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Abstract: Statistical vibroacoustics, also called statistical energy analysis (SEA) in the field

of engineering, is born from the application of statistical physics concepts to the study of

random vibration in mechanical and acoustical systems. This article is a discussion on

the thermodynamic foundation for that approach with particular emphasis devoted to the

meaning of entropy, a concept missing in SEA. The theory focuses on vibration confined

to the audio frequency range. In this frequency band, heat is defined as random vibration

that is disordered vibration and temperature is the vibration energy per mode. Always

in this frequency band, the concept of entropy is introduced and its meaning and role in

vibroacoustics are enlightened, together with the related evolutionary equation. It is shown

that statistical vibroacoustics is non-equilibrium thermodynamics applied to the audio range.

Keywords: entropy; non-equilibrium thermodynamics; vibroacoustics; statistical energy

analysis; friction

1. Motivation for Statistical Vibroacoustics

Vibracoustics is the science of structural waves, acoustical waves and their interaction. Presented

in classical textbooks, vibroacoustics is usually divided into the study of propagation of waves, natural

modes, radiation of sound, sound transparency and structural response. This science is at the interface

of acoustics and elastodynamics that is the theories of propagation of small perturbations in fluids
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and solids. As such, vibroacoustics focuses on the coupling between structural and acoustical waves.

Vibroacoustics is fully operative for prediction and control of systems as well as it explains in a

satisfactory way all phenomena within its range of application. This is a well-known theory daily applied

in science and engineering and whose foundations are well-established. In that sense, vibroacoustics

could be considered as finished from the theoretical point of view.

The investigation of the governing equations of vibrating structures and acoustics began in the

eightieth century with the study of string vibration by d’Alembert and beams by Euler and Bernoulli.

During the nineteenth century and the early of the twentieth century, the governing equations for

almost all simple vibrating systems have been derived, plates by Germain, beams with shear effect by

Timoshenko, shells by Donnell, high order plate theory by Mindlin but with many other contributors

such as Helmholtz, Kirchhoff, Rayleigh, Sommerfeld, Love, Lamb and many others. The famous

Rayleigh’s treatise, The Theory of Sound, published in 1894 for the second edition and always available

in bookstores [1], gives a precise idea of what was the state of the art at the end of the ninetieth century.

But the solving of the governing equations more specifically with fluid-structure interaction, is

relatively more recent. Indeed, some of these solutions for pure structural or acoustical problems are

very old. The discovery of propagative solutions in strings and their normal modes makes strings the

first example of vibrating structure entirely solved. But closed-form solutions for sound radiation or

structural response have been discovered up to the seventies. In this concern, the introduction of complex

analysis methods and in particular the Wiener-Hopf method led to significant advances. For instance,

Crighton [2] solved the problem of an acoustical spherical wave impinging an infinite membrane and

Davies [3] the problem of sound radiation of semi-infinite membranes. Many other canonical problems

of vibroacoustics were solved with the wave approach and the power of complex analysis. In the case of

finite structures, the modal approach has been shown to be more appropriate. The major advance was to

recognize that sound radiation is mainly due to edges, corners and other singularities. Jointly with these

two approaches, wave method for infinite or semi-infinite problems and modal decomposition for finite

structures, almost all canonical problems of sound radiation and structural response have been solved

either with exact or approximated solutions.

The eighties are the period of numerical developments. The development of finite element softwares

gave a decisive advantage to the modal approach. The computation of eigenfrequencies and eigenmodes

of complex structures, that is not possible by hand beyond simplest geometries, is numerically reducible

to a common problem of linear algebra. Indeed, computers are the best tool to solve large linear sets

of equations. This is why a race for power has been engaged for these three last decades. During the

eighties, the number of degrees of freedom that was manageable on strongest computers was only about

few hundreds of thousand. It was about the million during the nineties while it is now common to solve

problems with one dozen of million degrees of freedom.

The duality of wave and modal approaches is somewhat general. But beyond the case of infinite or

semi-infinite geometries where the wave approach is the only one applicable giving analytical solutions,

the systematic use of computers has given credence to the idea that the modal approach is the only

one efficient in practice. Most of problems can be solved by the modal approach (we do not discuss

the mathematical conditions for the existence of a modal basis, but say that structures and acoustical

cavities are finite). From the knowledge of eigenmodes, it is possible to compute the response of system
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to any excitation, in both time and frequency domain. We could say roughly that the behaviour of

vibroacoustical systems is reducible to the knowledge of their modal basis. Therefore, in practice, the

only difficulty is to compute the modal basis that is well-done by computers.

But this approach by the ’brute force’ has three limitations.

First of all, the mathematical condition for convergence of finite element method imposes a fixed

number of degrees of freedom per wavelength (in practice seven is considered satisfactory). But, when

the frequency of analysis increases, the wavelength decreases therefore the total number of degrees

of freedom increases drastically. Since computers have a limited capacity, no computation is possible

beyond a certain limit frequency. Nowadays, this limit is not so high (Table 1) in regards to the audio

frequency range 20 Hz–20 kHz.

Table 1. Typical values of maximum frequency for a finite element model of order of several

millions degrees of freedom.

automotive 500 Hz

aircraft 50 Hz

large ship 10 Hz

launcher 1 Hz

The second limitation is concerned with modal overlap. Modal overlap is a measure of the overlapping

of successive modes. If the resonance peaks of two successive modes in the frequency response function

are clearly separated, the modal overlap is low. But if the peaks are closed meaning that the valley

between them is not deep, the modal overlap is high (Figure 1). In the extreme case of a very large modal

overlap, peaks can totally vanish and the frequency response function is smooth. Modes exist but are

not visible. They cannot be distinguished by a modal analysis and their utility is therefore questionable.

Why to spend so much effort in calculating the modes which individually do not influence the response

of system?

The third limitation is about the amount of available information. When the number of modes is large,

the results provided by finite element softwares i.e., values of natural frequencies, mode shapes and the

repartition of vibration among them, become sensitive to small modifications of the model (Figure 2).

And indeed, nothing can be known exactly. This sensibility to details has also been observed on actual

population of similar systems [4]. In this case, probability or alternative theories such as info-gap

approach are unavoidable [5]. The raised question is the following one. Even if we wait for the venue

of super large computer (Moore’s law which is valid for several decades now, tells us that the capacity

of computers is just a question of time), what to do with a so large amount of information? Is-it realistic

to consider that the knowledge of natural frequencies is relevant to predict the behaviour of

vibroacoustical systems?

For these three reasons, the modal approach fails when the frequency of analysis is too high.

This is why an alternative statistical approach called statistical energy analysis, has been developed

in vibroacoustics.
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Figure 1. Modal density n-modal overlap M . Typical shapes of frequency response function

for large modal density n >> 1 and large modal overlap M >> 1.

M

n

indistinguishable modes

large population

Figure 2. Sensitivity of frequency response function to details of model. Numerical models

are reliable at low frequency but become sensitive to small fluctuations at high frequency.
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2. Statistical Energy Analysis

Statistical energy analysis (SEA) is born from the application of statistical physics concepts to

vibroacoustics [6]. Elaborated during the sixties, this theory lies on a simple idea: When the number of

modes in vibroacoustical systems is so large that the solving of governing equations becomes unrealistic,

it is preferable to give up a deterministic description of the system and to adopt a statistical point of view.

However, the application of statistical method to a particular field of physics is usually not sufficient

to automatically obtain an effective theory. The use of statistics must be justified by the existence of a

collective behaviour of the physical system, something like an empirical law observable at macroscopic

scale. This law usually stems from the complexity of the behaviour of large populations. And in the

same time, this law must not hold for single individual otherwise the statistical assumption would not

add anything else that we ever know. The general problem is to introduce one or several macroscopic

variables whose behaviour is statistically simple. For instance, in the kinetic theory of gases, temperature
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and pressure play the role of these macroscopic variables and the law of perfect gases expresses a simple

collective behaviour.

In the special case of vibroacoustics, the key result was to recognize that the energy transfer between

mechanical oscillators is considerably simplified when excitation forces are random processes. The

canonical problem is the following one: Two mechanical oscillators with stiffness ki, mass mi and

viscous damping ci where i = 1, 2 are excited by external random forces fi(t). They dissipate energy in

dashpots but they also exchange mechanical power through a coupling spring K as shown in Figure 3. It

has been demonstrated [7–10] that in such a situation the power being exchanged between two oscillators

is proportional to the difference of vibrational energies. That is,

P12 = g (E1 − E2) , (1)

where g is a function of mechanical parameters ki, mi, ci and K. Indeed this result is not true in its strict

sense but only in a statistical sense. External forces fi(t) must be stationary random processes with zero

means, white noise (constant power spectral density) and mutually uncorrelated (zero cross-correlation

function). The coupling must be light K << ki [11] and conservative [12]. Under these assumptions,

Equation (1) is valid provided that Ei and Pij are respectively the statistical average of vibrational

energies and transmitted power.

Figure 3. Energy exchange between two mechanical oscillators. For random, stationary,

uncorrelated and white noise forces and for light and conservative coupling, the exchanged

power is proportional to the difference of vibrational energies.
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The second ingredient in the development of statistical vibroacoustics was that this simple

proportionality also holds for multi-modal systems provided that the vibrational energies are substituted

with the modal energies i.e., the vibrational energy Ei divided by the number of modes Ni [13].

P12 = g′
(
E1

N1

− E2

N2

)
, (2)

where Ni is the number of modes within sub-system i. The coefficient g′ is a function of all mechanical

parameters and is conventionally written as,

g′ = ωN1η12 = ωN2η21 (3)
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where ω is the average frequency of modes and ηij is the so-called coupling loss factor. The

generalization of the single degree of freedom Equation (1) to the multiple degrees of freedom

Equation (2) is a direct consequence of equipartition of vibrational energy within sub-systems (Figure 4).

This the key point of the proof. Equipartition of vibrational energy among modes of same sub-systems

naturally appears under certain conditions [14–16] and is therefore not an additional assumption. The

thermal equilibrium is reached in each sub-system. But Equation (2) tells us more. Vibrational power

flows through the light coupling proportionally to the difference of modal energies. So, by analogy with

thermics, if the modal energy is called ‘vibrational temperature’, Equation (2) is a linear relationship on

power flow and temperatures for adjacent sub-systems which have not the same temperature i.e., which

are not in mutual equilibrium. This is therefore an analogy with linear non-equilibrium thermodynamics.

Figure 4. Energy exchange between two groups of degrees of freedom. All modes of

first sub-system exchange energy with all modes of second sub-system. When equipartition

of energy is fulfilled, the net power exchanged between sub-systems is proportional to the

difference of modal vibrational energy.
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The most important consequence of the statistical law Equation (2) is that it allows a description of

vibroacoustical systems entirely in terms of energy. In steady-state condition, the energy balance of

sub-system i is,

Pi = ωηiEi +
∑
j �=i

(ωηijEi − ωηjiEj) (4)

where Pi is the vibrational power being injected in sub-system i by external sources, ωηiEi the power

being dissipated by internal losses with various physical origins summarized in the damping loss factor

ηi and ωηijEi − ωηjiEj is the net power being exchanged with other sub-systems. The energy balance

Equation (4) is nothing else than the first principle of thermodynamics applied to vibration confined in

the audio frequency range. The principle of statistical energy analysis is summarized in Figure 5. The

complex structure is split in sub-systems constituted of mode group equitably sharing vibrational energy

and lightly coupled with each others.
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Figure 5. Principle of statistical energy analysis. The complex structure is subdivided in

sub-systems containing vibrational energy. Sub-systems can receive power from external

sources, dissipate energy by internal losses and exchange energy with neighbour sub-systems

proportionally with the difference of modal energies.
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Equation (4) is of a great practical interest. It allows the prediction of mean vibrational energy of

sub-systems Ei provided that injected powers Pi are known, without solving the governing equations of

the entire system. The gain is huge. Instead of dealing with N modes where N can be of order of several

millions [17], we deal with n sub-systems where n is considerably lower than N , usually only a couple of

dozens. The solving of the set of linear equations resulting from the finite element model of order ∼7N

is substituted by the solving the set of n linear equations of Equation (4). In practice, sub-systems are

structural components of the system such as beams, plates, shells, acoustical cavities and so on. During

the last decades, the method has been applied in almost all fields of engineering: automotive industry,

shipbuilding [18], civil engineering [19], acoustical isolation [20] and so on. Indeed, the main difficulty

is to choose the sub-systems and in particular to do it in such a way that the light coupling assumption is

not violated and that the equipartition of energy is verified in all sub-systems. The second difficulty is to

obtain efficient relationships of coupling loss factors ηij [21,22]. There is an extensive literature on the

subject of coupling loss factors in various situations, plate-plate coupling, room-plate, beam-plate and

much more. The method also allows an easy determination of energy flow paths [23] and it exists is a

closed connection with ray-tracing [24]. But, instead of discussing the practical interest and difficulties

of statistical energy analysis [25], the rest of the paper focused on a discussion on the meaning of such

an approach and in particular to clarify the analogy with non-equilibrium thermodynamics.

3. Entropy in Statistical Vibroacoustics

The theoretical presentation of statistical vibroacoustics of previous section could be considered as

sufficient from the practical point of view. The statistical law Equation (2) can be derived directly from

the equations of mechanical oscillators and some suitable approximations. The obtained energy balance

Equation (4) is closed so that any further equation is required. The system is entirely described in terms

of vibrational energies and exchanged powers. In that sense, Equation (4) and therefore statistical energy

analysis constitutes a self-sufficient theory of randomly excited mechanical oscillators. Equation (4)
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provides an efficient tool to predict the behaviour of systems and even to control them. From the point

of view of engineering, all the required material is available. Apart from the problem of the effective

determination of the coupling loss factors ηij and their applicability for actual structures, the theoretical

development of statistical vibroacoustics could be stopped here.

But this point of view is limited to the practical interest and does not raise the question of the meaning

of such an approach. In this concern, the presentation of statistical energy analysis would not be complete

without introducing the appropriate entropy concept and the second principle of thermodynamics. The

occurrence of entropy in statistical energy analysis is not only a logical requirement for a complete

and coherent derivation of statistical vibroacoustics, but it is also necessary to understand the exact

link between statistical energy analysis and non-equilibrium thermodynamics beyond their apparent

analogy [26,27].

To introduce entropy in statistical vibroacoustics, we must first specify the dynamical system. A

sub-system is a packet of N modes with increasing natural frequencies ωi i = 1 . . . N . The Hamiltonian

of such a dynamical system is,

H(q1, . . . , qN , p1, . . . , pN) =
N∑
i=1

miω
2
i

2
q2i +

1

2mi

p2i (5)

where qi is the modal deflection and pi the impulsion. In phase space, the trajectory is determined by the

functions qi(t), pi(t), i = 1 . . . N , solutions of the equations of motion. A microstate at time t is therefore

given by the values qi, pi, i = 1 . . . N . This is what is provided by any deterministic method such as

finite element method. But in statistical vibroacoustics, forces are random and it is impossible to predict

the microstate. The position q1, . . . , qN , p1, . . . , pN becomes a random vector in phase space and we

must abandon the idea of determining it exactly. The exact repartition of vibrational energy over modes

is therefore not known. What is claimed in statistical energy analysis is that we are not interested in the
exact repartition of vibrational energy over modes but only in the knowledge of the number of modes N
and the total vibrational energy E of sub-system as shown in Figure 6. A macrostate is therefore given

by the values of the total vibrational energy E and the number of modes N .

Figure 6. Sub-systems in statistical energy analysis. A microstate is determined by the

repartition of vibrational energy ei among modes i while a macrostate is the total vibrational

energy E and the number of modes N .
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Another consequence of the random nature of excitations is that the energy level of individual modes

is not constant. Energy is shared between modes in a random manner. And, if at a given time, a particular
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mode can receive much energy to the detriment of others, at the next time, it will probably receive less

energy. This perpetual modification of the repartition of vibrational energy is not due to a direct exchange

of energy between modes as it is the case in the kinetic theory of gases where collisions of molecules are

responsible of the energy redistribution among molecules. But the important fact is that the trajectory of

sub-system in phase space explores the entire surface of constant energy H(q1, . . . , qN , p1, . . . , pN) = E

and its neighbourhood.

Thus, the situation described above comes down to a somewhat classical problem in statistical

mechanics. The state of a system is only known by its probability density of presence ρ in phase space.

This distribution ρ must indeed verify the normalization condition,∫
ρdΓ = 1, (6)

where dΓ = dq1 . . . dqNdp1 . . . dpN is the infinitesimal volume in phase-space. The mean vibrational

energy E is, ∫
ρHdΓ = E. (7)

The entropy attached to a distribution ρ is defined by,

S = −k
∫
ρ log(ρhN)dΓ (8)

The presence of Planck’s constant is necessary for dimension reason in the argument of the log function.

The usual way to link this continuous definition of entropy with the discrete one, is to divide the phase

space into cells of equal size hN . The probability pi to be in cell i is then pi = ρhN . For small cells,

Equation (8) is then equivalent to the discrete definition of entropy S = −k
∑

i pi log pi.

The determination of the distribution ρ stems from the application the maximum entropy

principle [28], a modern version of Laplace’s principle of insufficient reason. This method to derive the

canonical distribution is sometimes controversial and the debate on this question has been extensively

discussed in Reference [29]. But this is not the only way to get the result and since the rest of paper

focuses on the consequences of the obtained expression of entropy, we shall not discuss the philosophical

justification of the maximum entropy principle. The problem is to maximize S of Equation (8) under the

constraints Equations (6) and (7). It leads to the canonical distribution,

ρ(q1, . . . , qN , p1, . . . , pN) =
exp (−βH)

Z
. (9)

The factors Z and β are two Lagrangian multipliers. They are respectively associated to the constraints

Equations (6) and (7). The partition function Z(β) can be calculated exactly from Equations (5), (6)

and (9). An approximation is,

Z(β) =

(
2π

ωβ

)N

, (10)

where ω is the mean value of ωi i = 1, . . . N . Introducing Equation (9) into Equation (7) yields,

E = − ∂

∂β
logZ(β), (11)

The temperature T , defined from β by T = 1/kβ where k is Boltzmann’s constant, is finally calculated

from Equations (10) and (11),

T =
E

kN
, (12)
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which is the expected result, that is the vibrational temperature is the modal energy divided by

Boltzmann’s constant k.

Let us discuss the meaning of this result. The proportionality of temperature with modal energy

comes from the assumption that the canonical distribution (9) is a continuous function of phase space.

This assumption is natural in the context of classical mechanics. Oscillators described by Equation (5)

can take any arbitrary position in phase space. But in the context of quantum mechanics, this result would

be very different. For quantum oscillators such as introduced by Planck to solve the famous black-body

radiation problem, the vibrational energy can only take discrete values proportional to h̄ω. Canonical

distribution (9) is still valid for the allowed values of the Hamiltonian but Z(β) is now given by a discrete

summation instead of an integral. The final result found by Planck is,

E

N
=

h̄ω

exp( h̄ω
kT
)− 1

. (13)

This law well agrees with Equation (12) for high temperature h̄ω << kT as it can be seen from

a first order development. But for low temperature or very high frequency, the modal energy is

h̄ω exp(−h̄ω/kT ) and the temperature is now given by a log of modal energy. In the context of

vibroacoustics, typical values of vibrational energy are E ∼ 1 mJ and if we consider structure with

a million of degrees of freedom N ∼ 106, we get a modal energy about 10−9 J which is much larger than

h̄ω ∼ 10−30 J as for a typical vibration in the audio frequency range (1 kHz). No quantum effect can be

expected.

The canonical entropy is then obtained by introducing the canonical distribution Equation (9) in

Equation (8) and by using the conditions Equations (6) and (7),

S = k

[
βE + log

(
Z(β)

hN

)]
. (14)

Now, by substituting the expressions of Z and β, it yields,

S(E,N) = kN
[
1 + log

(
2πE

hωN

)]
(15)

This is the expression of the vibrational entropy of sub-system with vibrational energy E shared between

N modes. E and N are two extensive quantities. A priori, both of them can vary. But if a vibrating

system with a time-varying energy E(t) is meaningful, a vibrating system with a time-varying number

of modes N(t) is somewhat unrealistic. It is therefore reasonable to limit the differential form dS to an

energy variation dE,

dS = kN
dE

E
=

dE

T
, (16)

valid for dN = 0. This is the variation of vibrational entropy dS when vibrational energy dE is supplied

to the system. This last expression well matches with Clausius’ definition of entropy if the variation of

internal energy dE is interpreted as a supply of heat δQ by a reversible process.

The meaning of the key result of statistical energy analysis Equation (2) is now more apparent.

The vibrational power exchanged between two adjacent sub-system is proportional to the difference

of vibrational temperatures,

Pij ∝ (Ti − Tj) . (17)

This is a linear relationship between thermodynamic flux Pij and the thermodynamic force Ti − Tj . The

existence of such an equation from the H-theorem is discussed in next section.
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4. The Role of the H-theorem in Statistical Vibroacoustics

The focus of this section is to show that vibrational entropy, through H-theorem, can provide an

alternative way to approach energy method in vibroacoustics.

The starting point is the well known entropy evolution equation:

dS

dt
> 0. (18)

that is one of the most important results both of phenomenological (Clausius) and statistical (Boltzmann)

thermodynamics. Equation (18) can be conceived indeed as a phenomenological nature principle,

postulated as for energy conservation. However, for it, a demonstration was originally provided by

Boltzmann in his famous but also controversial so called H-theorem. Without entering the debate about

controversies, here we adopt this last point of view. In fact, the H-theorem and the evolutionary property

of entropy can be derived in this case in the context of Hamiltonian systems, something that allows

Equation (18) to be directly transposed to vibroacoustics. Examples of entropy evolutions for some

vibroacoustic systems are given in References [26,30] where it is shown Equation (18) can be applied

with some care, essentially related to the hypotheses of H-theorem, if the number of degrees of freedom

is large enough and/or if ensemble averages are considered.

One of the key point in developing statistical energy analysis is the use of Equation (2). However,

as also mentioned in the conclusions of this paper, this is a weak point of the theory. Demonstration

of Equation (2) needs some assumptions that are questionable in vibroacoustics problems. The most

important is related to energy equipartitioning among the modes of the systems. The analysis of

several structural and acoustic systems, shows that many different requirements must be satisfied to

match equipartitioning. Among the others, the following characteristics play a role in departing or

matching this ideal situation [30]: structural non-homogeneity, presence of nonlinearity, weak coupling

between subsystems. This would suggest an alternative approach, that does not make direct use of

Equation (2), the energy constitutive relationship, but starts indeed with Equation (18), based directly on

entropy arguments.

Consider two subsystems, whose energy and entropy are E1, S1 and E2, S2, respectively. The systems

are weakly coupled, such that additive properties hold for energy and entropy: total energy is just sum of

the subsystems energies, because the energy stored in the coupling is negligible because of the weakness

of the coupling, as well as total entropy of the system is sum of those of subcomponents. To obtain

a constitutive relationship, relating energies to energy flow, as in Equation (2), the analysis of free

vibrations is considered, assuming the constitutive equation is independent of the external forces. On

these bases, the following relationships can be used:

• H-theorem: dS/dt > 0

• energy conservation: dE/dt = 0

• additive properties: E = E1 + E2, S = S1 + S2

• exchanged power: P12 = dE1/dt = −dE2/dt
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Simple combination of the previous equations, yields:

(
dS1

dE1

− dS2

dE2

)
P12 ≥ 0 (19)

This result states that the power flow direction, i.e., the sign of P12, depends on the sign of the difference

in bracket, where each term is the gradient of entropy with respect to energy. Equation (19) shows

dSi/dEi control the energy flow between the sub-systems. It is natural to assume the quantity dS/dE

as the measure of the energy absorption capability of a system, and its inverse dE/dS as the system

capability to release energy. This last is the thermodynamic temperature T of the system. Thus:

1

T
=

dS

dE
(20)

With this definition of T , one can assert that energy flows from the higher to the lower temperature.

Equation (19) tells P12 can be expressed as a function of T1 and T2 namely of their difference, provided

that thermodynamic temperature is always positive:

P12 = f(T1 − T2) (21)

This analysis does not provide information on the form of the function f . However, using a Taylor

expansion of Equation (21), about the point (T1 − T2) = 0:

P12 =
N∑
i=0

(T1 − T2)
i d(i)f

d(T1 − T2)i

∣∣∣∣∣
(T1−T2)=0

(22)

Equation (22) produces a constitutive energy relationship, of which Equation (2) is just a special case

obtained keeping only the first order term of the expansion, and making nought the zero-th order term

to satisfy the condition P12 = 0 if (T1 − T2) = 0. However, in Reference [31] it is shown how, in some

cases, a second order expansion is required, even with the first order term equal to zero, depending on

the characteristics of the analysed systems.

Note that the value of the first derivative of f in not known from the previous approach, as for

Equation (2), and its determination would come from further analysis or experimental data, exactly as it

happens using statistical energy analysis. The thermodynamic temperature to be used in Equation (22) in

the one determined deriving Equation (15) with respect to E that produces T ∝ E/N . Thus substituting

this last proportionality in Equation (22) truncated to the first order, Equation (2) is derived.

The results in this section show that one of the questionable pillars of statistical energy analysis,

namely Equation (2), can be simply derived using entropy based arguments. The merit of them is not

only formal, but indeed substantial, since it is recognized in this way Equation (2) is only a particular

constitutive relationship belonging to a the wider family represented in Equation (22).

5. Meaning of Entropy in Statistical Vibroacoustics

The statistical method in vibroacoustics presented in the previous three sections, is applied to the

audio frequency range (macroscopic vibrations) in exactly the same way that statistical mechanics is

applied to thermal vibrations at the molecular scale (microscopic vibrations). The difference between
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statistical vibroacoustics and thermodynamics is therefore mainly a question of scale. The situation

is summarized in Figure 8. Thermodynamics can be viewed as the theory of transformation of work,

that is the mechanical energy with slowing varying forces (low frequency) to heat, that is vibration

energy in thermal range (high frequency) while statistical vibroacoustics focuses on the only audio

frequency range.

Work is the noble form of mechanical energy. It can be used to raise or move objects, to shape, to

cut, to tool material, to compress gases. This is the form of energy useful in all daily mechanical actions.

Heat is the ’degraded’ form of energy. This is basically also a mechanical energy but the movement is

localized at the molecular scale and disordered. Work is the mechanical energy supplied to the system

at the ’human’ scale that is, metre, second and kilogram, while heat is the mechanical energy supplied

at the molecular scale, angstrom, femtosecond and yoctogram. With a so large spectral distance, there is

no ambiguity on what is work and what is heat. The transformation of work into heat and conversely is

possible but is restricted by the second principle of thermodynamics.

The transformation of work in heat is realized for instance, by friction force. In a way, the existence

of friction force and more generally dissipative forces was the main motivation for the elaboration

thermodynamics as a generalization of mechanics (see Reference [32] for this interesting point of

view). The work δW = Fdx > 0 performed by a friction force F during the sliding dx is converted

in heat δQ = δW . This conversion is accompanied by an increase of entropy dS = δQ/T > 0

(see References [33–39] for a review of energetic and entropic approaches in tribology). This is a

transformation of energy from low frequencies to high frequencies (friction arrow in Figure 8). Another

example of such a transformation is turbulence in fluid, where the energy cascade always has the same

direction from low to high frequencies.

The converse mechanism from high to low frequencies is also possible. It is realized for instance by

the expansion of gas. The moving piston which movement is stationary is pushed by molecules of gas

with a disordered movement. The underlying process is the selection of impacts on walls which act in

only one direction, those of the moving piston. This is a transformation of high frequency energy to

low frequency energy (gas expansion arrow in Figure 8). In all cases, a transformation of low frequency

to high frequency energy or the converse requires a highly non-linear mechanical process, shocks or

friction.

In statistical vibroacoustics, the situation is different. The random vibration in the audio frequency

range is our ’degraded’ form of energy and our molecules are modes. Thus, the equivalent of heat in

statistical vibroacoustics is the vibrational energy randomly supplied to the system in the audio frequency

range. We shall call vibrational heat and note δQ this random vibrational energy. The scales are

centimetre, millisecond and gram.

If we consider the situation where all vibrational sources are random, the vibrational heat δQ > 0

is supplied to the system in such a way that its repartition over modes is not known. The increase of

vibrational entropy is therefore dS = δQ/T > 0 where T = E/kN is here the vibrational temperature.

Thus, a random source provides vibrational heat (random source arrow in Figure 8), warms up the system

and therefore increases the vibrational entropy. This behaviour is in good agreement with classical

thermodynamics.
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The status of dissipation processes of vibration in statistical vibroacoustics is more interesting

(damping of vibration arrow in Figure 8). The rate of dissipation of internal energy is dE = −ωηEdt

where η is the damping factor. This an extraction of vibrational heat δQ = dE < 0. Therefore,

the variation of vibrational entropy dS = δQ/T < 0 where T = E/kN is always the vibrational

temperature, is negative. Thus, dissipation processes of vibration by reducing the vibrational level, cool

down the sub-system and therefore reduce the vibrational entropy. This is exactly the converse of what

happens in classical thermodynamics where dissipation processes by transforming work into heat, are

the cause of irreversibility and therefore increase the thermodynamical entropy.

The transformation of thermodynamic heat in vibrational heat is also possible (thermal noise arrow

in Figure 8). Due to the existence of thermal noise, a perfect rest state does not exist. The low frequency

modes of the audio range always have a residual vibration. In the limit case, this low frequency vibration

is in equilibrium with thermal vibration [40]. This phenomenon is sometimes important in mechanical

experiments. This is the case in atomic force microscopy [41].

Finally, the transformation of mechanical work in audio vibration is realized by the friction noise

phenomenon. For instance, when rubbing two metallic samples with rough surfaces [42,43] a noise is

generated at the interface of samples. The basic phenomenon is that many light impacts occur between

antagonist asperities and these impacts are responsible of the vibration in the samples which, in turn,

radiate the sound. Since vibration is generated by light impacts which occur at any time and any location

on the surface in a random manner, the source of sound can be considered as random and the resulting

vibration as vibrational heat δQ > 0. The gain of vibrational entropy is therefore dS = δQ/T > 0

where T = E/kN . This is an irreversible process from the point of view of statistical vibroacoustics

since work is transformed in vibrational heat. This is why it leads to an increase of vibrational entropy.

A similar observation can be done for other types of contact noise such as instabilities in rubber/glass

contact [44] or impact noise in gears [45].

Figure 7. (a) Friction is a conversion of mechanical energy into heat while (b) friction noise

of rough surfaces is a conversion of a part of this mechanical energy into vibration.

(a) (b)
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These examples show that the difference between vibrational temperature and thermal temperature is

not fundamental. In equilibrium situation when the mechanical system is at rest, both thermodynamical

temperature and vibrational temperature are equal. But, in any situation where the mechanical structure is

excited by external forces or sound, this equilibrium is broken and a large difference of temperatures can

be observed. From this point of view, statistical vibroacoustics is the study of incoherent vibration when

there is no equilibrium with thermal vibration (the situation of equilibrium with thermal range being a

limit case). So, statistical energy analysis is the study of incoherent audio frequency vibrational energy.
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The vibrational power is injected by external forces or sound. Sub-systems can exchange vibrational

energy and vibrational energy is also dissipated (a transformation of vibrational energy into heat).

Figure 8. Thermodynamics studies the transformation of work ∼0 Hz in thermal energy

∼1015 Hz. Statistical vibroacoustics focuses on energy which passes in audio frequency

range ∼1 kHz.
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6. Conclusions

The statistical approach applied to vibroacoustics is not fundamentally different from non-equilibrium

thermodynamics. The concepts of vibrational temperature, vibrational heat and vibrational entropy and

their relationships exactly match with the classical definitions and relationships in thermodynamics. We

could say roughly that statistical vibroacoustics is nothing else than the application of thermodynamics to

the audio frequency range. However, the possibility to do it with a certain efficiency is not trivial. In that

concern, everything is possible because of Equation (2) states that random vibrational energy naturally

flows from hot sub-systems to cool sub-systems, or, in other words, Clausius’ principle also applies in

audio frequency range. It is important to note that this relationship cannot be demonstrated within the

framework of statistical vibroacoustics. All the proposed demonstrations are based on the application

of probability theory to the equations of mechanical resonators that is based on considerations on exact

equations of motion. Equation (2) must rather be considered as the starting point of the statistical method

in vibroacoustics in the same manner that Clausius’ principle is a postulate of classical thermodynamics.
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