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Abstract: This paper presents a new design of open parallel microchannels embedded 
within a permeable continuous moving surface due to reduction of exergy losses in 
magnetohydrodynamic (MHD) flow at a prescribed surface temperature (PST). The 
entropy generation number is formulated by an integral of the local rate of entropy 
generation along the width of the surface based on an equal number of microchannels and 
no-slip gaps interspersed between those microchannels. The velocity, the temperature, the 
velocity gradient and the temperature gradient adjacent to the wall are substituted into this 
equation resulting from the momentum and energy equations obtained numerically by an 
explicit Runge-Kutta (4, 5) formula, the Dormand-Prince pair and shooting method. The 
entropy generation number, as well as the Bejan number, for various values of the involved 
parameters of the problem are also presented and discussed in detail.  

Keywords: MHD; Joule heating; viscous dissipation; suction/injection; Entropy Based 
Surface Micro-Profiling (EBSM); embedded open parallel microchannels 
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1. Introduction 

The magnetohydrodynamic (MHD) flow and heat transfer in the presence of “slip” is an important 
topic in many engineering branches, especially in field of microelectromechanical systems (MEMS), 
such as micro MHD pumps [1], rapid mixing of biological fluids in biological processes [2,3], 
biological transportation, and drug delivery [4,5]. The magnetic field applied by a generating Lorenz 
force can control the electrically conducting fluid flow in a mixing process. However, as most of the 
applications of the biological transportation via an applied magnetic field are in the micro/nano 
systems [6–8], it is necessary to consider the influence of the velocity slip at the boundaries. 
Permeability is another effect that can act as transpiration of the boundaries in a micro system, which 
is an important aspect of micromixing of biological samples. In this process, suction is exerted in order 
to remove reactants, whereas injection is applied to add reactants in the process [2]. Therefore, many 
researchers have studied the boundary layer problems in the presence of “slip” [9–23]. Recently, 
Yazdi et al. [24] have investigated MHD liquid flow over nonlinear permeable stretching surface in the 
presence of the slip boundary condition and high-order chemical reactions.  

Most of the methods developed for transporting particles and cells—such as pressure-driven flow, 
electrokinetics and electroosmosis methods—are usually applicable only for closed microchannels, 
with transportation in open microfluidic systems rarely being reported. Recently, Wu et al. [25] have 
evaluated a new method of transportation for particles, cells, and other microorganisms by rectified ac 
electro-osmotic flows in open microchannels. Their experimental study demonstrates that both driving 
electric field and gate potential can increase the particle velocity efficiently. Thus, the authors suggest 
using open microchannels instead of usual closed microchannels, since the former are open to the 
ambient air at the top, which can provide advantages, such as maintaining the physiological conditions 
for normal cell growth and introducing accurate amounts of chemical and biological materials [25]. 
Consequently, the need to combine MHD flow with open microchannels led to a new design of fluid 
transportation in micro systems.  

The entropy based surface micro-profiling (EBSM) technique was developed for the first time by 
Naterer [26], who proposed surface microprofiling to reduce energy dissipation in convective heat 
transfer. This method includes local slip-flow conditions within the embedded open microchannels and 
thus tends to drag reduction and lower exergy losses along the surface. Naterer’s results [27] imply that 
embedded surface microchannels can successfully reduce loss of available energy in convective heat 
transfer problems of viscous gas flow over a flat surface. In another study, Naterer [28] developed this 
technique to converging surface microchannels for minimized friction and thermal irreversibilities. 
The results of this work suggest that the embedded converging surface microchannels have the 
potential to reduce entropy generation in boundary layer flow with convective heat transfer. Naterer’s 
results were obtained for gas-flow case based on EBSM to optimize open microchannels. However, in 
a subsequent work, Naterer et al. [29] have applied this method to the special application of aircraft 
intake de-icing, thus developing a new surface microprofiling technique for reducing exergy losses and 
controlling near-wall flow processes, particularly for anti-icing of a helicopter engine bay surface. 
Similarly, Yazdi et al. [30] have studied liquid fluid flow past embedded open parallel microchannels 
within the surface using EBSM. They show that EBSM can successfully reduce exergy losses in the 
liquid-flow problem. 



Entropy 2012, 14  
 

3

There have been many theoretical models developed specifically for entropy generation analysis of 
MHD boundary layer flow [31–37]. However, to the best of our knowledge, no investigation has been 
made yet to not only analyze the entropy generation of the slip MHD flow and heat transfer over 
permeable continuous moving surface but also to reach a new design of MHD flow over embedded 
surface microchannels. Therefore, the objective of this study is to reduce exergy losses of an 
electrically conducting fluid flow based on open parallel microchannels embedded within permeable 
continuous moving surface in the presence of applied magnetic field.  

2. Problem Formulation 

The flow configuration is illustrated in Figure 1. The 2-D, steady, laminar electrically conducting 
fluid flow over permeable continuous moving surface with embedded open parallel microchannels in 
the presence of applied magnetic field is considered. It is assumed that the width of the surface consists 
of a specific number of open microchannels and the base sections (m'), each of which has its own 
width. Moreover, a no-slip condition is applied between open microchannels, whereas a slip condition 
is applied to the open parallel microchannels. Thus, this arrangement requires simultaneous modeling 
of both slip-flow and no-slip conditions at the wall.  

Figure 1. Schematic diagram of open parallel microchannels embedded within a surface. 

 
 
The fluid is a continuum, incompressible and Newtonian. In addition, as in an electrical insulator, 

the flow of electric current would give rise to the induced magnetic field, in this work, we have taken 
the fluid to be electrically conducting. Consequently, only the applied magnetic field plays a role and 
gives rise to the magnetic force [38]. Thus, the magnetic Reynolds number is assumed small and the 
induced magnetic field is neglected. We consider a transverse magnetic field with strength B(x) which 
is applied in the vertical direction, given by the special form: 
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The x-coordinate is determined along the surface, whilst the z- and y-coordinates are measured 
perpendicular to the x direction. Both viscous dissipation and Joule heating terms are considered in the 
energy equation. The corresponding velocity components in the x and y directions are u and v, 
respectively. The velocity of the continuous moving surface is given by: 

n
w xuxu 0)( �  (2)

where u0 is a constant rate parameter of the surface velocity and n is a power index referring to the 
surface velocity parameter. The surface is at prescribed surface temperature (PST), Tw given as:  

)(,0 'k
w AxTTTy ���� �  (3) 

where A is a constant and k� is the surface temperature parameter at the prescribed surface temperature 
(PST) boundary condition. The steady two-dimensional MHD boundary layer equations for this 
problem, using the standard notation [24], are: 
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The last two terms in the above energy Equation (6) are viscous dissipation and Joule heating 
effects, with the latter already incorporated in the previous work done by Yazdi et al. [24]. The 
associated boundary conditions are: 
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where � is the fluid density, � is thermal diffusivity, � is the electrical conductivity of the fluid, vw is 
the suction/ injection and us is the velocity slip, assumed to be proportional to the local wall shear 
stress as follows:  

ws y
ulu
�
�

�  (8)

where l is slip length, which is for Newtonian fluids usually expressed as a direct proportionality 
between the slip velocity and the shear rate at a wall. The slip length is defined as an extrapolated 
distance relative to the wall where the tangential velocity component vanishes [39,40]. As the no-slip 
boundary condition is only valid if the fluid flow adjacent to the wall is in thermodynamic equilibrium, 
high frequency of collisions between the fluid and the solid wall is required. However, as in 
small-scale systems, the collision frequency is typically not high enough to guarantee thermodynamic 
equilibrium, a certain degree of tangential velocity slip must be allowed [41]. To design a 
micropatterned surface in the presence of applied magnetic field, this slip boundary condition should 
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be considered inside the open microchannels. Empirical evidence suggests that, for water flowing 
through a microchannel, the surface of which is coated with a 2.3 nm thick monolayer of hydrophobic 
octadecyltrichlorosilane, an apparent velocity slip is measured just above the solid surface. This 
velocity is approximately 10% of the free-stream velocity and yields a slip length of approximately 
1 mm [42]. Thus, the slip boundary condition should be considered at the open parallel microchannels. 
Consequently, the fundamental equations of the boundary layer are transformed to ordinary differential 
ones that are locally valid. Thus, the mathematical analysis of the problem can be simplified by 
introducing the following dimensionless coordinates [24]: 
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Here, it is useful to introduce a slip coefficient using similarity variables: 

)0(1)0( fKf �����  (10)

where K is the slip coefficient defined for liquids by: 
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The fundamental partial differential Equations (5) and (6) are transformed to ordinary differential 
equations by substituting relevant variables (9) into Equations (5) and (6) as follows: 
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For these equations, the associated boundary conditions are: 
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where fw, Pr, Ec, and M show the suction/injection parameter, the Prandtl number, the Eckert number 
and the magnetic parameter respectively: 
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where fw < 0 for mass injection and fw > 0 in the presence of the suction along the surface. Based on the 
previous work [24], fwp and Kp are introduced as suction/injection and slip coefficient, respectively, 
based on Pnx, which are fully independent from x and n: 
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where Pnx is defined as: 
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The one-way coupled Equations (12) and (13) are solved numerically by using the explicit 
Runge-Kutta (4, 5) formula, the Dormand-Prince pair and shooting method, subject to the boundary 
conditions (14). The results of the numerical solutions to the problem are subsequently substituted into 
the entropy generation analysis. It is shown that the wall shear stress and the local Nusselt number 
exhibit a dependence on the involved parameters of the problem as follows:  
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3. Entropy Generation Analysis 

Entropy generation related to the MHD flow over a permeable continuous moving surface with 
embedded open microchannels at prescribed surface temperature (PST) is considered. Heat transfer 
(ST���), friction (SF���), and magnetic irreversibilities (SM���) are included within the local volumetric rate 
of entropy generation. The rate of entropy generation will be obtained based on the previous solutions 
of the boundary layer for fluid velocity and temperature. According to Woods [43] and Aïboud [32], 
the local volumetric rate of entropy generation in the presence of a magnetic field is given by: 
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In order to include the effect of the embedded open parallel microchannels within the surface, 
integration over the width of the surface is applied over the local rate of entropy generation adjacent to 
the wall. The cross-stream (z) dependence arises from interspersed no-slip (subscript ns) and slip-flow 
(subscript s) solutions of the boundary layer equations. Therefore, the integration over the width of the 
surface from 0 � z � W consists of m' separate integrations over each microchannel surface width, 
0 � z � Ws + 2d, as well as the remaining no-slip portion of the plate, which is interspersed between 
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these microchannels and covers a range of 0 � z � W � m'Ws (see Figure 1). The previous correlations 
for the convection coefficient based on the velocity, temperature, velocity gradient and the temperature 
gradient adjacent to the wall are substituted into this equation. Thus, by performing the integrations, 
and assuming an equal number of microchannels and no-slip gaps interspersed between those 
microchannels, it can be shown that: 

MFTg SSSS �����������  (22) 
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Clearly, the local rate of entropy generation adjacent to the wall has been obtained considering 
� = 0. The local rate of entropy generation over microchannel surface in the presence of the magnetic 
field has thus incorporated three sources of entropy generation. The first term on the right-hand side of 
the equation is the local entropy generation due to heat transfer across a finite temperature difference, 
the second term is the local entropy generation due to fluid friction irreversibilities, and the third term 
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is the irreversibilities due to the effect of the magnetic field. For completeness, the dimensionless local 
entropy generation rate is defined as a ratio of the local entropy generation rate and a characteristic 
entropy generation rate. Here, the characteristic entropy generation rate, based on the width of the 
surface, is defined as:  
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where L is characteristic length scale. Consequently, the entropy generation number in terms of non-
dimensional geometrical parameters (� and 	) is expressed as: 

#
#
#
#
#

 

##
#
#
#

!

"

�����
*

���
*

�

�������


�

�
�
� �

*
�����



�

�
�
� �

*
�

������


�

�
�
� �

�

���


�

�
�
� �

�����
�

��
�

�
��

��
�

]21)[0(Re])[0(Re

]21)[0(
2

1Re])[0(
2

1Re

]21)[0(
2

1Re

])[0(
2

1Re]21)[0(])[0(

2
2

2
2

2

2

2
2

2
2

2
2

2
2

2
2

2
2

2

2

0

+,+

+,+

+,�

+�+,�+�

mmf
X

MBrmf
X

MBr

mmfn
X

Brmfn
X

Br

mmn
X

mn
X

mm
X
km

X
k

S
S

N

nss

nss

ns

snss

g

g
s  (27) 

where X, Re, Br and � are, respectively, the non-dimensional surface length, the Reynolds number 
(based on the surface velocity), the Brinkman number (based on the surface velocity) and the 
dimensionless temperature difference. These parameters are given by the following relationships:  
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In addition, the above non-dimensional geometric parameters are defined as:  
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When the present equation of the entropy generation number (27) is compared with the entropy 
generation equation of Aïboud [32] when m' = 0 and n = 1, it is evident that the former can be applied 
to a linear surface velocity problem (n = 1) without open parallel microchannels (m' = 0). Moreover, a 
laminar boundary layer flow is also considered in this research. It should also be noted that, although 
the entropy generation number is a non-dimensional parameter, the surface length should be selected in 
order to ensure that the Reynolds number remains below the point of transition to turbulence at 
ReL = 5 × 105, as in contrast to the external convective heat transfer problem, the critical Reynolds 
number within an open/closed microchannel is 1800 [26,44]. This Reynolds number is based on the 
microchannel depth or hydraulic diameter (rather than plate length), which remains below the 
transition point of 1800 in this problem. In this study, the Bejan number is defined as the ratio of heat 
transfer irreversibility to total irreversibility due to heat transfer, fluid friction and magnetic field for 
the laminar MHD boundary layer flow. Mathematically, Bejan number is given as [45,46]:  
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where � is the irreversibility distribution ratio which is defined as: 

ilityirreversibfer Heat trans
ilityirreversib field Magneticilityirreversibfriction  Fluid �
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As the Bejan number ranges from 0 to 1, it approaches zero when the entropy generation due to the 
combined effects of fluid friction and magnetic field is dominant. Similarly, Be > 0.5 indicates that the 
irreversibility due to heat transfer dominates, with Be = 1 as the limit at which the irreversibility is 
solely due to heat transfer [47]. Consequently, 0 � � � 1 indicates that the irreversibility is primarily 
due to the heat transfer irreversibility, whereas for � > 1 it is due to the sum of the fluid friction and 
magnetic field irreversibility.  

4. Results and Discussion  

Table 1 shows a comparison between the results of the present work and that of the previous works 
for the special case of no Joule heating effect, clearly indicating an excellent agreement. The 
combination effect of the slip coefficient Kp, the magnetic parameter M and surface velocity parameter 
n, on the velocity gradient adjacent to the wall has been illustrated in Figure 2, which confirms the 
accuracy of our method by comparing the momentum equation results presented here with our 
previous work [24]. The results illustrate that increasing values of the magnetic parameter M and n 
tend to increase the wall shear stress, whereas the wall shear stress decreases in the presence of a high 
slip coefficient. Figure 3 illustrates the combined effect of the Joule heating, slip coefficient Kp and the 
magnetic parameter M on the heat transfer rate |
'(0)| when fwp = 0.2, n = 0.5, k� = 0.02, Pr = 5, and 
Ec = 0.1. The results demonstrate that the heat transfer rate is decreased by Joule heating. Moreover, 
the Joule heating effect is much more significant for higher values of magnetic parameters. Finally, 
increasing both the slip coefficient and magnetic parameter reduces the heat transfer rate. 

Table 1. Comparison of the wall temperature gradient |
'(0)| between the present results 
and those obtained previously for the special case without Joule heating effect. 

n k' Pr
Ali [48] 
(1994)

Ishak [49] (2009)
Hayat [18] 

(2010)
Yazdi [24] 

(2011)
Present Results

    Finite difference 
method 

Homotopy 
analysis method 

The Dormand-
Prince pair and 

shooting method 

The Dormand-
Prince pair and 

shooting method
     |
'(0)|  |
'(0)| 

1 0 0.72 0.4617   0.4631 0.4631 
  1 0.5801   0.5818 0.5818 
  3 1.1599   1.1647 1.1647 

1 1 0.72  0.8086 0.8086 0.8086 0.8086 
  1  1 1 1 1 
  3  1.9237 1.9236 1.9238 1.9238 



Entropy 2012, 14  
 

10

Figure 2. The effects of the surface velocity parameter n, the slip coefficient Kp and the 
magnetic parameter M on f''(0) when fwp = 0.2. 

 

Figure 3. Variation in |
'(0)| as a function of Kp for various values of M when fwp = 0.2, 
n = 0.5, k� = 0.02, Pr = 5, Ec = 0.1. 

 

The following section presents the results for entropy generation analysis of MHD flow over open 
parallel microchannels embedded within a permeable continuous moving surface in the presence of 
Joule heating and viscous dissipation. The combination effect of the magnetic parameter and slip 
coefficient on the entropy generation number is illustrated in Figures 4 and 5 for different values of the 
dimensionless group parameter, Br��1 = 0.1 and Br��1 = 1, respectively. This design of embedded 
open parallel microchannels yields an interesting result with respect to reduction of the exergy losses 
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along the surface structure. As mentioned before, the slip inside the open microchannels must be 
considered, particularly in cases where a hydrophobic microchannel surface exists. The current results 
demonstrate that the velocity slip at open parallel microchannels can decrease the entropy generation 
number adequately. However, the effect of the slip coefficient is not dependent on Br��1. Therefore, it 
can reduce both friction and heat transfer irreversibilities significantly due to its ability to decreasing 
both the wall shear stress and the heat transfer rate over a continuous moving surface. This result 
indicates that by means of open parallel microchannels embedded within the surface, the exergy losses 
decrease efficiently. As explained before, the entropy generation number is comprised of friction, heat 
transfer and magnetic irreversibilities. However, although the magnetic parameter reduces heat transfer 
irreversibilities by decreasing the heat transfer rate, it shows an opposite effect on both friction and 
magnetic irreversibilities. Thus, the magnetic parameter can decrease the total irreversibilities (Ns) 
where the values of the heat transfer irreversibilities are much more significant compared to the 
friction irreversibilities, which occurs at low Br��1 (see Figure 4). The Brinkman number (Br) is a 
dimensionless number related to heat conduction from the surface to flowing viscous fluid. A 
reduction in the dimensionless group parameter Br��1 tends to simultaneously decrease both friction 
and magnetic irreversibilities. Consequently, magnetic parameter can decrease the entropy generation 
number at low Br��1. The effect of the magnetic parameter at high Br��1 is shown in Figure 5. It 
indicates that, although the magnetic parameter tends to decrease heat transfer irreversibilities, it is not 
sufficient to reduce the total irreversibilities along the surface structure. As a result, the remaining 
significant friction irreversibilities are still capable of increasing the total entropy generation along the 
open parallel microchannels embedded within the surface.  

Figure 4. (a) Friction irreversibilities; (b) Heat transfer irreversibilities; (c) Magnetic 
irreversibilities; and (d) Entropy generation number as a function of Kp for various values 
of magnetic parameter M when fwp = 0.2, n = 0.5, X = 0.3, Re = 10, Pr =5, Ec = 0.1, 
Br��1 = 0.1, k� = 0.02, m� = 100, 	 = 0.00001, � = 0.0001. 
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Figure 4. Cont. 
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Figure 5. (a) Friction irreversibilities; (b) Heat transfer irreversibilities; (c) Magnetic 
irreversibilities; and (d) Entropy generation number as a function of Kp for various values 
of magnetic parameter M when fwp = 0.2, n = 0.5, X = 0.3, Re = 10, Pr = 5, Ec =0.1, 
Br��1 = 1, k� = 0.02, m� = 100, 	 = 0.00001, � = 0.0001. 
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The combined effect of the slip coefficient and magnetic parameter on the Bejan number is 
illustrated in Figure 6. In the following figures depicting Bejan number, it is observed that the Bejan 
number changes the trend, after reaching the maximum corresponding to a specific slip coefficient. It 
is interesting to note that, at the points to the left of the maximum, the slope of the tangent is positive, 
indicating that an increase in the Kp tends to increase the Bejan number due to a reduction in the 
irreversibility distribution ratio �. Similarly, at the points to the right, the slope is negative, i.e., higher 
Kp values yield lower Bejan number. Further, it is noted that a decrease in both M and Br��1 

accompanies a rise in the Bejan number.  

Figure 6. Bejan number as a function of Kp for various values of magnetic parameter 
(a) M = 0.0, Br��1 = 0.1; (b) M = 0.3, Br��1 = 0.1; (c) M = 0.0, Br��1 = 1; and 
(d) M = 0.3, Br��1 = 0.1 when fwp = 0.2, n = 0.5, X = 0.3, Re = 10, Pr = 5, Ec = 0.1, 
k� = 0.02, m� = 100, 	 = 0.00001, � = 0.0001. 
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dominant at low Br��1. The influence of the Reynolds number on the entropy generation number and 
Bejan number is illustrated in Figure 9. It is obvious that the increase in Reynolds number increases all 
three irreversibility parts of the entropy generation number Ns. In contrast, no considerable effect on 
the Bejan number is observed, the effect on all three parts of Ns Equation (27) is similar. 

Figure 7. Entropy generation number as a function of Kp for various values of Br��1 when 
fwp = 0.2, n = 0.5, X = 0.3, Re = 10, Pr = 5, Ec = 0.1, M = 0.1, k� = 0.2, m� = 100, 
	 = 0.00001, � = 0.0001. 

 

Figure 8. Bejan number as a function of Kp for (a) Br��1 = 0.20 and (b) Br��1 = 0.24 when 
fwp = 0.2, n = 0.5, X = 0.3, Re = 10, Pr = 5, Ec = 0.1, M = 0.1, k� = 0.2, m� = 100, 
	 = 0.00001, �=0.0001. 
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Figure 9. (a) Entropy generation number and (b) Bejan number as a function of Kp for 
various values of Re when Br��1 = 0.2, fwp = 0.01, n = 0.3, X = 0.3, Pr = 5, Ec = 0.1, 
M = 0.1, k� = 0.01, m� = 100, 	=0.00001, � = 0.0001. 
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Figure 10. (a) Entropy generation number and (b) Bejan number as a function of Kp for 
various values of fwp when Br��1 = 1, n = 0.5, X = 0.3, Re = 10, Pr = 5, Ec = 0.1, M = 0.1, 
k� = 0.2, m� = 100, 	 = 0.00001, � = 0.0001. 
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Figure 11. (a) Entropy generation number and (b) Bejan number as a function of Kp for 
various values of k� when Br��1 = 1, fwp = 0.2, n = 0.5, X = 0.3, Re = 10, Pr = 5, Ec = 0.1, 
M = 0.1, m� =100, 	 = 0.00001, � = 0.0001. 
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a function of the change in the number of embedded open parallel microchannels, respectively. The 
interception point between the graphs determines different trends resulting from the larger slip 
coefficients, as compared to the smaller slip coefficients (before the interception point). As a greater 
surface area results in an increased surface friction due to a larger number of embedded microchannels, 
when the slip coefficient inside the microchannels is not sufficient, an increase in the number of 
microchannels tends to increase the entropy generation number, due to added surface friction. This 
phenomenon is much more pronounced when no-slip boundary condition (Kp = 0) is assumed inside 
the embedded microchannels, as no evident difference between slip-flow and no-slip behaviour is 
observed. Consequently, extra effort and cost associated with micromachining the surface to achieve a 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
450

455

460

465

470

475

480

Kp

N
s

k'=0.0
k'=0.02
k'=0.04

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.818

0.819

0.82

0.821

0.822

0.823

0.824

0.825

0.826

0.827

Kp

B
e

k'=0.0
k'=0.02
k'=0.04



Entropy 2012, 14  
 

18

desired embedded microchannel surface cannot be warranted. However, for high values of the slip 
coefficient (after the interception point), an increase in the number of open parallel microchannels can 
effectively decrease the entropy generation number. Consequently, it is necessary to consider the 
projected values of the slip coefficients inside the microchannels required in order to establish an 
appropriate design of the open parallel microchannels embedded within the surface due to a reduction 
in the exergy losses. This can be effectively achieved by considering hydrophobic open microchannels 
with high slip coefficients. It is interesting to note that an increase in the number of microchannels 
causes an increase of the Bejan number’s maximum value. Furthermore, at points to the left of the 
maximum, the slope of the tangent increases as the number of microchannels increases. This indicates 
that the heat transfer irreversibilities will be increasing at high m�. 

Figure 12. (a) Entropy generation number and (b) Bejan number as a function of Kp for 
various values of m� when Br��1 = 1, fwp = 0.2, n = 0.5, X = 0.3, Re = 10, Pr = 5, Ec = 0.1, 
M = 0.1, k� = 1, 	= 0.00001, � = 0.0001. 

 
(a)

 
(b)

  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
935

940

945

950

955

960

Kp

N
s

m'=0
m'=100
m'=200
m'=300

0 1 2 3 4 5
0.9132

0.9134

0.9136

0.9138

0.914

0.9142

0.9144

Kp

B
e

m'=0
m'=100
m'=200
m'=300



Entropy 2012, 14  
 

19

Figure 13 shows change of the entropy generation number with varying surface non-dimensional 
geometric parameters and the slip coefficient. The entropy generation number shows an increase at 
higher microchannel depths, whereas it decreases at higher microchannel widths. This suggests that an 
increase in the width of the microchannels tends to enhance the slip effects along the width of the 
surface, causing the entropy generation number to decrease. The effect of the non-dimensional 
geometric parameters on the Bejan number is illustrated in Figure 14, which it increases with the 
increase in �. It indicates that an increase in the width of the microchannels decreases the irreversibility 
distribution ratio with the increase of heat transfer irreversibilities. Further, it is noted that a decrease 
in the microchannel depth accompanies a slight rise in the Bejan number. 

Figure 13. Effect of � and 	 on the entropy generation number when Br��1 = 1, fwp = 0.2, 
n = 0.5, X = 0.3, Re = 10, Pr = 5, Ec = 0.1, M = 0.1, k� = 1, and m� = 100. 

 

Figure 14. Effect of (a) � and (b) 	 on Bejan number when Br��1 = 1, fwp = 0.2, n = 0.5, 
X = 0.3, Re = 10, Pr = 5, Ec = 0.1, M = 0.1, k� = 1, and m� = 100. 
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Figure 14. Cont. 

 
(b)

5. Conclusions

A new design of open parallel microchannels embedded within a permeable continuous moving 
surface due to the decrease in the exergy losses of magnetohydrodynamic (MHD) flow at prescribed 
surface temperature (PST) is evaluated. The entropy generation number is described by an integral of 
local entropy generation rate on the width of the surface, considering the effect of the embedded open 
parallel microchannels. Based on the results and discussions, the following conclusions can be 
reached:  

/ Joule heating decreases the heat transfer rate, in particular at high magnetic parameters.  
/ The entropy generation number Ns decreases with the increase of injection, Kp and �, while it 

increases with the increase of suction, Br��1, k�, Re and 	.  
/ The magnetic parameter can decrease the entropy generation number when the values of the heat 

transfer irreversibilities are much more significant compared to the fluid friction irreversibilities  
(at low Br��1).  

/ Bejan number, Be, increases with the increase of k�, m�, � and suction, while it decreases with the 
increase of M, Br��1, 	 and injection. The effect of Re on Be is insignificant. 

/ There is a maximum value for Be (Kp) that leads the slip coefficient to exhibit increasing  
(or decreasing) effect at different values. 

/ In hydrophobic open parallel microchannels with a high slip coefficient Kp allow us to take 
advantage of an increase in the number of open parallel microchannels due to the reduction in the 
energy losses.  
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