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Abstract: Hawking radiation and Bekenstein-Hawking entropy are the two robust

predictions of a yet unknown quantum theory of gravity. Any theory which fails to

reproduce these predictions is certainly incorrect. While several approaches lead to

Bekenstein-Hawking entropy, they all lead to different sub-leading corrections. In this

article, we ask a question that is relevant for any approach: Using simple techniques, can

we know whether an approach contains quantum or semi-classical degrees of freedom?

Using naive dimensional analysis, we show that the semi-classical black-hole entropy has the

same dimensional dependence as the gravity action. Among others, this provides a plausible

explanation for the connection between Einstein’s equations and thermodynamic equation of

state, and that the quantum corrections should have a different scaling behavior.
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Entropy is a derived quantity and does not show up in any fundamental equation of motion. However,

in any physical theory, entropy takes unique position amongst other quantities. This is due to the fact

that entropy relates the macroscopic and microscopic degrees of freedom (DOF) through Boltzmann

relation [1]:

S = kB ln Ω (1)

where kB is Boltzmann constant and Ω is total number of micro-states. Hence, it is not surprising that

there has been intense research activity in obtaining the microscopic description of Bekenstein–Hawking

entropy [2]:
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where, AH is the area of black-hole horizon, M2
Pl

≡ 1/(8πG), l2
Pl

are Planck mass and Planck

length, respectively.

While several approaches lead to SBH, none of these approaches can be considered to be complete.

For instance, in string computations, BPS states are well-defined only for (near) extremal black-holes

[3,4]. In conformal field theory approach [5,6], where the horizon is treated as boundary, the vector fields

(which generate the symmetries) do not have a well-defined limit at the horizon [7]. Besides, all these

approaches lead to different sub-leading corrections to SBH. For instance, conformal field theory [6] and

quantum geometry approaches [8] lead to logarithmic corrections while the string [4] and entanglement

computations [9,10] lead to power-law corrections.

In hindsight, one can say this is probably expected; different approaches count different microscopic

states that are valid in domains of their applicability. In the absence of a consistent quantum theory

of gravity, it is not possible to know the microscopic DOF, and hence, the subject of black-hole

thermodynamics resembles a jig-saw puzzle. To put several pieces together in this puzzle, the best

strategy is to slowly build a coherent picture and hope to understand/solve some of these problems.

The purpose of this article is an attempt in this direction and we ask: Is there a way one can classify

these different subleading corrections to the Bekenstein-Hawking entropy? In other words, Using simple
techniques, can we know whether an approach contains semi-classical or quantum DOF? The answer

to this question is relevant for any approach to black-hole entropy.

We show that the naive dimensional analysis [11] provides crucial information about the

semi-classical and(or) quantum nature of the sub-leading terms. Among others, this provides an

explanation for the connection between Einstein’s equations and thermodynamic equation of state. Using

this, we argue that quantum entanglement is crucial to gain insights on black-hole thermodynamics.

But, why is it important to understand sub-leading corrections to SBH? In order to exemplify this, let

us compare black-hole entropy with ideal gas entropy. The classical entropy of mono-atomic ideal gas

is given by
S

ideal

k
B
N

= ln
(
V T 3/2

)
(3)

where V, T,N correspond to volume, temperature and number of particles, respectively.

Assuming that all atoms move independently, we can obtain the number of quantum states and, hence,

the Sackur-Tetrode entropy [13]
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where M is the mass of the gas.

Among others, there are two main reasons for the relevance of S
ST

to black-hole entropy: Firstly,

S
ST

depends on the mass of the DOF of an ideal gas—the individual atom; the classical expression has

no explicit mass dependence. In other words, varied DOF can lead to identical classical expression

while sub-leading terms which contain information about the DOF will be different. Similarly,

several approaches to black-hole entropy lead to identical SBH; however, they lead to different

sub-leading corrections.

Secondly, quantum correction to classical entropy [third term in the RHS of Equation (4)] does not

depend on the macroscopic quantities. It is needless to say that this could not have been foreseen by
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physical arguments. In the same manner, it would be impossible to predict quantum corrections to SBH.

If one uses symmetry arguments based on classical action, then what we may obtain, as discussed below,

will be proportional to the form obtained from dimensional analysis [14].

Having addressed the importance of sub-leading corrections, we show that naive dimensional analysis

provides information about the quantum/semi-classical nature of the sub-leading terms. Let us consider

the Einstein-Hilbert action in 4-dimensions:

S
EH

=
M2

Pl

2

∫
d4x

√−g R . (5)

Dimensional analysis of the above action leads to

S
EH

∝ M2
Pl

× [L]2 (6)

Dimensional analysis of 4-dimensional Bekenstein-Hawking entropy Equation (2) leads to

SBH ∝ M2
Pl

× [L]2 (7)

Attentive reader might realize that the Einstein-Hilbert action Equation (6) and Equation SBH (7) have

the same dimensional dependence, indicating that the semi-classical black-hole entropy seem to follow

the (classical) gravity action and ask, does this relation hold for a general gravity action?

Let us now consider a D-dimensional gravity action:

S
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=
1

16πG
D

∫
dDx

√−g
[
R + αF (R2) + β G(R3) + · · · ]

=
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16π
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[
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where GD,MP
are D-dimensional Newton’s constant and Planck mass, respectively, F (R2) include

combination of R2, RABR
AB, RABCDR

ABCD terms, G(R3) includes cubic terms, and α, β are

dimension-full constants. The above action includes Lovelock gravity whose equations of motion are

quasi-linear [15,16]. Dimensional analysis of this action leads to:

S
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P

× [L]D−2
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α
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]
(9)

The Noether charge entropy corresponding to this action is given by [17]:

S
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4
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where AD is the horizon area of black-holes in D-dimensional space-time. It is important to note that

in deriving Bekenstein-Hawking and Noether charge entropy, it is assumed that the back-reaction of the

Hawking particles are negligible.

Dimensional analysis of the entropy leads to:

S
NC
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P
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]
(11)

This observation indicates that the (semi-classical) black-hole—like SBH and No-ether charge—entropy

in any gravity theory follow the form of the classical gravity action. So, what are the physical
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consequences of this observation? Firstly, this feature is specific to gravity and, to author’s

knowledge, can not be seen in other fundamental interactions. Comparing Equation (4) with the

electromagnetic action:

SEM = −1

4

∫
d4 xFμνF

μν , (12)

it is clear that the entropy of ideal gas and the electromagnetic action do not have same

dimensional dependence.

The above observation can be viewed as the primary reason as to why Einstein’s equations can be

viewed as thermodynamic equation of state [18,19]. The crucial input, which leads to thermodynamic

equation from Einstein equations, is the form of the entropy Equation (2), Equation (10). For instance, if

we consider the power-law corrections to the Bekenstein-Hawking entropy in 4-dimensional space-times

arising from entanglement [9], and use the approach of Jacobson or Padmanabhan, Einstein equations

can not be rewritten as first law of thermodynamics. In the recent proposal by Verlinde [20,21],

interpreting gravity as entropic force, there is an implicit assumption about the entropy-area relation [22].

Secondly, in ideal gas, the quantum corrections to the (semi)classical entropy do not have any

volume dependence. For black-hole entropy, this suggests that quantum gravitational corrections to

SBH will include terms which may not follow the form of the classical gravity action. At least two

of the approaches to black-hole entropy do seem to agree with this observation: (i) In quantum

geometry approach, it was shown that Hilbert space of the horizon of spherically symmetric space-time

is 2d SU(2)k Wess-Zumino model leading to generic logarithmic corrections [8]. (ii) Entanglement

entropy of the metric perturbations, about the black-hole background in 4-dimensional general relativity,

lead to power-law corrections [9,10].

Lastly, this provides a simple way to classify approaches which predict corrections to

Bekenstein-Hawking entropy. For instance, approaches discussed in [4,23] lead to the form which is

similar to Equation (10) while that obtained in [9] do not follow Noether charge entropy. In other

words, this suggests that if any approach to black-hole entropy predicts the same dimensional form as

the classical action of gravity, then this approach only provides semi-classical, and not quantum, structure

of gravity. This might seem a strong assertion, however, it would be an even stronger claim if one says

that the quantum corrections to SBH follow the same dimensionality of the classical action. For instance,

the power-law corrections to the Bekenstein-Hawking entropy obtained by Demers et al. [23] have the

same form as the Noether charge entropy Equation (10).

These conclusions raise a related question: Why the entropy of a black-hole, and not (neutron) star,
has the same dimensional form as the classical gravity action? Classically, stars and black-holes are

described by spherically symmetric solutions of gravity and matter action Equation (5), Equation (8).

However, it is the existence of the event-horizon which distinguishes black-holes and stars. Hence,

quantum gravity should have a mechanism to account the existence of the horizon which would

imply that the semi-classical entropy of black-holes, and not stars, has the same dimensional form as

gravity action.

This raises another question: Is there one universal feature which is common to the microscopic theory
which distinguishes black-hole and star? Entanglement, the quantum correlation that exist between

subsystems of a quantum system, is a feature of quantum system. The presence of the event-horizon



Entropy 2011, 13 15

gives rise to natural emergence of entanglement entropy [24,25] and, hence, distinguishing the entropy

associated to black-holes and stars.

Interestingly, entanglement provides natural explanation for the area-dependence of black-hole

entropy. For a bipartite system in a pure state, tracing over given subsystem and its complementary

system yield identical entanglement entropies [26]. As shown in [9], the interaction terms across the

boundary contribute significantly to the entanglement entropy, hence, entanglement entropy is a function

of the boundary [Sent ∝ F (A)] which in the case of black-holes is the event-horizon. It is now known

that, for fields in (i) vacuum: F (A) = A [24,25], (ii) excited states: F (A) = c0A + c1/A
μ (c0, c1, μ are

positive real numbers) [9,10].

The central thesis in this article has been to put together some pieces of the jig-saw puzzle which one

encounters in obtaining a microscopic description of black-hole entropy. Starting from the observation

that the entropy of black-hole has the same dimensional dependence as that of classical gravity action, we

have shown that it is plausible to differentiate between different approaches. Interestingly, this provides

a plausible understanding for the connection between Einstein’s equations and thermodynamic equation

of state. We also have provided arguments as to how entanglement provides a natural framework to

understand black-hole thermodynamics.

There are several conceptual issues which are unresolved: What makes gravity special that the

dimensional analysis of the gravity action almost directly implies the maximum entropy the gravitational

object can have? How to show from fundamental principle that the above observation indeed is the key

to rewrite Einstein equation as thermodynamics of space-time? These are currently under investigation.
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