and the sessions (13) appear last. The PdE algorithm performs the following steps.

• Remove (ui, uo) and then remove (uo, (u−1)i) and (uo, (u+1)i) because node uo has no incoming
edges. The resulting graph at supernode u is shown in Figure 3.

• Test if the sessions (8)–(10) (sessions mLRu, mRLu, mu) are disconnected from one of their
destinations, which they are because one of these destinations is node uo.

• Remove all edges to the right of supernode u because the nodes to the right are not the sources of
the remaining sessions (6), (11)–(13) (sessions m(u)

LR, mu,LR, mu,R, and mu,L).

• Test if the sessions (6), (11) and (12) (sessions m(u)
LR, mu,LR, mu,R) are disconnected from one of

their destinations, which they are because one of these destinations is to the right of supernode u.
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• Remove all edges to the left of supernode u because the nodes to the left are not the sources of the
sessions (13) (sessions mu,L).

• Test if the sessions (13) are disconnected from one of their destinations, which they are.

Since the algorithm completes successfully, the PdE bound (almost) gives inequality (14), but with R(u)
LR

replacing max(R
(u)
LR, R

(u)
RL). The other inequality, i.e., the one with R

(u)
RL replacing max(R

(u)
LR, R

(u)
RL)

follows by choosing Sd with all the traffic sessions (6)–(13) except for (6), and by modifying π(·) so
that the edges to the left of supernode u are removed first, and then the edges to the right.

Figure 3. Network at supernode u after the PdE bound has removed the edges (ui, uo),
(uo, (u − 1)i), and (uo, (u + 1)i). The session messages are tested in the order: mLRu,
mRLu, mu, then m(u)

LR, mu,LR, mu,R, and finally mu,L.

ui

uo

Cu+1

mu,L mu,R

mu,LR

m
(u)
LR

Cu+1,u

. . .. . .
Cu−1,u

. . .. . .

mRLumLRu

mu

Cu−1

3. Achievable Rates with Broadcast

We separate channel and network coding, which sounds simple enough. However, every BC receiver
has side information about some of the messages being transmitted, so we will need the methods of [6].
We further use the theory in [5] to describe our achievable rate region.

We begin by having each node ui combine m(u)
LR and m(u)

RL into the message

m
(u)
LR ⊕m

(u)
RL (37)

by which we mean the same operation as in (26): the smaller-rate message bits are XORed with a
corresponding number of bits of the larger-rate message. The remaining larger-rate message bits are
appended so that m(u)

LR ⊕m
(u)
RL has rate max(R

(u)
LR, R

(u)
RL). The message (37) is sent to node uo together

with the remaining messages received at node ui. As a result, we must satisfy the bound (14).
The bits arriving at node uo are (37) and (8)–(13). Bits mu are removed at node uo since this node

is their final destination. The bits (37) and (8)–(9) and (11) must be broadcast to both nodes (u − 1)i

and (u + 1)i. The remaining bits mu,R and mu,L are destined (or dedicated) for the right and left only,
respectively. However, we know from information theory for broadcast channels [7] that it can help to
broadcast parts of these dedicated messages to both receivers. So we split mu,R and mu,L into two parts
each, namely the respective (m′u,R,m

′′
u,R) and (m′u,L,m

′′
u,L) where m′u,R and m′u,L are broadcast to both
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nodes (u− 1)i and (u+ 1)i. The rates of m′u,R and m′′u,R are the respective R′u,R and R′′u,R, and similarly
for R′u,L and R′′u,L. We choose a joint distribution PSuTuWuXu(·) and generate a codebook of size

2
n
(
max

(
R

(u)
LR,R

(u)
RL

)
+RLRu+RRLu+Ru,LR+R′u,R+R′u,L

)

with length-n codewords

wu

(
m

(u)
LR ⊕m

(u)
RL,mLRu,mRLu,mu,LR,m

′
u,R,m

′
u,L

)
by choosing every letter of every codeword independently using PWu(·).

We next choose “binning” rates RTu and RSu . For every wu, we choose 2n(R′′u,R+RTu ) length-n
codewords tu by choosing the ith letter tu,i of tu via the distribution PTu|Wu(·|wu,i) where wu,i is the
ith letter of wu. We label tu with the arguments of wu, m′′u,R, and a “bin” index from {1, 2, . . . , 2nRTu}.
Similarly, for every wu we generate 2n(R′′u,L+RSu ) length-n codewords su generated via PSu|Wu(·) and
label su with the arguments of wu, m′′u,L, and a “bin” index from {1, 2, . . . , 2nRSu}.

Next, the encoder tries to find a pair of bin indices such that (wu, tu, su) is jointly typical according
to one’s favorite flavor of typicality. Using standard typicality arguments (see, e.g., [5]) a typical triple
exists with high probability if n is large and

RSu +RTu > I(Su;Tu|Wu) (38)

Once this triple is found, we transmit a length-n signal xu that is generated via
PXu|SuTuWu(·|su,i, tu,i, wu,i) for i = 1, 2, . . . , n.

The receivers use joint typicality decoders to recover their messages. They further use their knowledge
(or side-information) about some of the messages. The result is that decoding is reliable if n is large and
if the following rate constraints are satisfied (see [5,6]):

R′′u,L +RSu < I(Su;Yu,u−1|Wu) (39)

R
(u)
RL +RRLu +Ru,LR +R′u,R +Ru,L +RSu < I(SuWu;Yu,u−1) (40)

R′′u,R +RTu < I(Tu;Yu,u+1|Wu) (41)

R
(u)
LR +RLRu +Ru,LR +Ru,R +R′u,L +RTu < I(TuWu;Yu,u+1) (42)

Finally, we use Fourier–Motzkin elimination (see [5]) to remove RSu , RTu , R′u,L, R′u,R, R′′u,L, and
R′′u,R from the above expressions and obtain the following result.

Theorem 2 An achievable rate region for a line network with broadcast channels is given by the bounds

max(R
(u)
LR, R

(u)
RL) +RLRu +RRLu +Ru +Ru,LR +Ru,R +Ru,L ≤ Cu (43)

R
(u)
RL +RRLu +Ru,LR +Ru,L ≤ I(SuWu;Yu,u−1) (44)

R
(u)
LR +RLRu +Ru,LR +Ru,R ≤ I(TuWu;Yu,u+1) (45)

R
(u)
RL +RRLu +Ru,LR +Ru,R +Ru,L ≤ I(SuWu;Yu,u−1) + I(Tu;Yu,u+1|Wu)− I(Su;Tu|Wu) (46)

R
(u)
LR +RLRu +Ru,LR +Ru,R +Ru,L ≤ I(TuWu;Yu,u+1) + I(Su;Yu,u−1|Wu)− I(Su;Tu|Wu) (47)

R
(u)
LR +R

(u)
RL +RLRu +RRLu + 2Ru,LR +Ru,R +Ru,L

≤ I(SuWu;Yu,u−1) + I(TuWu;Yu,u+1)− I(Su;Tu|Wu) (48)
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for any choice of P (su, tu, wu, xu) and for all u, and where SuTuWu−Xu−Yu,u−1Yu,u+1 forms a Markov
chain for all u.

Remark 3 The bound (43) is the same as (14).

Remark 4 The bounds (44)–(48) are similar to the bounds of [5, Theorem 5]. A few rates are “missing”
because nodes (u−1)i and (u+1)i know (m

(u)
LR,mLRu) and (m

(u)
RL,mRLu), respectively, when decoding.

Example 3 Consider N = 3 for which we have the sessions (17)–(22). The inequalities of Theorem 2
are

u = 1 :

{
R1 +R1,R ≤ C1

R1,R ≤ I(T1;Y1,2|W1)− I(S1;T1|W1)
(49)

u = 2 :

{
max(R

(2)
LR, R

(2)
RL) +RLR2 +RRL2 +R2 +R2,LR +R2,R +R2,L ≤ C2

The five inequalities (44)–(48) with u = 2
(50)

u = 3 :

{
R3 +R3,L ≤ C3

R3,L ≤ I(S3;Y3,2|W3)− I(S3;T3|W3)
(51)

Observe that the channels from node 1o to node 2i, and node 3o to node 2i, are memoryless channels
with capacitiesC1,2 andC3,2, respectively. In fact, from (49) and (51) it is easy to see that we may as well
choose W1, S1, W3, and T3 as constants. Moreover, we should choose T1 = X1 and S3 = X3, and then
choose the input distributions so that I(X1;Y1,2) = C1,2 and I(X3;Y3,2) = C3,2. The inequalities
(44)–(48) at node u = 2 correspond to Marton’s region [10] (Section 7.8) for broadcast channels
including a common rate. We will see in the next section that if we specialize to the model of [2] then
only the bounds (43)–(45) remain at node 2 because the bounds (46)–(48) are redundant.

4. Special Channels

4.1. Orthogonal Channels

A BC PY1Y2|X is orthogonal if X = (X1, X2) and PY1Y2|X = PY1|X1PY2|X2 (see [8] (p. 419)). In fact,
if all BCs in Figure 2 are orthogonal then the model reduces to that of Figure 1 so hopefully we recover
Theorem 1 from Theorem 2.

Let Xu = (Xu,u−1, Xu,u+1) and Yu = (Yu−1,u, Yu+1,u). Suppose Cu,u−1 and Cu,u+1 are the respective
capacities of the memoryless channels PYu,u−1|Xu,u−1 and PYu,u+1|Xu,u+1 . We choose Su = Xu,u−1, Tu =

Xu,u+1, Wu = 0, and Xu,u−1, Xu,u+1 to be independent and capacity-achieving. Inequalities (44)–(48)
reduce to

R
(u)
RL +RRLu +Ru,LR +Ru,L ≤ Cu,u−1 (52)

R
(u)
LR +RLRu +Ru,LR +Ru,R ≤ Cu,u+1 (53)

The region of Theorem 1 is therefore achievable. The converse follows by using the same steps as in the
converse of Theorem 1.
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4.2. Deterministic Channels

A BC PY1Y2|X is deterministic if Y1 = f1(X) and Y2 = f2(X) for some functions f1(·) and f2(·). We
show that Theorem 2 gives the capacity region if all BCs in Figure 2 are deterministic.

Theorem 3 The capacity region of a line network with deterministic BCs is the union over all P (wu, xu),
u = 1, 2, . . . , N , of the (non-negative) rates satisfying

max(R
(u)
LR, R

(u)
RL) +RLRu +RRLu +Ru +Ru,LR +Ru,R +Ru,L ≤ Cu (54)

R
(u)
RL +RRLu +Ru,LR +Ru,L ≤ H(Yu,u−1) (55)

R
(u)
LR +RLRu +Ru,LR +Ru,R ≤ H(Yu,u+1) (56)

R
(u)
RL +RRLu +Ru,LR +Ru,R +Ru,L ≤ I(Wu;Yu,u−1) +H(Yu,u−1Yu,u+1|Wu) (57)

R
(u)
LR +RLRu +Ru,LR +Ru,R +Ru,L ≤ I(Wu;Yu,u+1) +H(Yu,u−1Yu,u+1|Wu) (58)

R
(u)
LR +R

(u)
RL +RLRu +RRLu + 2Ru,LR +Ru,R +Ru,L

≤ I(Wu;Yu,u−1) + I(Wu;Yu,u+1) +H(Yu,u−1Yu,u+1|Wu) (59)

Proof. Achievability follows by Theorem 2 with Su = Yu,u−1 and Tu = Yu,u+1. For the converse, the
constraint (54) is the PdE bound of [11] (Section III.A). The bounds (55) and (56) are cut bounds. For
the remaining steps, let Sc be the complement of S in V . We define

YS,T = {Yu,v : u ∈ S, v ∈ T } (60)

Let Mu,L be the random message corresponding to mu,L, and similarly for the other messages. The
messages are independent and have entropy equal to n times their rate, where n is the number of times
we use each BC. Let M(S) be the set of messages originating at supernodes in S . Let M c

u,L to be the set
of all network messages except for Mu,L, and similarly for other messages. We use the notation

Y i−1
u,u−1 = Yu,u−1,1, Yu,u−1,2, . . . , Yu,u−1,i−1

W̃u,i = (Mu,LMu,R)c Y i−1
u,u−1Y

i−1
u,u+1

For the following, let S = {u, u+ 1, . . . , N} and S̃ = {1, 2, . . . , u}. We bound

I
(
M

(u)
RLMRLuMu,LR;Y n

S,ScM(Sc)
)

= I
(
M

(u)
RLMRLuMu,LR;Y n

u,u−1|M(Sc)
)

(a)

≤ I
(
(Mu,LMu,R)c;Y n

u,u−1
)

=
n∑

i=1

I
(
(Mu,LMu,R)c;Yu,u−1,i|Y i−1

u,u−1
)

(a)

≤
n∑

i=1

I
(
W̃u,i;Yu,u−1,i

)
(b)
= nI

(
W̃u,Q;Yu,u−1,Q|Q

)
(c)

≤ nI (Wu;Yu,u−1) (61)
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where steps (a) follow by I(A;B|C) ≤ I(ACD;B), step (b) follows by defining Q to be a time-sharing
random variable that is uniform over 1, 2, . . . , n, and (c) follows by defining Yu,u−1 = Yu,u−1,Q and
Wu = W̃u,QQ. We similarly have

I
(
M

(u)
LRMLRuMu,LR;Y n

S̃,S̃cM(S̃c)
)
≤ nI (Wu;Yu,u+1) (62)

where Yu,u+1 = Yu,u+1,Q. Note that our choices for Yu,u−1 and Yu,u+1 are appropriate for the cut bounds
(55) and (56). Finally, we have

I
(
Mu,LMu,R;Y n

{u},V(Mu,LMu,R)c
)

= I
(
Mu,LMu,R;Y n

u,u−1Y
n
u,u+1|(Mu,LMu,R)c

)
=

n∑
i=1

H
(
Yu,u−1,iYu,u+1,i|W̃u,i

)
= nH (Yu,u−1Yu,u+1|Wu) (63)

Consider the bound (57). We have

n(R
(u)
RL +RRLu +Ru,LR +Ru,R +Ru,L)

(a)

≤ I
(
M

(u)
RLMRLuMu,LR;Y n

S,ScM(Sc)
)

+ I
(
Mu,LMu,R;Y n

{u},V(Mu,LMu,R)c
)

(b)

≤ nI (Wu;Yu,u−1) + nH (Yu,u−1Yu,u+1|Wu) (64)

where (a) follows by Fano’s inequality [8] (p. 38) when the block error probability tends to zero, and (b)

follows by (61) and (63). This proves (57), and (58) follows in the same way.
Finally, for (59) we use Fano’s inequality to bound

n(R
(u)
LR +R

(u)
RL +RLRu +RRLu + 2Ru,LR +Ru,R +Ru,L)

≤ I
(
M

(u)
RLMRLuMu,LR;Y n

S,ScM(Sc)
)

+ I
(
M

(u)
LRMLRuMu,LR;Y n

S̃,S̃cM(S̃c)
)

+ I
(
Mu,LMu,R;Y n

{u},V(Mu,LMu,R)c
)

≤ nI (Wu;Yu,u−1) + nI (Wu;Yu,u+1) + nH (Yu,u−1Yu,u+1|Wu) (65)

This proves Theorem 3.

4.3. Physically Degraded Channels

A BC PY1Y2|X is said to be physically degraded if either

X − Y1 − Y2 or X − Y2 − Y1

forms Markov chains (see [8] (p. 422)). For the following theorem, we suppose that X−Yu,u−1−Yu,u+1

forms a Markov chain for all u. However, the direction of degradation can be adjusted either way for any
supernode u.
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Theorem 4 The capacity region of a line network with physically degraded BCs is the union over all
P (wu, xu), u = 1, 2, . . . , N , of the (non-negative) rates satisfying

max(R
(u)
LR, R

(u)
RL) +RLRu +RRLu +Ru +Ru,LR +Ru,R +Ru,L ≤ Cu (66)

R
(u)
LR +RLRu +Ru,LR +Ru,R ≤ I(Wu;Yu,u+1) (67)

R
(u)
RL +RRLu +Ru,LR +Ru,R +Ru,L ≤ I(Xu;Yu,u−1) (68)

R
(u)
LR +RLRu +Ru,LR +Ru,R +Ru,L ≤ I(Wu;Yu,u+1) + I(Xu;Yu,u−1|Wu) (69)

and where Wu −Xu − Yu,u−1 − Yu,u+1 forms a Markov chain.

Proof. For achievability, Theorem 2 with Su = Xu and Tu = 0 gives the region specified by (66)–(69).
For the converse, the bound (66) is based on an extension of PdE bounds to mixed wireline/wireless
networks (see [11]). The bound (68) is a cut bound. The other two bounds follow by modifying the steps
of [12] as follows.

Consider W̃u,i = M c
u,LY

i−1
u,u−1Y

i−1
u,u+1 and let S̃ = {1, 2, . . . , u}. We then have

n(R
(u)
LR +RLRu +Ru,LR +Ru,R)

(a)

≤ I
(
M

(u)
LRMLRuMu,LRMu,R;Y n

S̃,S̃cM(S̃c)
)

= I
(
M

(u)
LRMLRuMu,LRMu,R;Y n

u,u+1|M(S̃c)
)

=
n∑

i=1

H
(
Yu,u+1,i|M(S̃c)Y i−1

u,u+1

)
−H

(
Yu,u+1,i|M (u)

LRMLRuMu,LRMu,RM(S̃c)Y i−1
u,u+1

)
≤

n∑
i=1

H (Yu,u+1,i)−H
(
Yu,u+1,i|W̃u,i

)
= nI

(
W̃u,Q;Yu,u+1,Q|Q

)
(b)

≤ nI (Wu;Yu,u+1) (70)

where (a) follows by Fano’s inequality and (b) follows by definingWu = W̃u,QQ and Yu,u+1 = Yu,u+1,Q.
We similarly define Xu = Xu,Q and Yu,u−1 = Yu,u−1,Q. Note that our choices for Xu and Yu,u−1 are
appropriate for the cut bound (68).

Finally, for (69) we use (70) to bound

n(R
(u)
LR +RLRu +Ru,LR +Ru,R +Ru,L) ≤ nI (Wu;Yu,u+1) + nI

(
Mu,L;Y n

{u},VM
c
u,L

)
= nI (Wu;Yu,u+1) + I

(
Mu,L;Y n

u,u−1Y
n
u,u+1|M c

u,L

)
(71)

and

I
(
Mu,L;Y n

u,u−1Y
n
u,u+1|M c

u,L

) (a)
=

n∑
i=1

I
(
Mu,LXu,i;Yu,u−1,iYu,u+1,i|W̃u,i

)
(b)
= nI

(
Xu,Q;Yu,u−1,QYu,u+1,Q|W̃u,QQ

)
= nI (Xu;Yu,u−1Yu,u+1|Wu)

(b)
= nI (Xu;Yu,u−1|Wu) (72)
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where (a) follows because Xu,i is defined by the messages at supernode u and the past channel outputs
at supernode u, and steps (b) follow because

Y i−1
u,u−1Y

i−1
u,u+1M(V)−Xu,i − Yu,u−1,i − Yu,u+1,i

forms a (long) Markov chain. Collecting the bounds (70)–(72) proves Theorem 4.

4.4. Physically Degraded Gaussian Channels

The additive white Gaussian noise (AWGN) and physically degraded BC has (see [13])

Yu,u−1 = Xu + Zu,u−1 (73)

Yu,u+1 = Yu,u−1 + Z ′u,u+1 (74)

whereXu is real with power constraint
∑n

i=1X
2
u,i ≤ nPu for all u, andZu,u−1 andZ ′u,u+1 are independent

Gaussian random variables with variances Nu,u−1 and N ′u,u+1, respectively (again, the direction of
degradation can be swapped for any u without changing the results conceptually).

The capacity region is given by Theorem 4 and it remains to optimize P (wu, xu). The variances of
Yu,u−1 and Yu,u+1 are at most Pu + Nu,u−1 and Pu + Nu,u−1 + N ′u,u+1, respectively, so the maximum
entropy theorem (see [8] (p. 234)) gives

I(Wu;Yu,u+1) ≤
1

2
log(2πe(Pu +Nu,u+1))− h(Yu,u+1|Wu) (75)

I(Xu;Yu,u−1) ≤
1

2
log(1 + Pu/Nu,u−1) (76)

I(Xu;Yu,u−1|Wu) ≤ h(Yu,u−1|Wu)− 1

2
log(2πeNu,u−1) (77)

where Nu,u+1 = Nu,u−1 + N ′u,u+1 and h(Y |W ) is the differential entropy of Y conditioned on W .
Observe that

1

2
log (2πeNu,u−1) ≤ h(Yu,u−1|Wu) ≤ 1

2
log (2πe(Pu +Nu,u−1)) (78)

so there is an αu, 0 ≤ αu ≤ 1, such that

1

2πe
e2h(Yu,u−1|Wu) = αuPu +Nu,u−1 (79)

Furthermore, a conditional version of the entropy power inequality (see [8] (p. 496)) gives

h(Yu,u+1|Wu) = h(Yu,u−1 + Z ′u,u+1|Wu) ≥ 1

2
log
(
e2h(Yu,u−1|Wu) + 2πeN ′u,u+1

)
(80)

Collecting the bounds, and inserting (79) and (80) into (77), we have

I(Wu;Yu,u+1) ≤
1

2
log

(
1 +

(1− αu)Pu

αuPu +Nu,u+1

)
(81)

I(Xu;Yu,u−1) ≤
1

2
log(1 + Pu/Nu,u−1) (82)

I(Xu;Yu,u−1|Wu) ≤ 1

2
log(1 + αuPu/Nu,u−1). (83)
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But we achieve equality in (81)–(83) by choosing

Xu = Vu +Wu (84)

where Vu and Wu are independent Gaussian random variables with zero-mean and variances αuPu and
(1 − αu)Pu, respectively. The optimal P (wu, xu) is therefore zero-mean Gaussian, and the capacity
region is given by inserting (81)–(83) with equality into (67)–(69), and taking the union over the rates
permitted by varying αu.

4.5. Packet Erasure Channels with Feedback

A BC PY1Y2|X is called packet erasure with feedback if X is an L-bit vector and

P (y1, y2|x) =


(1− p1) · (1− p2), y1 = y2 = x

p1 · (1− p2), y1 = ∆, y2 = x

(1− p1) · p2, y1 = x, y2 = ∆

p1 · p2, y1 = y2 = ∆

(85)

and all supernodes receive one bit of feedback from each receiver telling them whether the receiver has
seen an erasure or not.

Suppose we give receiver 1 both Y1 and Y2, which means that the channel is physically degraded. Let
R1 be the resulting capacity region. Similarly, letR2 be the capacity region if we (instead) give receiver
2 both Y1 and Y2. The authors of [14] (see also [15]) showed that the capacity region of the original BC
isR1 ∩R2. The following theorem slightly generalizes the main result of [14] and gives the capacity of
line networks with broadcast erasure channels and feedback. The input Xu has Lu bits and we denote
the erasure probabilities for Yu,u−1 and Yu,u+1 as pu,u−1 and pu,u+1, respectively.

Theorem 5 The capacity region of a line network with broadcast erasure channels and feedback is the
union of the (non-negative) rates satisfying (14) and

R
(u)
RL +RRLu +Ru,LR +Ru,L

1− pu,u−1
+

Ru,R

1− pu,u−1pu,u+1

≤ Lu (86)

R
(u)
LR +RLRu +Ru,LR +Ru,R

1− pu,u+1

+
Ru,L

1− pu,u−1pu,u+1

≤ Lu (87)

Proof. (Sketch) Achievability follows by using the network codes of [14] and [2]. For the converse, the
constraint (14) again follows from PdE bounds. For the constraints (86) and (87), we make every BC
physically degraded by giving one of the receivers both channel outputs (see [14,16]). Theorem 4 gives
a collection of outer bounds for each degradation choice. Finally, we optimize the coding to obtain (86)
and (87).

5. Discussion

The capacity results in Sections 4.1–4.5 imply that decode-forward (DF) relaying suffices,
i.e., amplify-forward (AF) and compress-forward (CF) do not improve rates (see also [19] ([Chapter 4])).
Quantize-map-forward [17] and noisy network coding [18] also do not improve on DF. In fact, the
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non-DF methods are suboptimal in general because they do not use superposition coding or binning to
treat broadcasting. However, we have found capacity only for BCs that are orthogonal, deterministic,
physically degraded, or packet erasure with one-bit feedback. AF and CF strategies are useful for other
classes of BCs, as shown in [20] and many further papers.

Finally, our model applies to wireless problems where every node has a dedicated tone and/or time
slot for transmission. If nodes use the same tone at the same time, then one must consider the effects of
interference. For example, scheduling transmissions with half-duplex protocols is an interesting problem
for further study.
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