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Abstract: Some problems occurring in Expert Systems can be resolved by employing a 
causal (Bayesian) network and methodologies exist for this purpose. These require data in 
a specific form and make assumptions about the independence relationships involved. 
Methodologies using Maximum Entropy (ME) are free from these conditions and have the 
potential to be used in a wider context including systems consisting of given sets of linear 
and independence constraints, subject to consistency and convergence. ME can also be 
used to validate results from the causal network methodologies. Three ME methods for 
determining the prior probability distribution of causal network systems are considered. 
The first method is Sequential Maximum Entropy in which the computation of a 
progression of local distributions leads to the over-all distribution. This is followed by 
development of the Method of Tribus. The development takes the form of an algorithm that 
includes the handling of explicit independence constraints. These fall into two groups those 
relating parents of vertices, and those deduced from triangulation of the remaining graph. 
The third method involves a variation in the part of that algorithm which handles 
independence constraints. Evidence is presented that this adaptation only requires the 
linear constraints and the parental independence constraints to emulate the second method 
in a substantial class of examples. 

Keywords: maximum entropy; sequential maximum entropy; causal networks; Method of 
Tribus; independence 
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1. Introduction 

In Expert Systems the Maximum Entropy (ME) methodology [1–3] can be employed to augment that 
of Causal Networks (CNs), e.g., HUGIN [4] and Lauritzen-Spiegelhalter [5]; also see Neapolitan [3]. The 
philosophy and motivation for using ME has already been examined in earlier work, see [6–10]  
and [11]. ME provides a parallel methodology which can be used to validate results from the CNs 
methodologies and there is also the potential for application beyond the strict limits of CNs. The work 
here will be confined to binary variables (true or false), the aim being to deduce prior probability 
distributions (solutions) which exhibit maximal entropy and match outcomes from CNs when 
appropriate. Three methods to this effect will be presented. 

A causal network relates propositional variables and has the following properties: a prior 
probability is required for each root (a source node with no edges directed into it) and a set of prior 
conditional probabilities must be available at every other vertex giving the probability of the 
associated variable for all assignments to the variables representing its parents. These probabilities 
constitute the linear constraints and such networks will be described as complete. The system is 
represented by a directed acyclic graph (DAG) and a set of independence constraints is implied. The 
discussion in the paper will focus on complete causal networks (Note that incomplete systems may 
exhibit multiple solutions, see Paris [12]. Some confusion exists regarding the appropriate 
terminology, quoting Neapolitan: “Causal networks are also called Bayesian networks, belief 
networks and sometimes influence diagrams” [3]. The first of these terms will be used throughout. 

Independence constraints will be an important element of this paper (discussion of the 
Independence concept can be found in [13,14]) and the terminology to be used will now be clarified: 

Absolute and conditional independence constraints between propositional variables will be 
represented, respectively, by forms such as: 

 b ind c and  fgd cid e |  

The term independency will be used to identify the set of individual independence constraints 
generated by the possible assignments to the conditioning set. 

For example, the generic independency  fgd cid e | will consist of four individual constraints: 

 fgd cid e | ,  gfd cid e | ,  gfd cid e | and  gfd cid e |  

Independencies between parents are formally termed moral independencies (moral graphs and also 
triangulation are discussed in [3], see also Figures 1,2,3,4, and associated text. Moral independencies 
are conditioned by a set of variables blocking all ancestral paths between the parents. This set is empty 
in the case of absolute independence.  

With regard to the first method, Lukasiewicz has proved that the application of ME to a causal 
network produces a unique solution using Sequential ME [15]. This process will be exemplified in 
Section 1. An understanding of d-Separation is required and an explanation will be provided there.  

ME methodologies based on the Method of Tribus [16] need an appropriate set of explicit 
independence constraints (void if only linear constraints are to be considered), and a technique for 
finding such a set is described in [17]. For the second method, both moral and triangulation 
independencies are required, in general. When these are in place the solution will match that from  
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CNs [11]. The algorithm advanced handles consistent sets of linears and explicit independencies 
presented in a standard format. 

The third method was suggested by a series of experimental results using a variation of the 
algorithm which requires just the linear constraints and the moral independencies. The handling of the 
independencies is accomplished by a technique based, initially, on the method developed for linears. 
This variant method will be applied to an elementary network, and then the technique developed will 
be extended to a more general system. Further generalisation of this method remains to be explored. 
This paper relates to an aspect of the work covered in my Ph.D. thesis successfully submitted to the 
University of Bradford in 2005 [11], under the supervision of P.C. Rhodes. 

2. Method 1: Sequential Maximum Entropy (SME) 

Quoting from the abstract to his paper, Lukasiewicz says: 

“We thus present a new kind of maximum entropy model, which is computed sequentially. We then 
show that for all general Bayesian networks, the sequential maximum entropy model coincides with 
the unique joint distribution.” 

The method uses d-Separation (d-sep) to determine local probabilities in descending order.  

2.1. Definition of d-Separation 

This is a mechanism for determining the implicit independencies of a causal network [3,18]. It is, 
however, first necessary to understand the principle of blocking. 

Following Neapolitan, suppose that a DAG, G, is constructed from a set of vertices, V, and a set of 
edges, E, consisting of directed edges <vi,vj> where vi, vj belong to V. Suppose also that W is a subset 
of V and that u, v are vertices outside W. A path, p, between u and v is blocked by W if one of the 
following is true:  

(1) d-sep1: There is a vertex w, in W, on p such that the edges, which determine that w is on p, 
meet tail-to-tail at w. I.e. There are edges <w,u> and <w,v>, where u and v are adjacent to w on 
the path p.  

(2) d-sep2:There is a vertex w, in W, on p such that the edges, which determine that w is on p, meet 
head-to-tail at w. I.e. There are edges <u,w> and <w,v>, where u and v are adjacent to w on the 
path p.  

(3) d-sep3: There is a vertex x on p, for which neither x nor any of its descendents are in W, such 
that the edges which determine that x is on p meet head-to-head at x. I.e. There are edges <u,x> 
and <v,x>, where u and v are adjacent to x on the path p, but u and v are not members of W. 
Note also that W can be empty. 

Sets of vertices U and V are said to be d-separated by the set W if every path between U and V is 
blocked by W. Furthermore, a theorem has been proved which asserts that, if all the paths are blocked, 
then the variables in U are independent of those in V given the outcomes for those in W [19]. The 
converse is also true, and furthermore a DAG, together with the explicit constraints and the definition 
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of d-Separation, i.e., d-sep1, d-sep2 and d-sep3, is sufficient to define a causal network and to identify 
all the implicit independencies [20]. Much of the work on d-Separation was developed by J. Pearl and 
his associates. 

2.2. The SME Technique 

The technique requires the establishment of an ancestral ordering [3], of the variables in the 
network, and then proceeds to calculate the maximised local entropy for each set of variables, using 
the linear constraints and local d-seps1&2. (It is already known that ME support d-seps1&2 but not d-
sep3, see [11,21]. The process starts with the first variable, and then the set is incremented by each 
variable in turn. Crucially the result of every maximisation is carried forward to the next step as a set 
of probabilities. Such steps may result in the rapid onset of exponential complexity [22,23], but the  
d-sep3 independencies (or equivalent alternatives) implied by CNs are automatically built in. An 
illustration of the technique follows in Table 1. 

Table 1. Steps in the SME Analysis of Vee-Loz5. 

Configuration Steps

 Starting with variable a, P(a) is given. 

 
Going on to b and adding b ind a (given by local  
d-sep2 in SME), P(b) is given so P(ab) = P(a).P(b). 

 

The independence of a and b determines the 
distribution of ab and this, together with P(c | ab), 
allows P(abc) to be calculated, viz: 

P(c | ab) = kc | ab gives P(abc) = kc | ab.P(ab). 

 

Local d-sep2 gives d cid c | b, which implies that 
d cid ac | b, therefore 

P(abcd).P(b) = P(abc). P(bd), 

so determining P(abcd). 

 

Finally, e cid ab | cd (d-sep2) plus P(e | cd) provides 
P(abcde). 

The probability distribution for the variables of  
Vee-Loz5 has now been found in 5 steps, and the moral 
indeps b ind a and d cid c | b have been generated. 

3. Method 2: Development of the Method of Tribus 

This method aims to calculate the over-all probability distribution directly. It demands the provision 
of a set of explicit independencies because ME does not support d-sep3. The version presented below 
is based on a method first described by Tribus [16], for linear constraints, but it has been re-worked to 
give potential for the accommodation of independence constraints. This method only finds stationary 
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points, additional work (Hessians, Hill-Climbing, Probing) would then be needed to determine the 
nature of any such point, in particular whether a global maximum has been found. 

In outline, each constraint function is multiplied by its own, as yet unknown, Lagrange multiplier. 
These new functions are summed and then subtracted from the expression for entropy (H), thus 
forming a new function (F). An attempt is then made to find a stationary point of this new function in 
order to express the state probabilities in terms of the Lagrange multipliers. These generalised state 
probabilities are substituted into the constraints to produce a set of simultaneous linear equations 
which may be solvable for the Lagrange multipliers, thus leading to the determination of the  
state probabilities. 

3.1. Analysis Using Lagrange Multipliers 

Consider a knowledge domain which contains n variables n1 vv , .. , . The system representing this 
domain can be assigned any one of a finite set of 2n states, 120 nss −, .. ,  with probabilities 

120 npp −, .. , . It is required that a stationary point for the entropy, H, be discovered, whilst conforming 

to the system constraints, where: 

i

12

0i
i ppH

n

ln�
−

=
−≡  (1) 

after Shannon and Weaver [24]. The state probabilities are assumed to be mutually independent but are 
constrained by the fact that their sum must be unity, since they are mutually exclusive and exhaustive. 
This fact constitutes a linear constraint and it will be presumed to be the first (or normalising) 
constraint, C0, in all the systems to be considered in this paper, thus: 

01 =−≡ �
−

=

12

0i
i0

n

pC  (2) 

The other m constraints will be represented by the forms: 

0=jC , for j = 1..m (3)

where jC  is some function of the ip , e.g., jC ≡  0.3 0p _ 0.7 1p . 

The constraints must be mutually unrelated so that each contributes a unique piece of information. 
Guided by Tribus [16], Griffeath [1] and Williamson [10], the Lagrangian function, F, will be taken as: 

≡F i
0i

i pp
n

ln
1 2

�
−

=
− j

m

1j
j00 C�C� �

=
−−− 1).(  (4)

where the �s  are the Lagrange multipliers (the term 1−0�  makes the final formula tidier, without 

affecting the validity of the argument). It is to be noted at this point that F is concerned with the 
functions jC , not with the equations 0=jC . The function F has the property that F = H when the 

constraints are satisfied, hence stationary points of F will be the same as those of H, at satisfaction. 
Now stationary points of F occur when all partial derivatives are zero, i.e., 

0/ =∂∂ ipF  for i = 0 .. 2n � 1 (5)
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and: 

0/ =∂∂ j�F  for j = 0..m (6)

The ip  will be supposed independent on the grounds that the whole n-dimensional space is being 
considered during the search for a point which meets the criteria. 

Assuming the independence of j�  from ip , j�  from k� , and ip  from kp , Equations 4 and 5 give: 

0/./1).(1)(ln =∂∂−∂∂−−+− �
=

ij

m

1j
ji00i pC�pC�p , for i = 0 .. 2n � 1 

or                                          0/.1)(1)(ln =∂∂−−−+− �
=

ij

m

1j
j0i pC��p  

(7)

and Equations 4 and 6 give: 

0=jC , for j = 0..m 

This is a restatement of the fact that the constraints must be satisfied, but Equation 7 provides the 
General Tribus Formula for the state probabilities, viz: 

∏
=

∂∂−−=
m

1j

pC
i

ijj0 eep / .. λλ , for i = 0..2n � 1 (8)

This formula, which is computationally recursive with respect to ip , may be used iteratively to 

attempt to determine the Lagrange multipliers and hence the initial state probabilities, so effecting a 
solution, assuming consistency and convergence. The algorithm, to be described later, employs a fixed 
point iteration scheme which cycles around the constraints, updating the Lagrange multipliers and the 
state probabilities, using a dynamic data structure.  

3.2. Updating the Lagrange Multiplier for a Linear Constraint 

Developing Tribus, consider a linear constraint in the form: 

0)( =−≡ LL ka | xPC  

where a is a single prepositional variable and x is a set of the same type. This equation is equivalent to: 

0)(.)().(1 =−−≡ xaPkaxPkC LLL  (9)

Suppose further that U is the set of state subscripts such that )(
  

axPp
Uu

u =�
∈

, and u is any one of 

those subscripts, with V and v similarly defined for )( xaP . 
Now, if Equation 8 is substituted into Equation 9, 0λ−e  cancels giving: 

0.).(1
1

/ .

1

/ . =−−≡ �∏�∏
=

∂∂−

=

∂∂−

V

m

j

pC
L

U

m

j

pC
LL

vjjujj ekekC λλ  (10)

Also from Equation 9, by differentiation: 

LuL kpC −=∂∂ 1/  and LvL kpC −=∂∂ /  
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It can be seen that there is a common factor in the U summation of )1.( LL ke −−λ , and a factor of 
).( LL ke −−λ  in the V summation. The second factor cancels and Equation 10 may now be re-written as: 

0.)..(1 / ./ . =−− �∏�∏
≠

∂∂−

≠

∂∂−−

V Lj

pC
L

U Lj

pC
L

vjjujjL ekeke λλλ  

and then expressed in quotient form as: 

][/][ / ./ . ).(1  . �∏�∏
≠

∂∂−

≠

∂∂−− −=
U Lj

pC
L

V Lj

pC
L

ujjvjjL ekeke λλλ  (11)

This equation can now be used to find a new estimate of Le λ− . This involves a great deal of 
computation because the appropriate products must be formed and then each of these has to be 
summed for both numerator and denominator. It is better to re-absorb the old value of Le λ−  into the 
right-hand side of Equation 11, the products then revert to state probabilities, thus:  

][/][ ).(1  ..][][ oldnew �� −= −−

U
uL

V
vL pkpkee LL λλ  

the new estimate of the Lagrange multiplier ( L� ) for the linear constraint. 

3.3. Updating the Lagrange Multiplier for an Independence Constraint 

Extending the work above to independence constraints constituted an original piece of work by 
Markham & Rhodes, published in revised form in [17]. 

Consider an independence constraint in the form: 

0)().()( =−≡ b | xPa |xPab | xPCI  

which is equivalent to: 

0)().()().( =−≡ bxaPxbaPxbaPabxPCI  (12)

Suppose that U is the set of state subscripts such that )(
  

abxPp
Uu

u =�
∈

, and that u is any one of 

those subscripts. If V and v are similarly defined for )( xbaP , W and w for )( bxaP  and also Z and z 
for )( xbaP , then Equation 12 can be expressed as: 

0.. =−≡ ����
W

w
V

v
Z

z
U

uI ppppC  (13)

It is further evident that: 

���� +++=
Z

z
W

w
V

v
U

u ppppxP )(  (14)

Proceeding as in Equations 9 to 10 before, Equation 13 becomes: 

0..
1

/ .

1

/ .

1

/ .

1

/ . =− �∏�∏�∏�∏
=

∂∂−

=

∂∂−

=

∂∂−

=

∂∂−

W

m

j

pC

V

m

j

pC

Z

m

j

pC

U

m

j

pC wjjvjjzjjujj eeee λλλλ  (15)

However, differentiating Equation 13 gives:  

�=∂∂
Z

zuI ppC / , �−=∂∂
W

wvI ppC /  
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�−=∂∂
V

vwI ppC /  and �=∂∂
U

uzI ppC /  

therefore Equation 15 contains Ie λ−  raised to the power of �
Z

zp , �−
W

wp , �−
V

vp and�
U

up in its 

first, second, third and fourth terms respectively. 
Following the argument used between Equations10 and 11, Equation 15 becomes: 

� ��� +++− )(. zwvuI ppppe λ  . ][ / ./ .� �∏∏
≠

∂∂−

≠

∂∂−=
V W Ij

pC

Ij

pC wjjvjj ee λλ  

][/ / ./ . . �∏�∏
≠

∂∂−

≠

∂∂−

Z Ij

pC

U Ij

pC zjjujj ee λλ  
(16)

Using Equation 14 and re-absorbing Ie λ− , Equation 16 can be re-written as: 

new][ Ie λ−  = old][ Ie λ− .{ ][/][ .. ����
Z

z
U

u
W

w
V

v pppp }1/ P(x) 

the update formula for the Lagrange multiplier ( I� ) of the independency. 

3.4. Algorithm and Data Structures 

The theory presented above has two properties that suggest a particular approach to the design of an 
algorithm. The first is that each constraint provides a means by which its associated Lagrange 
multiplier term can be updated. This suggests that a fixed point iteration scheme would be suitable for 
solving the set of non-linear simultaneous equations which arise from the constraints. The second 
property is the fact that the set of states which appear in each sum are disjoint and that these same sets 
need to be revisited to update the state probabilities. This points to a multi-list structure of state 
records which enables the appropriate state probabilities to be accessed fluently for each constraint.  

This structure facilitates two operations: 

Using a standard procedure to normalise the state probabilities. 
Updating the estimate of state probabilities using the constraints. 

The linear constraints have a constant associated with them and two, mutually exclusive, lists of 
state records. The variables associated with the constraint determine which state records are included 
in each list. The lists are static for a given application and hence can be constructed during 
initialisation of the data structure. At execution time, each list is traversed and the associated state 
probabilities summed. Each sum and the constant are then used to update the appropriate Lagrange 
multiplier. The independence constraints require four mutually exclusive lists but there is no 
associated constant. Those state records which are members of these lists can again be determined 
from the variables associated with the particular constraint and the lists can be created during 
initialisation of the data structure. These lists are used to update the Lagrange multiplier.  

The algorithm cycles through the operations above, repeatedly updating individual multipliers. At 
the end of each cycle the state probabilities are calculated and re-normalised. It is essential that the 
state probabilities and Lagrange multipliers continue to be refreshed at each step until the constraints 
are satisfied, to a set standard of accuracy, and convergent entropy is achieved, if possible. The 
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algorithm requires that each state has an associated record which can store the latest estimate of the 
probability along with the constants and the pointers which traverse the sets.  

Method 2 has the ability to handle any consistent set of linears and independencies constraints, 
assuming convergence of the iteration. There remains the potential to develop algorithms for other 
types of constraint.  

4. Method 3: A Variation on Method 2 

An alternative method of updating the Lagrange multiplier for an independence constraint will now 
be advanced. The narrative from this point forward describes original work devised by the author as 
part of his Thesis [11]. 

Consider again an independence constraint in the form: 

0)().()( =−≡ b | xPa |xPab | xPCI  (17)

A typical linear appears as: 

0)( =−≡ LL ka | xPC , 
or:                                               0)(.)().(1 =−−≡ xaPkaxPkC LLL  (18)

Equation 17 can be reformulated as:

P(abx) = P(ax).P(bx)/P(x) = q, say (19)

Treating 0)( =−≡ qabxPCI  as a pseudo-linear, allows the independency to assume a form similar to 
Equation 18, viz: 

≡IC 0))((.)().1( =¬−− abxPqabxPq  (20)

Assuming that q is constant, the technique already referenced can be applied to this equation to find 
a procedure for updating the Lagrange multipliers for Method 3, as follows: 

Suppose that U is the set of state subscripts such that )(
  

abxPp
Uu

u =�
∈

, and u is any one of those 

subscripts, with V and v similarly defined for ))(( abxP ¬ . 
Now, if Equation 8 is substituted into Equation 20, 0λ−e  cancels giving: 

0.).(1
1

/ .

1

/ . =−−≡ �∏�∏
=

∂∂−

=

∂∂−

V

m

j

pC

U

m

j

pC
I

vjjujj eqeqC λλ  (21)

Also from Equation 20, by differentiation:  

qpC uI −=∂∂ 1/  and qpC vI −=∂∂ /  

It can be seen that there is a common factor in the U summation of )1( qIe −−λ , and a factor of ).( qIe −−λ  
in the V summation. The second factor cancels and Equation 21 may now be re-written as: 

0.)..(1 / ./ . =−− �∏�∏
≠

∂∂−

≠

∂∂−−

V Ij

pC

U Ij

pC vjjujjI eqeqe λλλ  

and then expressed in quotient form as: 

][/][ / ./ . ).(1  . �∏�∏
≠

∂∂−

≠

∂∂−− −=
U Ij

pC

V Ij

pC ujjvjjI eqeqe λλλ  (22)
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Re-absorbing the old value of Ie λ−  into the right-hand side of this equation, the products then revert 
to state probabilities, thus: 

][/][ ).(1  ..][][ oldnew �� −= −−

U
u

V
v pqpqee II λλ  

giving a new estimate of the Lagrange multiplier ( I� ) for the independence constraint using the  
variant algorithm.  

5. µ-Notation

The General Tribus Formula (Equation 8) contains a product of terms which represents a joint 
probability. This formula will now be expressed in a more compact form designed to facilitate further 
work, viz.: 

∏
=

=
m

1j
ij0i  � �p '.  

where 0� 0e λ−≡ , ji�′ ijj pCe ∂∂−≡ / .λ  and the index j ranges over the relevant constraints. 
This notation was suggested by Garside [25]. The s�  will be described as contributions from their 

respective constraints. At this point, the contributions from the set of linear constraints for a given 
probability group will be combined into a single combined contribution, to give a more economical 
representation. This is illustrated by the following example system which relates seven propositional 
variables, a..g. 

5.1. Example 1 

The moral graph for Figure 1 requires that vertices a and b, the parents of d, be joined (dashes), and 
also c and d, the parents of e, together with b and e the parents of f. If the network is to be triangulated, 
then b and c have to be joined (dots) as well.  

Figure 1. Tree-Loz-Vee-Tri7. 

 

5.1.1. Linear Constraints 

For this network to be complete, values for the following set of probabilities must be made 
available (see Section 1): 
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)(aP , )(bP , 
)|( acP , )|( acP , 

)|( abdP , )|( badP , )|( badP , )|( badP , 

)|( cdeP , )|( dceP , )|( dceP , )|( dceP , )|( befP . )|( ebfP , )|( ebfP , )|( ebfP , 
)|( cgP , )|( cgP  

This would imply eighteen contributions, but economy reduces this to seven combined 
contributions (underlined), one for each group of probabilities.  

5.1.2. Independence Constraints 

Method 2 requires both moral (the first two rows below) and triangulation independence constraints 
for a solution; a suitable set, see [17], is: 

a ind b , ac cid d | , ac cid d | , 

cdb cid e | , dcb cid e | , dcb cid e | , dcb cid e | , 

adb cid c | , dab cid c | , dab cid c | , dab cid c |  

Economy reduces the contributions for the independence constraints to four. 
Using μ-notation, a typical joint probability, )(abcdefgP , can now be expressed as: 

0μ . aμ .  bμ . ac  | μ . abd  | μ . cde  | μ . bef  | μ . cg  | μ . ),( baI� . ) | ,( adcI� . ) | ,( cdebI� . ) | ,( adcbI�  

where the suffixes locate the combined contributions rather than i and j. 
Here, for example: 

cde  | μ  represents cde  | μ′ . dce  | μ′ . dce  | μ′ . dce  | μ′  

and:                                  ) | ,( cdebI�  represents ) | ,( cdebI�′ . ) | ,( dcebI�′ . ) | ,( dcebI�′ . ) | ,( dcebI�′  

5.2. Using Method 3 with μ-Notation 

Early experiments with this method applied to a series of causal systems suggested that this 
algorithm, when given a full set of moral independencies, would generate the triangulation 
independencies required by Method 2. With this possibility in mind, the discussion will proceed by 
considering independence under Method 3 for a complete version of a system of six variables 
represented by a lozenge shaped network, Loz6. (NB. A lozenge will have at least five sides.) 

Example 2: In Figure 2, given the moral independency for the sink vertex f, cd cid e | , analysis will be 
employed in an attempt to show that the non-moral independencies c cid d | b and b cid c | a, are implied. 

The independence constraints cd cid e |  and cd cid e | , may be expressed as: 

)(cdeP  = )(cdP . )(ceP  / )(cP  = r 

and: 

)( decP  = )( dcP . )( ecP / )(cP  = s, say 

Treating 0)( =− rcdeP  and 0)( =− sdecP  as pseudo-linears gives: 
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0))((.)().1( =¬−− cdePrcdePr  
and: 

0))((.)().1( =¬−− decPsdecPs  

The state probabilities in )(cdeP  all differentiate to give )(1 r− , and those in ))(( cdeP ¬  give 
)( r− , with similar results for the second constraint.  

Figure 2. Loz6. 

 

According to the General Tribus Formula (Equation 8), and reverting to individual exponentials for 
the independency, to allow closer examination, the respective contributions for states in cde  and 

)(cde¬  are )( . -r1Ie λ−  and )( . -rIe λ− . These may be written, in terms of a multiplier (g), as r1g −  and rg − , 
say. A similar provision will be made for the states of c de, using h therefore, following work in 
Section 3 above, the update formulæ for the Lagrange multipliers of the independency are: 

)]().[(1 /  ))]((. [ .][][ oldnew cdePrcdePrgg −¬=  

and: 

)]().[(1 /  ))]((.[  .][][ oldnew decPsdecPshh −¬=  

5.2.1. Grg-Elimination 

A method of deriving an independence constraint from a ratio due to G.R.Garside (outlined in a 
seminar) will now be described as it will be needed in ensuing sections: 

Given:      

)(yzxP  / )( xzyP = )( zxyP  / ) ( xzyP  

this equals )(zxP / )( xzP  after addition of the two numerators, and then the addition of the two 
denominators (this is a valid algebraic manipulation !) 

i.e., )(yzxP  / )( xzyP  = )(zxP / )( xzP  

or, after re-arrangement, )(yzxP  / )(zxP  = )( xzyP  / )( xzP . 
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Adding numerators and denominators again: 

)(yzxP  / )(zxP  = )(yxP / )(xP  or )(yzxP . )(xP  = )(yxP . )(zxP  

which shows that y cid z | x, as required. This division and reduction technique will be referred to as 
grg-elimination and can be applied in reverse. 

5.2.2. Analysis Phase 1: Determination of the Independence Multipliers 

Assuming that a solution exists, the state probabilities will be calculated by the product of the 
combined contributions from the linear constraints, and the individual contributions from the moral 
independency in the form of powers of their multipliers. Using  μ-notation, the joint probability now 
assumes the form: 

)(abcdefP  = 0� . a� . ab� | . ac� | . bd� | . ce� | . def� | . sr1 hg −− .  

also: 

)( fabcdeP  = 0� . a� . ab� | . ac� | . bd� | . ce� | . def� | . sr1 hg −− .  

Adding these equations will eliminate f from the left-hand side, viz: 

)(abcdeP  = 0� . a� . ab� | . ac� | . bd� | . ce� | . }{ defdef �� || + . sr1 hg −− .  

= 0� . a� . ab� | . ac� | . bd� | . ce� | . deF . sr1 hg −− . , say 
(23)

where: 
≡deF }{ defdef �� || +  

Varying d and e will give: 

)( eabcdP  = 0� . a� . ab� | . ac�  | . bd� | . ce�  | . edF . sr hg −− .  

)( edabcP  = 0� . a� . ab�  | . ac� | . bd�  | . ce� | . edF . sr hg −− .  

and: 

)( edabcP  = 0� . a� . ab�  | . ac� | . bd�  | . ce�  | . edF . sr hg −− .  

Now d cid e | c, which is given, implies that d cid e | abc. Therefore, the application of grg-elimination 
to the last four equations must result in complete cancellation, i.e., 

)(abcdeP / )( eabcdP  must equal )( edabcP / )( edabcP  

giving: 

g = { edF . edF } / { deF . edF } (24)

The right-hand side of this equation does not depend on c and so, by symmetry, h will return the 
same value, i.e., g = h, as confirmed by experiment. 
NB. It can be seen that rg − and sh−  have cancelled, leaving just g ! This will be important in 
subsequent analysis. 
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5.2.3. Analysis Phase 2: Proof that c cid d | b 

With the multipliers having been determined, the analysis can move on to testing one of the  
non-moral independencies. Starting with Equation 23: 

)(abcdeP  = 0� . a� . ab� | . ac� | . bd� | . ce� | . deF . sr1 hg −− .  

and also: 

)( eabcdP  = 0� . a� . ab� | . ac� | . bd� | . ce� | . edF . sr hg −− .  

Addition of these two equations leads to: 

)(abcdP  = 0� . a� . ab� | . ac� | . bd� | .{ ce� | . deF . g + ce� | . edF }. sr hg −− .  

The following may be reached by a similar process: 

)( dabcP  = 0� . a� . ab� | . ac� | . bd� | .{ ce� | . edF . + ce� | . edF }. sr hg −− . , 

)( dcabP  = 0� . a� . ab� | . ac� | . bd� | .{ ce� | . deF . g + ce� | . edF }. sr hg −− .  

)( dcabP = 0� . a� . ab� | . ac� | . bd� | .{ ce� | . edF . + ce� | . edF }. sr hg −− .  

The condition required by grg-elimination is that: 

)(abcdP / )( dabcP )( dcabP− / )( dcabP 0≡  

or: 

)(abcdP . )( dcabP )( dabcP− . )( dcabP 0≡  

Representing the left-hand side of this identity by D, and noting that all the contribution terms 
cancel except for the four braces: 

D ∝  { ce� | . deF . g + ce� | . edF }.{ ce� | . edF . + ce� | . edF } 
_{ ce� | . edF . + ce� | . edF }.{ ce� | . deF . g + ce� | . edF } (25)

The result after multiplication is: 

D ∝ { ce� | . ce� | . deF . edF . g  + ce� | . ce� | . deF . edF . g  

+ ce� | . ce� | . edF . edF  + ce� | . ce� | . edF . edF  } 

_ { ce� | . ce� | . edF . deF  + ce� | . ce� | . edF . edF  

+ ce� | . ce� | . edF . deF . g  + ce� | . ce� | . edF . edF  } 

The first and fifth terms of this expression cancel, as do the fourth and eighth, giving: 

D ∝ ce� | . ce� | . { deF . edF . g  _ 
edF . edF } 

+ ce� | . ce� | .{ edF . edF  _ 
edF . deF . g } 

∝ { deF . edF . g  _ 
edF . edF }.{ ce� | . ce� |  _ 

ce� | . ce� | } 
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But Equation 24 insists that g = { edF . edF } / { deF . edF }, therefore D ≡  0 and the condition for  

grg-elimination is satisfied, giving the independency: 

c cid d | ab 

If this independency is compared with one given by d-Separation [9,18,21], a cid d | bc, then: 

)(abcdP . )(abP = )(abcP . )(abdP  

and: 

)(abcdP . )(bcP  = )(abcP . )(bcdP  

division then gives: 

)(bcdP . )(abP = )(abdP . )(bcP  

Summation over a , a  now gives the required independency, c cid d | b. 

5.2.4. Tokenised Algebra 

Consider Equation 25 again: 

D ∝ { ce� | . deF . g + ce� | . edF }.{ ce� | . edF . + ce� | . edF } 

_ { ce� | . edF . + ce� | . edF }.{ ce� | . deF . g + ce� | . edF } 

The author has devised a scheme whereby each term in the equation can be represented by its 
position within the set of possibilities for that term, for example:  

ce� | , ce� | , ce� |  and ce� |  would appear as the tokens 0, 1, 2 and 3 

As long as strict ordering is maintained it becomes possible to reduce the mass of algebraic 
manipulation. The current operation would start with: 

D ∝ {00g + 21}.{12 + 33}_ {02 + 23}.{10g + 31} 

Some simple arrays are needed to accommodate the result of the products: 

 
where the first array shows the product of ce� |  and ce� | , and so on (it is to be noted that the elements 

are interchangeable in any such array). 
The first and fifth terms cancel, as do the fourth and eighth to leave: 

 

Considering the second array position: 

 
so: 
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5.2.5. Analysis Phase 3: Proof that b cid c | a 

To test this independency, Equation 23 (and similar equations) will be used as a starting point, but 
this time d and e will be removed: 

)(abcdeP  = 0� . a� . ab� | . ac� | . bd� | . ce� | . deF . sr1 hg −− .  

)( eabcdP  = 0� . a� . ab� | . ac� | . bd� | . ce� | . edF . sr hg −− .  

)( edabcP  = 0� . a� . ab� | . ac� | . bd� | . ce� | . edF . sr hg −− .  

and: 

)( edabcP  = 0� . a� . ab� | . ac� | . bd� | . ce� | . edF . sr hg −− .  

Addition applied to these four equations gives: 

)(abcP  = 0� . a� . ab� | . ac� | .{ bd� | .[ ce� | . deF . g + ce� | . edF ] 

+ bd� | .[ ce� | . edF  + ce� | . edF ]}. sr hg −− .  

Likewise: 

)( cabP  = 0� . a� . ab� | . ac� | .{ bd� | .[ ce� | . deF . g + ce� | . edF ] 

+ bd� | .[ ce� | . edF  + ce� | . edF ]}. sr hg −− . , 

)( cbaP  = 0� . a� . ab� | . ac� | .{ bd� | .[ ce� | . deF . g + ce� | . edF ] 

+ bd� | .[ ce� | . edF  + ce� | . edF ]}. sr hg −− .  

and: 

)( cbaP  = 0� . a� . ab� | . ac� | .{ bd� | .[ ce� | . deF . g + ce� | . edF ] 

+ bd� | .[ ce� | . edF  + ce� | . edF ]}. sr hg −− .  

The condition required by grg-elimination to establish the required independency is: 

)(abcP / )( cabP = )( cbaP / )( cbaP  

Let: 
D ≡ )(abcP . )( cbaP )( cabP− . )( cbaP  

then, after cancelling, it follows that: 

D ∝ { bd� | .[ ce� | . deF . g  + ce� | . edF ] + bd� | .[ ce� | . edF  + ce� | . edF ]} 

.{ bd� | .[ ce� | . deF . g + ce� | . edF ] + bd� | .[ ce� | . edF  + ce� | . edF ]} 

  − { bd� | .[ ce� | . deF . g + ce� | . edF ] + bd� | .[ ce� | . edF  + ce� | . edF ]} 

.{ bd� | .[ ce� | . deF . g  + ce� | . edF ] + bd� | .[ ce� | . edF  + ce� | . edF ]} 
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Applying tokens, where for example: 

bd� | .[ ce� | . edF  + ce� | . edF ] becomes 3[02 + 23] 

D∝ {0[00g + 21] + 2[02 + 23]}.{1[10g + 31] + 3[12 + 33]} 
_ {0[10g + 31] + 2[12 + 33]}.{1 [00g + 21] + 3[02 + 23]} 

∝  {000g + 021 + 202 + 223}.{110g + 131 + 312 + 333} 
_ {010g + 031 + 212 + 233}.{100g + 121 + 302 + 323} 

Multiplying out gives the difference of two sixteen term array sums. If they cancel out then the 
independency is established. The first term in the product is given by:  

{000g }.{110g } to which is added the second term {000g}.{131}, etc. 

 

All the terms cancel which are off the trailing diagonals in the two arrays. The remaining terms 
require the application of: 

 

to the third array in each element for cancellation. It follows that D ≡  0 and so the independence 
constraint b cid c | a has been shown to be implied and, by a parallel process, b cid c | a  can  
be inferred. 

The deduction can now be made that, given the explicit moral independencies, the triangulation 
independencies are induced in Loz6 under Method 3. 

6. The Embedded Lozenge 

Method 3 required the linear constraints and just the moral independency to determine a solution 
for Loz6, but it remained to be discovered whether this property would persist with more general 
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systems. An effort was made to provide a wider context, subject to non-violation of the lozenge  
(i.e., no lozenge vertices are directly linked across the figure). To this effect a generalised system  
Emb-LozN (see Figure 3 was considered, working along similar lines to those for Loz6. 

Figure3. Emb-LozN. 

 

6.1. A More General Example, Emb-LozN 

The work in Section 4, was adapted to support a theoretical approach that used bottom-up analysis 
applied to Emb-LozN to prove that the moral independencies imply the conditional independence of 
variables 5 and 7. This required some rather complex and extended analysis, with combined 
contributions, that can be seen in [11] (or by correspondence with the author). 

Having discovered the independency between 5 and 7, the relevant multipliers can be found by  
grg-elimination: they will share a common value. This new independency can now take the place of  
3 cid 5 | 4,7 in an inductive scheme which ascends the graph discovering further independencies (the 
next one is between variables 7 and 9). Near the top of the graph, any odd edges of the lozenge and the 
apex itself will require some modification of earlier working, but it is not anticipated that this will 
create any major difficulty.  

This analysis increases the scope of Method 3 considerably and opens up the possibility that the 
algorithm can be shown to apply over a wide range of complete systems.  
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To engineer results of complete generality the graph, or an algebraic equivalent, would have to be 
comprehensive. It might then be possible to deduce a result by either mathematical induction or by 
graph reduction.  

The system in this section, Emb-Loz N (Figure 3, with 1+N  vertices, is intended to mark a step 
towards such generality. An extended lozenge (double circles) has new network elements added so 
that that every vertex of the lozenge has the following two properties: 

(1) It is directly linked to both ancestors and descendants from among the new elements. 
(2) There are paths which bypass such a vertex. 

Ideally the new elements should include vertices representing sets of variables but the work done 
was restricted to single variables because of the inherent algebraic complexity.  
The graph displays an ancestral ordering, of single variables. The configuration at the top of the graph 
will depend on the number of sides to left and right. 

The moral independency 3 cid 5 | 4,7 is given together with the set typified by: 

2 cid 5 | 3,4 and 4 cid 7 | 5,6 

6.2. Further Testing 

Another system, Random-Test8 (Figure 4), was subjected to examination to determine whether 
Methods 2, 3 and CNs gave coincident solutions. 

Figure 4. Random-Test8. 

 
 
Suitable Independence Sets for Figure 4: 

For Method 2: 

a ind b, d cid f | e, g cid df | c 

and: 

b cid d | ac, c cid f | de, e cid cd | b. 
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For Method 3: The first three only. 

The augmented system was tested using the following linear constraints: 

P(a) = 0.56, P(b) = 0.06, 
) bababaP(c | ab  , , ,  = 0.71, 0.50, 0.34, 0.39, 

P(d | ac) = 0.58, 0.53, 0.32, 0.49, 
P(e | b) = 0.05, 0.49, P(f | e) = 0.88, 0.92, P(g | c) = 0.51, 0.61, 

P(h | dfg) = 0.19, 0.40, 0.24, 0.45, 0.75, 0.58, 0.56, 0.70 

The two algorithms and CNs produced identical solutions with entropy of: 

4.526 672 923 

Two lozenges embedded in Random-Test8 (see Figure 5,6), sections of Figure 4, will now be used 
to illustrate the outcome of the analysis above: 

Figure 5. Loz1. 

 

Figure 6. Loz2. 
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Loz1 and Loz2, from Figure 4, exhibit their explicit moral independencies (dashes) and implied 
triangulation independencies (dots). 

7. Discussion

The determination of the prior distribution of a causal network, using ME, by the three 
algorithms described, reveals their respective properties (NB. Some additional work was performed 
on incomplete networks). 

7.1. Properties 

Sequential ME 

 Operates on complete networks, 
 Requires d-seps1&2 to propagate probabilities, 
 Suffers from rapid exponential complexity. 

Development of Tribus 

 Operates on complete and incomplete networks, 
 Requires both triangulation and moral independencies, 
 Can be used to validate CNs methodologies, 
 Can be used to detect the stationary points for an incomplete 
 network by varying the initial conditions,  
 Potential for application beyond conventional networks. 

Variation on Tribus 

 Operates on complete networks only, 
 Requires moral independencies alone, 
 Potential for wider application, 
 Further generalisation of proof needed. 

7.2. Further Testing  

A total of thirty systems were tested, including Loz6, Tree-Loz-Vee-Tri7, and Random-Test8. All 
the tests gave matching distributions under Methods 1,2,3 and CNs methodologies.  

Method 1 relied on d-Separation alone and Method 3 required fewer explicit independencies than 
Method 2, as shown in Table 2. 

Table 2. Independence Averages. 

Average Number of Explicit Independence Constraints Rqd.
METHOD 1 & CNS: NIL,    METHOD 2: 8.8,      METHOD 3: 5.4 
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8. Conclusions 

Three methods for calculating the a priori probability distribution of a causal network, using ME, 
were discussed. 

The first method used sequential determination of local probabilities, following a paper by 
Lukasiewicz, and this was illustrated with an example. Only the first two clauses of d-Separation were 
required in this process. 

Method 2 started from the General Tribus Formula and aimed to find the over-all distribution 
directly. An algorithm was designed which required a set of explicit moral and triangulation 
independencies, in addition to the linear constraints. The technique for handling linear constraints 
served as a starting point for Method 3 where only the moral independencies and the linear constraints 
were required. 

A novel representation of the General Tribus Formula, μ-Notation, was then used to represent the 
contributions from each constraint and was further developed by grouping similar terms. This 
divergence between Methods 2 and 3 was investigated by analysis applied to an elementary example. 
The investigation was then extended to a system of greater generality where Bottom-up analysis 
uncovered a method of finding implied independencies whilst climbing the graph. More work is 
needed to produce a result of complete generality. 

A series of tests was undertaken to compare the independence requirements of the three 
methodologies. The results showed that Method 3 provides a more efficient method of solution than 
Method 2 over a significant range of complete causal network systems. Methods 2 and 3 have the 
potential to solve a wider range of problems than the CNs methodologies, therefore they constitute a 
useful augmentation of the technology available for solving problems in Expert Systems.  
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