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Abstract:



A consistent entropy estimator for hyperspherical data is proposed based on the k-nearest neighbor (knn) approach. The asymptotic unbiasedness and consistency of the estimator are proved. Moreover, cross entropy and Kullback-Leibler (KL) divergence estimators are also discussed. Simulation studies are conducted to assess the performance of the estimators for models including uniform and von Mises-Fisher distributions. The proposed knn entropy estimator is compared with the moment based counterpart via simulations. The results show that these two methods are comparable.
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1. Introduction


The Shannon (or differential) entropy of a continuously distributed random variable (r.v.) X with probability density function (pdf) f is widely used in probability theory and information theory as a measure of uncertainty. It is defined as the negative mean of the logarithm of the density function, i.e.,


[image: there is no content]



(1)







k-Nearest neighbor (knn) density estimators were proposed by Mack and Rosenblatt [1]. Penrose and Yukich [2] studied the laws of large numbers for k-nearest neighbor distances. The nearest neighbor entropy estimators when [image: there is no content] were studied by Kozachenko and Leonenko [3]. Singh et al. [4] and Leonenko et al. [5] extended these estimators using k-nearest neighbors. Mnatsakanov et al. [6] studied knn entropy estimators for variable rather than fixed k. Eggermontet et al. [7] studied the kernel entropy estimator for univariate smooth distributions. Li et al. [8] studied parametric and nonparametric entropy estimators for univariate multimodal circular distributions. Neeraj et al. [9] studied knn estimators of circular distributions for the data from the Cartesian product, that is, [image: there is no content]. Recently, Mnatsakanov et al. [10] proposed an entropy estimator for hyperspherical data based on the moment-recovery (MR) approach (see also Section 4.3).



In this paper, we propose k-nearest neighbor entropy, cross-entropy and KL-divergence estimators for hyperspherical random vectors defined on a unit p-hypersphere [image: there is no content] centered at the origin in p-dimensional Euclidean space. Formally,


[image: there is no content]=x∈[image: there is no content]:∥x∥=1



(2)







The surface area [image: there is no content] of the hypersphere is well known: [image: there is no content]=2πp/2Γ(p2), where Γ is the gamma function. For a part of the hypersphere, the area of a cap with solid angle ϕ relative to its pole is given by Li [11] (cf. Gray [12]):


S(ϕ)=12[image: there is no content]1-sgn(cosϕ)Icos2ϕ12,p-12



(3)




where sgn is the sign function, and [image: there is no content] is the regularized incomplete beta function.



For a random vector from the unit circle [image: there is no content], the von Mises distribution vM[image: there is no content] is the most widely used model:


[image: there is no content]








where T is the transpose operator, [image: there is no content] and [image: there is no content] are the mean direction vector and concentration parameters, and [image: there is no content] is the zero-order modified Bessel function of the first kind. Note that the von Mises distribution has a single mode. The multimodal extension to the von Mises distribution is the so-called generalized von Mises model. Its properties are studied by Yfantis and Borgman [13] and Gatto and Jammalamadaka [14].



The generalization of von Mises distribution onto [image: there is no content] is the von Mises-Fisher distribution (also known as Langevin distribution) vMFp[image: there is no content] with pdf,


[image: there is no content]



(4)




where the normalization constant is


[image: there is no content]








and [image: there is no content] is the ν-order modified Bessel function of the first kind. See Mardia and Jupp [15] (p. 167) for details.



Since von Mises-Fisher distributions are members of the exponential family, by differentiating the cumulant generating function, one can obtain the mean and variance of [image: there is no content]:


[image: there is no content]








and


[image: there is no content]








where [image: there is no content], and [image: there is no content]. See Watamori [16] for details. Thus the entropy of [image: there is no content] is:


H([image: there is no content])=-Ef[ln[image: there is no content](X)]=-lncp(κ)-κEf[μTX]=-lncp(κ)-κAp(κ)



(5)




and


Vf[ln[image: there is no content](X)]=κ2Vf[μTX]=κ2Ap′(κ)



(6)







Spherical distributions have been used to model the orientation distribution functions (ODF) in HARDI (High Angular Resolution Diffusion Imaging). Knutsson [17] proposed a mapping from ([image: there is no content]) orientation to a continuous and distance preserving vector space ([image: there is no content]). Rieger and Vilet [18] generalized the orientation in any p-dimensional spaces. McGraw et al. [19] used vMF3 mixture to model the 3-D ODF and Bhalerao and Westin [20] applied [image: there is no content] mixture to 5-D ODF in the mapped space. Entropy of the ODF is proposed as a measure of anisotropy (Özarslan et al. [21], Leow et al. [22]). McGraw et al. [19] used Rényi entropy for the [image: there is no content] mixture since it has a closed form. Leow et al. [22] proposed an exponential isotropy measure based on the Shannon entropy. In addition, KL-divergence can be used to measure the closeness of two ODF’s. A nonparametric entropy estimator based on knn approach for hyperspherical data provides an easy way to compute the entropy related quantities.



In Section 2, we will propose the knn based entropy estimator for hyperspherical data. The unbiasedness and consistency are proved in this section. In Section 3, the knn estimator is extended to estimate cross entropy and KL-divergence. In Section 4, we present simulation studies using uniform hyperspherical distributions and aforementioned vMF probability models. In addition, the knn entropy estimator is compared with the MR approach proposed in Mnatsakanov et al. [10]. We conclude this study in Section 5.




2. Construction of knn Entropy Estimators


Let X∈[image: there is no content] be a random vector having pdf f and [image: there is no content] be a set of i.i.d. random vectors drawn from f. To measure the nearness of two vectors x and [image: there is no content], we define a distance measure as the angle between them: ϕ=arccos(xT[image: there is no content]) and denote the distance between [image: there is no content] and its k-th nearest neighbor in the set of n random vectors by [image: there is no content].



With the distance measure defined above and without loss of generality, the naïve k-nearest neighbor density estimate at [image: there is no content] is thus,


fn([image: there is no content])=k/n[image: there is no content]



(7)




where [image: there is no content] is the cap area as expressed by (3).



Let [image: there is no content] be the natural logarithm of the density estimate at [image: there is no content],


[image: there is no content]=lnfn([image: there is no content])=lnk/n[image: there is no content]



(8)




and thus we construct a similar k-nearest neighbor entropy estimator (cf. Singh et al. [4]):


[image: there is no content](f)=-1n∑i=1n[[image: there is no content]-lnk+ψ(k)]=1n∑i=1nln[nS(ϕi)]-ψ(k)



(9)




where [image: there is no content] is the digamma function.



In the sequel, we shall prove the asymptotic unbiasedness and consistency of [image: there is no content].



2.1. Unbiasedness of [image: there is no content]


To prove the asymptotic unbiasedness, we first introduce the following lemma:



Lemma 2.1. For a fixed integer [image: there is no content], the asymptotic conditional mean of [image: there is no content] given [image: there is no content]=x, is


E[lim[image: there is no content][image: there is no content]|[image: there is no content]=x]=lnf(x)+lnk-ψ(k)



(10)







Proof. [image: there is no content], consider the conditional probability


P{[image: there is no content]<ℓ|[image: there is no content]=x}=P{fn([image: there is no content])<eℓ|[image: there is no content]=x}










=P{S(ϕi)>kne-ℓ}



(11)







Equation (11) implies that there are at most k samples falling within the cap [image: there is no content] centered at [image: there is no content]=x with area [image: there is no content].



If we let


pn,i=∫[image: there is no content]f([image: there is no content])d[image: there is no content]








and [image: there is no content] be the number of samples falling onto the cap [image: there is no content], then [image: there is no content]∼BIN(n,pn,i), is a binomial random variable. Therefore,


P{[image: there is no content]<ℓ|[image: there is no content]=x}=P{[image: there is no content]<k}











If we let [image: there is no content] as [image: there is no content], then [image: there is no content] as [image: there is no content]. It is reasonable to consider the Poisson approximation of [image: there is no content] with mean [image: there is no content]. Thus, the limiting distribution of [image: there is no content] is a Poisson distribution with mean:


λi=lim[image: there is no content]λn,i=ke-ℓlim[image: there is no content]pn,iSci=ke-ℓf(x)



(12)







Define a random variable [image: there is no content] having the conditional cumulative density function,


F[image: there is no content],x(ℓ)=lim[image: there is no content]P{[image: there is no content]<ℓ|[image: there is no content]=x}








then


F[image: there is no content],x(ℓ)=∑j=0k-1[kf(x)e-ℓ]jj!e-kf(x)e-ℓ








By taking derivative w.r.t. ℓ, we obtain the conditional pdf of [image: there is no content]:


f[image: there is no content],x(ℓ)=[kf(x)e-ℓ]k(k-1)!e-kf(x)e-ℓ



(13)




The conditional mean of [image: there is no content] is


E[[image: there is no content]|[image: there is no content]=x]=∫-∞∞ℓ·[kf(x)e-ℓ]k(k-1)!e-kf(x)e-ℓdℓ








By change of variable, [image: there is no content],


E[[image: there is no content]|[image: there is no content]=x]=∫0∞[lnf(x)+lnk-lnz]zk-1(k-1)!e-zdz










=lnf(x)+lnk-∫0∞lnzzk-1(k-1)!e-zdz










=lnf(x)+lnk-ψ(k)



(14)




☐



Corollary 2.2. Given [image: there is no content]=x, let [image: there is no content]:=nS(ϕi)=ke-[image: there is no content], then ln[image: there is no content]=lnk-[image: there is no content] converges in distribution to ln[image: there is no content]=lnk-[image: there is no content], and


[image: there is no content]








Moreover, [image: there is no content] is a gamma r.v. with the shape parameter k and the rate parameter [image: there is no content].



Theorem 2.3. If a pdf f satisfies the following conditions: for some [image: there is no content],



([image: there is no content]):∫[image: there is no content]|lnf(x)|1+ϵf(x)dx<∞,



([image: there is no content]):∫[image: there is no content]∫[image: there is no content]ln[1-I(xT[image: there is no content])2(12,p-12)]1+ϵf(x)f([image: there is no content])dxd[image: there is no content]<∞, then the estimator proposed in (9) is asymptotically unbiased.



Proof. According to Corollary 2.2 and condition ([image: there is no content]), we can show (see (16)–(22)) that for almost all values of x∈[image: there is no content], there exists a positive constant C such that



[image: there is no content]E[|ln[image: there is no content]|1+ϵ]<C for all sufficiently large n.



Hence, applying the moment convergence theorem [23] (p. 186), it follows that


lim[image: there is no content]E[ln[image: there is no content]]=E[ln[image: there is no content]]=-lnf(x)+ψ(k)








for almost all values of x∈[image: there is no content]. In addition, using Fatou’s lemma and condition ([image: there is no content]), we have that


lim sup[image: there is no content]∫[image: there is no content]|Eln[image: there is no content]|1+ϵf(x)dx≤∫[image: there is no content]lim sup[image: there is no content]|Eln[image: there is no content]|1+ϵf(x)dx=∫[image: there is no content]|-lnf(x)+ψ(k)|1+ϵf(x)dx≤[image: there is no content]∫[image: there is no content]|-lnf(x)|1+ϵf(x)dx+|ψ(k)|1+ϵ<∞








where [image: there is no content] is a constant. Therefore,


lim[image: there is no content]E[[image: there is no content](f)]=lim[image: there is no content]Ef[ln(nS(ϕi))]-ψ(k)=lim[image: there is no content]∫[image: there is no content]Eln[image: there is no content]f(x)dx-ψ(k)=∫[image: there is no content]lim[image: there is no content]Eln[image: there is no content]f(x)dx-ψ(k)=∫[image: there is no content]Eln[image: there is no content]f(x)dx-ψ(k)=∫[image: there is no content][-lnf(x)+ψ(k)]f(x)dx-ψ(k)=H(f)











To show [image: there is no content], one can follow the arguments similar to those used in the proof of Theorem 1 in [24]. Indeed, we can first establish



[image: there is no content]E[|lnη2,1,x|1+ϵ]<C.



Namely, we justify that [image: there is no content] is valid when [image: there is no content] and [image: there is no content]. But the inequality [image: there is no content] follows immediately from the condition ([image: there is no content]) and


[image: there is no content]










=Eln[image: there is no content]1-sgn(xTX2)I(xTX2)2(12,p-12)1+ϵ










≤[image: there is no content]|ln[image: there is no content]|1+ϵ+[image: there is no content]|ln2|1+ϵ+[image: there is no content]Efln1-I(xTX2)2(12,p-12)1+ϵ1(xTX2>0)










=[image: there is no content]|ln[image: there is no content]|1+ϵ+|ln2|1+ϵ+12[image: there is no content]Efln1-I(xTX2)2(12,p-12)1+ϵ



(15)




Here [image: there is no content] and [image: there is no content] is the indicator function.



Now let us denote the distribution function of [image: there is no content] by


Gn,k,x(u)=P([image: there is no content]≤u)=P(nS(ϕn,k,1)≤u|X1=x)=1-∑j=0k-1n-1j∫Cx(ϕn(u))f([image: there is no content])d[image: there is no content]j1-∫Cx(ϕn(u))f([image: there is no content])d[image: there is no content]n-1-j








where [image: there is no content] and [image: there is no content] is a cap {[image: there is no content]∈[image: there is no content]:[image: there is no content]Tx≥cosϕ} with the pole x and base radius [image: there is no content]. Note also that the functions [image: there is no content] (see (3)) and [image: there is no content] are both increasing functions.



Now, one can see (cf. (66) in [24]):


E[|ln[image: there is no content]|1+ϵ]≤I1+I2+I3



(16)




where


I1=(1+ϵ)∫01ln1uϵu-1Gn,k,x(u)du










I2=(1+ϵ)∫1n(lnu)ϵu-1(1-Gn,k,x(u))du










I3=(1+ϵ)∫nn[image: there is no content](lnu)ϵu-1(1-Gn,k,x(u))du











It is easy to see that for sufficiently large n and almost all x∈[image: there is no content]:


I1<(1+ϵ)f(x)Γ(1+ϵ)<∞



(17)




and


I2≤(1+ϵ)∑j=0k-1[sup[image: there is no content]∈[image: there is no content]f([image: there is no content])]jf(x)-j-ϵΓ(j+ϵ)<∞



(18)




(cf. (89) and (85) in [24], respectively).



Finally, let us show that [image: there is no content] as [image: there is no content]. For each x with [image: there is no content], if we choose a [image: there is no content], then for all sufficiently large n, n∫[image: there is no content]f([image: there is no content])d[image: there is no content]>f(x)-δ, since the area of [image: there is no content] is equal to [image: there is no content]. Using arguments similar to those used in (69)–(72) from [24], we have


I3≤(1+ϵ)nk-1ke-(n-k-1)(f(x)-δ)[image: there is no content]










×∫nn[image: there is no content](lnu)ϵu-11-∫Cx(ϕn(u))f([image: there is no content])d[image: there is no content]du



(19)




The integral in (19) after changing the variable, [image: there is no content], takes the form


∫2n2[image: there is no content]lnnt2ϵt-1(1-G2,1,x(t))dt










=∫2n1+∫12[image: there is no content]lnnt2ϵt-1(1-G2,1,x(t))dt



(20)




since [image: there is no content] and 1-∫Cx(ϕ2(t))f([image: there is no content])d[image: there is no content]=1-G2,1,x(t)). The first integral in the right side of (20) is bounded as follows:


∫2n1lnnt2ϵt-1(1-G2,1,x(t))dt≤n2lnn2ϵ



(21)




while for the second one, we have


∫12[image: there is no content]lnnt2ϵt-1(1-G2,1,x(t))dt≤[image: there is no content]lnn2ϵE[η2,1,x]+[image: there is no content]lnn2ϵB



(22)




where


B=∫12[image: there is no content](lnt)ϵt-1(1-G2,1,x(t))dt=11+ϵE|lnη2,1,x|1+ϵ











Combination of (15)–(22) and [image: there is no content] yields [image: there is no content].



Remark. Note that


1-It2(12,p-12)≈1B(12,p-12)(t2)-12(1-t2)p-12≈2p-12B(12,p-12)(1-t)p-12ast↑1








where [image: there is no content] is the beta function. Hence, in the conditions (Aj),j=2, 4, 6 and 8, the difference 1-I(xT[image: there is no content])2(12,p-12) can be replaced by 1-xT[image: there is no content].




2.2. Consistency of [image: there is no content]


Lemma 2.4. Under the following conditions: for some [image: there is no content],



[image: there is no content]:∫[image: there is no content]|lnf(x)|2+ϵf(x)dx<∞,



[image: there is no content]:∫[image: there is no content]∫[image: there is no content]ln[1-I(xT[image: there is no content])2(12,p-12)]2+ϵf(x)f([image: there is no content])dxd[image: there is no content]<∞,



the asymptotic variance of [image: there is no content] is finite and equals [image: there is no content], where [image: there is no content] is the trigamma function.



Proof. The conditions [image: there is no content] and [image: there is no content], and the argument similar to the one used in the proof of Theorem 2.3, yields


lim[image: there is no content]E[Ln,i2|[image: there is no content]=x]=E[Li2|[image: there is no content]=x]








Therefore, it is sufficient to prove that Vf[[image: there is no content]]=Vf(lnf(X))+ψ1(k). Similarly to (14), we have


E[Li2|[image: there is no content]=x]=∫0∞[lnf(x)+lnk-lnz]2zk-1(k-1)!e-zdz










=[lnf(x)+lnk]2-2[lnf(x)+lnk]ψ(k)+Γ′′(k)/Γ(k)



(23)




Since [image: there is no content],


E[Li2|[image: there is no content]=x]=[lnf(x)+lnk-ψ(k)]2+ψ1(k)



(24)




After some algebra, it can be shown that


Vf[[image: there is no content]]=Ef[(lnf(X))2]-(Ef[lnf(X)])2+ψ1(k)










=Vf[lnf(X)]+ψ1(k)



(25)




☐



Lemma 2.5. For a fixed integer [image: there is no content], [image: there is no content] are asymptotically pairwise independent.



Proof. For a pair of random variables [image: there is no content] and [image: there is no content] with [image: there is no content] and [image: there is no content]≠Xj, following the similar argument for Lemma 2.1, [image: there is no content] and [image: there is no content] shrink as n increases. Thus, it is safe to assume that [image: there is no content] and [image: there is no content] are disjoint for large n, and [image: there is no content] and [image: there is no content] are independent. Hence Lemma 2.5 follows. ☐



Theorem 2.6. Under the conditions ([image: there is no content]) through [image: there is no content], the variance of [image: there is no content] decreases with sample size n, that is


lim[image: there is no content]Vf[[image: there is no content](f)]=0



(26)




and [image: there is no content] is a consistent estimator of [image: there is no content].



Theorem 2.6 can be established by using Theorem 2.3 and Lemmas 2.4 and 2.5, and


lim[image: there is no content]Vf[[image: there is no content](f)]=lim[image: there is no content]1n{Vf[lnf(X)]+ψ1(k)}=0











For a finite sample, the variance of [image: there is no content] can be approximated by [image: there is no content]. For instance, for the uniform distribution, [image: there is no content] and V[[image: there is no content](f)]≈ψ1(k)/n and for a vMFp[image: there is no content], V[[image: there is no content](f)]≈1n[κ2Ap′(κ)+ψ1(k)]. See the illustration in Figure 1. The simulation was done with sample size [image: there is no content] and the number of simulations was [image: there is no content]. Since [image: there is no content] is a decreasing function, the variance of [image: there is no content] decreases when k increases.


Figure 1. Variances of [image: there is no content] by simulation and approximation.



[image: Entropy 13 00650 g001]










3. Estimation of Cross Entropy and KL-divergence


3.1. Estimation of Cross Entropy


The definition of cross entropy between continuous pdf’s f and g is,


H(f,g)=-∫f(x)lng(x)dx



(27)







Given a random sample of size n from f, {[image: there is no content]}, and a random sample of size m from g, {[image: there is no content]}, on a hypersphere, denote the knn density estimator of g by [image: there is no content]. Similarly to (7),


[image: there is no content]([image: there is no content])=k/mS([image: there is no content])



(28)




where [image: there is no content] is the distance from [image: there is no content] to its k-th nearest neighbor in {[image: there is no content]}. Analogously to the entropy estimator (9), the cross entropy can be estimated by:


[image: there is no content](f,g)=1n∑i=1nlnS([image: there is no content])+lnm-ψ(k)



(29)







Under the conditions ([image: there is no content])–[image: there is no content], for a fixed integer [image: there is no content], one can show that [image: there is no content] is asymptotically unbiased. Moreover, by similar reasoning applied for [image: there is no content], one can show that [image: there is no content] is also consistent and [image: there is no content]. For example, when both f and g are vMF with the same mean direction and different concentration parameters, [image: there is no content] and [image: there is no content], respectively, the approximate variance will be 1n[κ22Ap′([image: there is no content])+ψ1(k)]. Figure 2 shows the approximated and simulated variance of the knn estimators for cross entropy are close to each other and both decrease with k. The simulation is done with sample size [image: there is no content] and the number of simulations was [image: there is no content].


Figure 2. Variances of [image: there is no content] by simulation and approximation.



[image: Entropy 13 00650 g002]









3.2. Estimation of KL-Divergence


KL-divergence is also known as relative entropy. It is used to measure the similarity of two distributions. Wang et al. [24] studied the knn estimator of KL-divergence for distributions defined on [image: there is no content]. Here we propose the knn estimator of KL-divergence of continuous distribution f from g defined on a hypersphere. The KL-divergence is defined as:


KL(f∥g)=Ef[lnf(X)/g(X)]=∫f(x)ln[image: there is no content]g(x)dx



(30)







Equation (30) can also be expressed as [image: there is no content]. Then the knn estimator of KL-divergence is constructed as [image: there is no content](f,g)-[image: there is no content](f), i.e.,


KLn,m(f∥g)=1n∑i=1nlnfn([image: there is no content])[image: there is no content]([image: there is no content])=1n∑i=1nlnS([image: there is no content])[image: there is no content]+lnmn



(31)




where [image: there is no content]([image: there is no content]) is defined as in (28). Besides, for finite samples, the variance of the estimator, [image: there is no content], is approximately [image: there is no content]. When f and g are vMF as mentioned above, with concentration parameter [image: there is no content] and [image: there is no content], respectively, we have:


Vf[lnf(X)]=κ12Ap′([image: there is no content])Vf[lng(X)]=κ22Ap′([image: there is no content])








and


Covf[lnf(X),lng(X)]=[image: there is no content][image: there is no content]Ap′([image: there is no content])








So the approximate variance is 1n[([image: there is no content]-[image: there is no content])2Ap′([image: there is no content])+2ψ1(k)]. Figure 3 shows the approximated and simulated variance of the knn estimators for KL-divergence. The approximation for von Mises-Fisher distribution is not as good as the one for uniform distributions. This could be due to the modality of von Mises-Fisher distributions or the finitude of sample sizes. The larger the sample size, the closer the approximation is to the true value.


Figure 3. Variances of [image: there is no content] by simulation and approximation.



[image: Entropy 13 00650 g003]








In summary, we have



Corollary 3.1. (1) Under conditions ([image: there is no content]),([image: there is no content]) and for some [image: there is no content],



(A5):∫[image: there is no content]|lng(x)|1+ϵf(x)dx<∞,



(A6):∫[image: there is no content]∫[image: there is no content]ln[1-I(xT[image: there is no content])2(12,p-12)]1+ϵf(x)g([image: there is no content])dxd[image: there is no content]<∞,



for a fixed integer [image: there is no content], the knn estimator of KL-divergence given in (31) is asymptotically unbiased.



(2) Under condition [image: there is no content],[image: there is no content] and for some [image: there is no content],



(A7):∫[image: there is no content]|lng(x)|2+ϵf(x)dx<∞,



(A8):∫[image: there is no content]∫[image: there is no content]ln[1-I(xT[image: there is no content])2(12,p-12)]2+ϵf(x)g([image: there is no content])dxd[image: there is no content]<∞,



for a fixed integer [image: there is no content], the knn estimator of KL-divergence given in (31) is asymptotically consistent.



To prove the last two corollaries, one can follow the similar steps proposed in Wang et al. [24].





4. Simulation Study


To demonstrate the proposed knn entropy estimators and assess their performance for finite samples, we conducted simulations for the uniform distribution and von Mises-Fisher distributions with the p-coordinate unit vector, [image: there is no content], as the common mean direction for [image: there is no content] and 10. For each distribution, we drew samples of size [image: there is no content], 500 and 1000. All simulations were repeated [image: there is no content] times. Bias, standard deviation (SD) and root mean squared error (RMSE) were calculated.



4.1. Bias and Standard Deviation


Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9 show simulated bias and standard deviation of the proposed entropy, cross-entropy and KL-divergence estimators along different k. The pattern for the standard deviation is clear. It decreases sharply then slowly as k increases. This is consistent with the variance approximations described in Section 2 and Section 3. The pattern for bias is diverse. For uniform distributions, the bias term is very small. When the underlying distribution has a mode, for example, vMF models used in the current simulations, the relation between bias and k becomes complex and the bias term can be larger for larger k values.


Figure 4. [image: there is no content] (dashed line) and standard deviation (solid line) of entropy estimate [image: there is no content] for uniform distributions.



[image: Entropy 13 00650 g004]





Figure 5. [image: there is no content] (dashed line) and standard deviation (solid line) of entropy estimate [image: there is no content] for vMFp([image: there is no content],1) distributions.
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Figure 6. [image: there is no content] (dashed line) and standard deviation (solid line) of cross entropy estimate [image: there is no content] for uniform distributions.
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Figure 7. [image: there is no content] (dashed line) and standard deviation (solid line) of cross entropy estimate [image: there is no content] for f=vMFp([image: there is no content],1) and [image: there is no content] uniform distributions.



[image: Entropy 13 00650 g007]





Figure 8. [image: there is no content] (dashed line) and standard deviation (solid line) of KL-divergence estimate [image: there is no content] for uniform distributions.
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Figure 9. [image: there is no content] (dashed line) and standard deviation (solid line) of KL-divergence estimate [image: there is no content] for f=vMFp([image: there is no content],1) and [image: there is no content] uniform distributions.
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4.2. Convergence


To validate the consistency, we conducted simulations of different sample size n from 10 to 100,000 for the distribution models used above. Figure 10 and Figure 11 shows the estimates and theoretical values of entropy, cross-entropy and KL-divergence for different sample sizes with [image: there is no content] and [image: there is no content] 2–12, respectively. The proposed estimators converge to the corresponding theoretical values quickly. Thus the consistency of these estimators are verified. The choice of k is an open problem for knn based estimation approaches. These figures show that using lager k, e.g., the logarithm of n, for lager n, is giving a slightly better preference.


Figure 10. Convergence of estimates with sample size n using the first nearest neighbor. For vMFp, [image: there is no content].
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Figure 11. Convergence of estimates with sample size n using [image: there is no content] nearest neighbors. For vMFp, [image: there is no content].
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4.3. Comparison with the Moment-Recovered Construction


Another entropy estimator for hyperspherical data was developed recently by Mnatsakanov et al. [10] using MR approach. We call this estimator the MR entropy estimator and denote it by [image: there is no content]:


Hn(MR)(f)=-1n∑i=1nlnPn,t([image: there is no content])+lnS(arccost)



(32)




where Pn,t([image: there is no content]) is the estimated probability of the cap {[image: there is no content]∈[image: there is no content]:[image: there is no content]T[image: there is no content]≥t} defined by the revolution axis [image: there is no content] and t is the distance from the cap base to the origin and acts as a tuning parameter. Namely, (see Mnatsakanov et al. [10]),


Pn,t([image: there is no content])=1n-1∑j=1,j≠in∑k=⌊nt⌋+1nnk(XjT[image: there is no content])k(1-XjT[image: there is no content])n-k



(33)







Via simulation study, the empirical comparison between [image: there is no content] and [image: there is no content] was done for the uniform and vMF distributions. The results are presented in Table 1. The values of k and t listed in the table are the optimal ones in the sense of minimizing RMSE. Z-tests and F-tests (at [image: there is no content]) were performed to compare the bias, standard deviation (variance) and RMSE (MSE) between the knn estimators and corresponding MR estimators. In general, for uniform distributions, there are no significant difference for biases. Among other comparisons, the differences are significant. Specifically, knn achieves slightly smaller bias and RMSE values than those of the MR method. The standard deviations of knn method are also smaller for the uniform distribution but larger for vMF distributions than those based on MR approach.



Table 1. Comparison of knn and moment methods by simulations for spherical distributions.







	
Method

	
knn

	
MR






	
p

	
n

	
k

	
bias

	
SD

	
RMSE

	
t

	
bias

	
SD

	
RMSE




	
Uniform:

	

	

	

	

	

	

	

	

	




	
3

	
100

	
99

	
0.00500

	
0.00147

	
0.00521

	
0.01

	
0.00523

	
0.01188

	
0.01298




	
3

	
500

	
499

	
0.00100

	
0.00013

	
0.00101

	
0.01

	
0.00107

	
0.00233

	
0.00257




	
3

	
1000

	
999

	
0.00050

	
0.00005

	
0.00050

	
0.01

	
0.00051

	
0.00120

	
0.00130




	
10

	
100

	
99

	
0.00503

	
0.00130

	
0.00520

	
0.01

	
0.00528

	
0.01331

	
0.01432




	
10

	
500

	
499

	
0.00100

	
0.00011

	
0.00101

	
0.01

	
0.00102

	
0.00264

	
0.00283




	
10

	
1000

	
999

	
0.00050

	
0.00004

	
0.00050

	
0.01

	
0.00052

	
0.00130

	
0.00140




	
vMFp(ep,1):

	

	

	

	

	

	

	

	

	




	
3

	
100

	
71

	
0.01697

	
0.05142

	
0.05415

	
0.30

	
0.02929

	
0.04702

	
0.05540




	
3

	
500

	
337

	
0.00310

	
0.02336

	
0.02356

	
0.66

	
0.00969

	
0.02318

	
0.02512




	
3

	
1000

	
670

	
0.00145

	
0.01662

	
0.01668

	
0.74

	
0.00620

	
0.01658

	
0.01770




	
10

	
100

	
46

	
0.02395

	
0.02567

	
0.03511

	
0.12

	
0.02895

	
0.02363

	
0.03737




	
10

	
500

	
76

	
0.00702

	
0.01361

	
0.01531

	
0.40

	
0.01407

	
0.01247

	
0.01881




	
10

	
1000

	
90

	
0.00366

	
0.01026

	
0.01089

	
0.47

	
0.01115

	
0.00907

	
0.01437














5. Discussion and Conclusions


In this paper, the knn based estimators for entropy, cross-entropy and Kullback-Leibler divergence are proposed for distributions on hyperspheres. Asymptotic properties such as unbiasedness and consistency are proved and validated by simulation studies using uniform and von Mises-Fisher distribution models. The variances of these estimators decrease with k. For uniform distributions, variance is dominant and bias is negligible. When the underlying distributions are modal, the bias can be large if k is large. In general, we conclude that the behavior of knn and MR entropy estimators have similar performance in terms of root mean square error.
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