# A Microeconomic Interpretation of the Maximum Entropy Estimator of Multinomial Logit Models and Its Equivalence to the Maximum Likelihood Estimator

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Formulation of Entropy Maximization Problem and its Dual

## 3. Microeconomic Interpretation of the Entropy Maximization Dual Problem

## 4. Statistical Interpretation of the Entropy Maximization Dual Problem

## 5. Conclusions

## References and Notes

- Wilson, A.G. Entropy in Urban and Regional Modeling; Pion: London, UK, 1970. [Google Scholar]
- Fang, S.; Tsao, J. Linearly-constrained entropy maximization problem with quadratic cost and its applications to transportation planning problems. Transp. Sci.
**1995**, 29, 353–365. [Google Scholar] [CrossRef] - Thorsen, I.; Gitlesen, J.P. Empirical evaluation of alternative model specifications to predict commuting flows. J. Reg. Sci.
**1998**, 38, 273–292. [Google Scholar] [CrossRef] - De Grange, L.; Fernandez, J.E.; De Cea, J. A consolidated model of trip distribution. Transp. Res.
**2010**, 46, 61–75. [Google Scholar] [CrossRef] - Anas, A. Discrete choice theory, information theory and the multinomial logit and gravity models. Transp. Res.
**1983**, 17, 13–23. [Google Scholar] [CrossRef] - Boyce, D.; LeBlanc, L.; Chon, K.; Lee, Y; Lin, K. Implementation and computational issues for combined models of location, destination, mode and route choice. Environ. Plan.
**1983**, 15, 1219–1230. [Google Scholar] [CrossRef] - Fotheringham, A. Modeling hierarchical destination choice. Environ. Plan.
**1986**, 18, 401–418. [Google Scholar] [CrossRef] - Boyce, D.; LeBlanc, L.; Chon, K. Network equilibrium models of urban location and travel choices: A retrospective survey. J. Reg. Sci.
**1988**, 28, 159–183. [Google Scholar] [CrossRef] - Safwat, K.; Magnanti, T. A combined trip generation, trip distribution, modal split and traffic assignment model. Transp. Sci.
**1988**, 22, 14–30. [Google Scholar] [CrossRef] - Brice, S. Derivation of nested transport models within a mathematical programming framework. Transp. Res.
**1989**, 23, 19–28. [Google Scholar] [CrossRef] - Fernandez, J.E.; De Cea, J.; Florian, M.; Cabrera, E. Network equilibrium models with combined modes. Transp. Sci.
**1994**, 28, 182–192. [Google Scholar] [CrossRef] - Oppenheim, N. Urban Travel Demand Modeling; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Abrahamsson, T.; Lundqvist, L. Formulation and estimation of combined network equilibrium models with applications to stockholm. Transp. Sci.
**1999**, 33, 80–100. [Google Scholar] [CrossRef] - Boyce, D.; Bar-Gera, H. Validation of multiclass urban travel forecasting models combining origin-destination, mode, and route choices. J. Reg. Sci.
**2003**, 43, 517–540. [Google Scholar] [CrossRef] - Ham, H.; Tschangho, J.; Boyce, D. Implementation and estimation of a combined model of interregional, multimodal commodity shipments and transportation network flows. Transp. Res.
**2005**, 39, 65–79. [Google Scholar] [CrossRef] - Garcia, R.; Marin, A. Network equilibrium with combined modes: models and solution algorithms. Transp. Res.
**2005**, 39, 223–254. [Google Scholar] [CrossRef] - De Cea, J.; Fernandez, J.E.; De Grange, L. Combined models with hierarchical demand choices: A multi-objective entropy optimization approach. Transp. Rev.
**2008**, 28, 415–438. [Google Scholar] [CrossRef] - McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Ortuzar, J. de D.; Willumsen, L.G. Modeling Transport; John Wiley & Sons: Chichester, UK, 2001. [Google Scholar]
- Fang, S.; Rajasekera, J.; Tsao, J. Entropy Optimization and Mathematical Programming; Kluwer Academic Publisher: Norwell, MA, USA, 1997. [Google Scholar]
- Williams, H.C.W.L. On the formation of travel demand models and economic evaluation measures of user benefit. Environ. Plan.
**1977**, 9, 285–344. [Google Scholar] [CrossRef] - Imbens, G.W.; Johnson, P.; Spady, R.H. Information theoretic approaches to inference in moment condition models. Econometrica
**1998**, 66, 333–357. [Google Scholar] [CrossRef] - Golan, A. Information and entropy econometrics — Editor’s view. J. Econom.
**2002**, 107, 1–15. [Google Scholar] [CrossRef] - Golan, A. Information and Entropy Econometrics: A Review and Synthesis; Now Publishers Inc.: Hanover, MA, USA, 2008. [Google Scholar]
- Bercher, J.F.; Besnerais, G.L.; Demoment, G. The maximum entropy on the mean method, noise and sensitivity. In Maximum Entropy and Bayesian Studies; Skilling, J., Sibisi, S., Eds.; Kluwer Academic Publishers: Cambridge, UK, 1996. [Google Scholar]
- Csiszar, I.; Shields, P. Information theory and statistics: A tutorial. Found. Tr. Commun. Inform. Theory
**2004**, 1, 417–528. [Google Scholar] [CrossRef] - Soofi, E.S.; Retzer, J.J. Information indices: Unifications and applications. J. Econom.
**2002**, 107, 17–40. [Google Scholar] [CrossRef] - Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Donoso, P.; Grange, L.d.
A Microeconomic Interpretation of the Maximum Entropy Estimator of Multinomial Logit Models and Its Equivalence to the Maximum Likelihood Estimator. *Entropy* **2010**, *12*, 2077-2084.
https://doi.org/10.3390/e12102077

**AMA Style**

Donoso P, Grange Ld.
A Microeconomic Interpretation of the Maximum Entropy Estimator of Multinomial Logit Models and Its Equivalence to the Maximum Likelihood Estimator. *Entropy*. 2010; 12(10):2077-2084.
https://doi.org/10.3390/e12102077

**Chicago/Turabian Style**

Donoso, Pedro, and Louis de Grange.
2010. "A Microeconomic Interpretation of the Maximum Entropy Estimator of Multinomial Logit Models and Its Equivalence to the Maximum Likelihood Estimator" *Entropy* 12, no. 10: 2077-2084.
https://doi.org/10.3390/e12102077