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Abstract: A generalised notion of exponential families is introduced. It is based on the vari-
ational principle, borrowed from statistical physics. It is shown that inequivalent generalised
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the inequality of Cramér and Rao becomes an equality in the case of an exponential family
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1. Introduction

Generalised entropy functions have been studied intensively in the second half of the past century.
They have been called quasi-entropies in [1]. Every entropy function is in fact minus a relative entropy,
also called a divergence. It is relative to some reference measure c. Consider the f-divergence [2, 3]

I(p||c) =
∑

a

caf(pa/ca), (1)

with f(u) a convex function defined for u > 0 and strictly convex at u = 1. It is minus the entropy of
p, relative to c. Taking ca = 1 for all a and f(u) = u ln u one obtains the Boltzmann-Gibbs-Shannon
entropy

I(p) = −
∑

a

pa ln pa. (2)
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Note that throughout the paper discrete probabilities are considered, with events a belonging to a finite
or countable alphabet A.

Recent interest in these generalised entropies within statistical physics goes back to the introduction
by Tsallis [4] of the q-entropy

Iq(p) =
1

1− q

(∑
a

pq
a − 1

)
, (3)

with q > 0. In the limit q = 1 it converges to (2). It has been studied before in the mathematics literature
by Havrda and Charvat [5], and by Daróczy [6]. Investigations within the physics community have
lead to some interesting developments. One of them is the introduction of deformed logarithmic and
exponential functions [7, 8] — see the Section 13. They have been very useful to generalise common
concepts, like that of an exponential family or of a Gaussian distribution. They also helped to clarify the
pitfalls of the generalisation process. One of the surprises is the necessity to introduce escort probability
functions [9] — see Section 11. In a series of papers, including [10, 11], the present author has elaborated
a formalism based on deformed logarithms. In the present work, it is shown that slightly more general
results are obtained when abandoning these deformed logarithms.

Independent of the developments in statistical physics was the progress made in the context of game
theory. A link, known to exist between maximising entropy and minimising losses [12], was generalised
to arbitrary entropies by Grünwald and Dawid [13]. This lead to the introduction of the notion of gener-
alised exponential families, notion which is also essential in [11], and which extents Lafferty’s notion of
additive models [14].

In Sections 2 to 6 the maximum entropy principle and the variational principle are discussed in the
context of generalised entropies. In particular, a characterisation of the maximising probability distri-
butions is given. This is used in Section 7 to define a generalised exponential family. In Section 8 it
is shown that the intersection of distinct generalised exponential families is empty and that there exists
a one-to-one relation with generalised entropy functions. Sections 9 tot 12 discuss geometric aspects,
starting with concepts from thermodynamics and introducing escort families and a generalised Fisher in-
formation matrix. Sections 13 and 14 discuss non-extensive thermostatistics and the percolation problem
as examples of the generalised formalism. The paper ends with a short discussion in Section 15.

2. Generalised entropies

Let us fix some further notations. The space of probability distributions is denotedM+
1 (A). Expecta-

tion values are denoted 〈p,X〉 =
∑

a∈A paX(a). Here we follow the physics tradition to put the elements
of the dual space at the l.h.s..

It is rather common to define a generalised entropy as any function I(p) of the form

I(p) =
∑
a∈A

h (pa) , (4)

where h(u) is a continuous strictly concave function, defined on [0, 1], which vanishes when u = 0 or
u = 1. This is a special case of minus the f-divergence (1), with weights ca = 1. The entropy function
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I(p) is defined for any p ∈ M+
1 (A) and has values in [0, +∞]. In the present paper it is allowed that

the function h(u) is stochastic, this means, depends also on a in A. But for convenience of notation, this
dependence will not be made explicit.

Throughout the paper it is assumed that the derivative

dh

du
= −f(u) (5)

exists on the interval (0, 1) and defines a continuous function on the halfopen interval (0, 1]. Because
h(u) is strictly concave, f(u) is strictly increasing. Note that it is allowed to diverge to −∞ at u = 0.
This is indeed the case when h(u) = −u ln u and f(u) = 1 + ln u.

The function f(u) can be used to rewrite the entropy I(p) as

I(p) =
∑
a∈A

∫ 1

pa

du f(u) = −
∑
a∈A

∫ pa

0

du f(u) = −
∑
a∈A

pa

∫ 1

0

dv f(pav). (6)

Note that the latter expression implies that

I(p) ≥ −
∑
a∈A

paf(pa). (7)

The standard definition of the Bregman divergence [15] reads (see for instance Section 3 of [14])

D(p||q) = I(q)− I(p)−
∑
a∈A

(pa − qa)f(qa). (8)

In the case that f(u) diverges at u = 0 it is only well defined when qa = 0 implies pa = 0. It is a convex
function of the first argument. Note that one can write

D(p||q) =
∑
a∈A

∫ pa

qa

du [f(u)− f(qa)] . (9)

From the latter expression it is immediately clear that D(p||q) ≥ 0, with equality if and only if p = q.

3. Maximum entropy principle

Let be given a finite number of real functions H1(a), H2(a), · · ·, Hn(a). Assume they are bounded
from below. In a physical context these functions may be called Hamiltonians. The maximum entropy
problem deals with finding the probability distribution p that maximises I(p) under the constraint that
the expectation values of the Hamiltonians Hj attain given values Uj , called energies. Introduce the
notation

PU = {p ∈M+
1 : 〈p,Hj〉 = Uj, j = 1, 2, · · · , n}. (10)

Then one looks for the probability distribution p ∈ PU which maximises I(p).

Definition 1 A probability distribution p∗ ∈ PU is said to satisfy the maximum entropy principle if it
satisfies

I(p) ≤ I(p∗) < +∞ for all p ∈ PU . (11)
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In what follows a stronger condition is needed. It was introduced some 40 years ago [16] — see
Theorem 7.4.1 of [17] — and is in fact a stability criterion.

Definition 2 A probability distribution p∗ is said to satisfy the variational principle if there exist param-
eters θ1, θ2, · · · , θn such that

+∞ > I(p∗)−
n∑

j=1

θj〈p∗, Hj〉 ≥ I(p)−
n∑

j=1

θj〈p,Hj〉 for all p ∈M+
1 . (12)

In statistical physics, a probability distribution satisfying the variational principle is called an equilibrium
state. The quantity in (12) is minus the free energy. The well-known interpretation of (12) is then that
the free energy is minimal at thermodynamic equilibrium.

4. Lagrange multipliers

A popular way to solve the maximum entropy problem is by the introduction of Lagrange parameters.
However, a difficulty arises, known as the cutoff problem. It is indeed possible that some of the prob-
abilities pa of the optimising probability distribution vanish. Let us see how this problem arises. The
Lagrangean reads

L = I(p)− α
∑
a∈A

pa −
n∑

j=1

θj〈p,Hj〉. (13)

Here, α is the parameter introduced to fix the normalisation condition
∑

a∈A pa = 1, the θj are introduced
to cope with the constraints (10). Variation of L w.r.t. the pa yields

f(pa) = −α−
n∑

j=1

θjHj(a). (14)

The existence of parameters α and θj , so that (14) holds, is known as one of the Karush-Kuhn-Tucker
conditions — these are sufficient conditions for the existence of a global maximum. The problem that
can arise is that it may well happen that the r.h.s. of this expression does not belong to the range of the
function f(u). This situation is particularly likely to occur when f(u) does not tend to−∞when u tends
to 0. If the r.h.s. is in the range of f(u) then pa is determined uniquely by (14) because of the assumption
that f(u) is a strictly increasing function.

The above problem is well known in optimisation theory. Because the constraints, defining PU , are
affine, the set PU forms a simplex. Its faces are obtained by putting some of the probabilities pa equal
to zero. Because the entropy function I(p) is concave it attains its maximum within one of these faces.
This observation leads to the ansatz that the probability distribution p, which maximises I(p) with p in
PU , if it exists, is determined by a subset A0 = {a ∈ A : pa = 0}, and by the values of the parameters
α and θj , which determine the remaining probabilities via (14). Let us now try to prove this statement.

5. Characterisation

The Theorems 1 and 2 below give a characterisation of the probability distributions satisfying the
variational principle. This is done separately for the cases that f(0) is finite or infinite. Of course, both
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theorems could have been taken together into one single theorem. But it is instructive to emphasise the
complications which arise in the case of finite f(0). For the same reason the proofs do not rely on the
results of [13], but are worked out independently. In the present section it is assumed that f(0) = −∞.

Lemma 1 Assume f(0) = −∞. Let p∗ ∈ M+
1 satisfy the variational principle. Then p∗a > 0 holds for

all a ∈ A.

Proof
The inverted statement is proved.
Because of the normalisation, there exists at least one a ∈ A for which p∗a > 0. Assume b ∈ A such

that p∗b = 0. Let us show that this implies that p∗ does not satisfy the variational principle.
Fix 0 < ε << 1. Introduce a new probability distribution p which coincides with p∗ except that

pa = (1− ε)p∗a and pb = εp∗a. (15)

Let

M(ε) = I(p)−
n∑

j=1

θj〈p,Hj〉. (16)

Then one has

dM

dε
= f((1− ε)p∗a)− f(εp∗a)−

n∑
j=1

θjp
∗
a [Hj(a)−Hj(b)] . (17)

From the assumption f(0) = −∞ then follows that

lim
ε↓0

dM

dε
= +∞. (18)

This proves that p∗ does not satisfy the variational principle because for ε sufficiently small M(ε) is
strictly larger than M(0).

¤

Theorem 1 Assume f(0) = −∞. A probability distribution p∗ satisfies the variational principle if and
only if there exists α and θ1, θ2, · · ·, θn such that (14) holds for all a ∈ A.

Proof
First assume that p∗ satisfies (14). This implies that p∗a > 0 for all a ∈ A because f(0) is not defined.
Hence, the divergence D(p||p∗) is well defined for all p. Next one calculates

D(p||p∗) = I(p∗)− I(p)−
∑
a∈A

(pa − p∗a)f(p∗a)

= I(p∗)− I(p)−
∑
a∈A

(pa − p∗a)

[
−α−

n∑
j=1

θjHj(a)

]

= I(p∗)− I(p) +
n∑

j=1

θj〈p− p∗, Hj〉. (19)
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Because D(p||p∗) ≥ 0 with equality if and only if p = p∗ there follows that p∗ satisfies the variational
principle.

Next assume that p∗ satisfies the variational principle (12). From the lemma then follows that p∗a > 0

for all a ∈ A. Hence, the divergence D(p||p∗) is well-defined for all p ∈ M+
1 . It follows from the

variational principle that

D(p||p∗) = I(p∗)− I(p)−
∑
a∈A

(pa − p∗a)f(p∗a)

≥
n∑

j=1

θj〈p∗ − p,Hj〉 −
∑
a∈A

(pa − p∗a)f(p∗a). (20)

Now, the function p → D(p||p∗) is convex with continuous derivatives. The r.h.s. of the above expression
is affine. Both l.h.s. and r.h.s. vanish for p = p∗. One then concludes that the r.h.s. is tangent to the convex
function and must be identically zero. One concludes that for all p

∑
a∈A

(pa − p∗a)f(p∗a) =
n∑

j=1

θj〈p∗ − p,Hj〉. (21)

This implies that f(p∗a) is of the form (14) — take pa = δa,b for some fixed b to see this.
¤

6. The case with cutoff

Assume now that f(0) = limu↓0 f(u) converges. Then the divergence D(p||q) is well defined for any
pair of probability distributions p, q.

Theorem 2 Assume that f(0) = limu↓0 f(u) converges. Are equivalent

1. p∗ satisfies the variational principle;

2. there exist parameters α and θ1, θ2, · · ·, θn, and a subset A0 of A such that

• (14) is satisfied for all a ∈ A \ A0;

• p∗a = 0 for all a ∈ A0;

• f(0) +
n∑

j=1

θjHj(a) ≥ −α for all a ∈ A0.

Note that this last condition expresses that the r.h.s. of (14) is out of the range of f(u) because it takes
a value less than f(0).
Proof

1) implies 2) As in the proof of the previous Theorem, one shows that (20) holds for all p. But now
one cannot conclude (21) because some of the p∗a may vanish so that p∗ lies in one of the faces of the
simplex M+

1 . But one can still derive (14) for all a for which p∗a 6= 0.
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Assume now that p∗a = 0 for some given a ∈ A. Let

pb = (1− ε)p∗b + εδb,a. (22)

Then the l.h.s. of (20) becomes

D(p||p∗) =

6=a∑

b∈A

∫ p∗b

(1−ε)p∗b

du [f(p∗b)− f(u)] +

∫ ε

0

du [f(u)− f(0)]

≤ ε
∑

b∈A

p∗b [f(p∗b)− f((1− ε)p∗b)] +

∫ ε

0

du f(u)− εf(0)

= O(ε2). (23)

On the other hand, the r.h.s. of (20) becomes

r.h.s. = ε

n∑
j=1

θj

∑

b∈A

p∗(b)Hj(b)− ε

n∑
j=1

θjHj(a) + ε
∑

b∈A

p∗bf(p∗b)− εf(0). (24)

From the inequality (20) then follows

0 ≥
n∑

j=1

θj〈p∗, Hj〉 −
n∑

j=1

θjHj(a) +
∑

b∈A

p∗bf(p∗b)− f(0). (25)

This implies the desired inequality because

−α =
∑

b∈A

p∗bf(p∗b) +
n∑

j=1

θj〈p∗, Hj〉. (26)

2) implies 1) One calculates

I(p)−
n∑

j=1

θj〈p,Hj〉 = −D(p||p∗) + I(p∗)−
∑
a∈A

(pa − p∗a)f(p∗a)−
n∑

j=1

θj〈p,Hj〉

≤ I(p∗)− f(0)
∑
a∈A0

pa +
∑

a∈A\A0

(pa − p∗a)

[
α +

n∑
j=1

θjHj(a)

]
−

n∑
j=1

θj〈p,Hj〉

= I(p∗)−
n∑

j=1

θj〈p∗, Hj〉 −
∑
a∈A0

pa

[
f(0) + α +

n∑
j=1

θjHj(a)

]
. (27)

The variational principle now follows using the third assumption of the Theorem.
¤

7. Statistical models

In the definition of the variational principle there is given a set of Hamiltonians H1(a), H2(a), · · ·,
Hn(a), this means, real functions over the alphabet A, bounded from below. The equilibrium distribution
p∗ is then characterised by a normalisation constant α, by parameters θ1, θ2, · · ·, θn, and by a subset A0

of the alphabet A — see (14). The emphasis now shifts towards these parameters.
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Theorem 3 Let be given Hamiltonians H1(a), H2(a), · · ·, Hn(a). For each θ in Rn there exists at most
one probability distribution p∗ satisfying the variational principle (12) with these parameters θ.

Proof
If p∗ and q∗ both satisfy the variational principle (12) with the same parameters θ then also the convex

combination r∗ = 1
2
p∗ + 1

2
q∗ has the same property because the entropy function is concave. But then

one can conclude from the inequalities (12) that I(r∗) = 1
2
I(p∗) + 1

2
I(q∗). Because the entropy function

is strictly concave there follows p∗ = q∗.
¤

The set of θ for which a p∗ exists, satisfying the variational principle (12), is denoted D. The proba-
bility distribution is denoted pθ instead of p∗. The constant α appearing in (14) is replaced by α(θ).

A statistical model is a parametrised set of probability distributions. The above Theorem implies that
the set (pθ)θ∈D, of probability distributions satisfying the variational principle, is a statistical model. One
can say that such a model belongs to the generalised exponential family.

Definition 3 Let be given a generalised entropy function I(p) of the form (4). A statistical model (pθ)θ∈D
belongs to the generalised exponential family if there exist real functions H1(a), H2(a), · · ·, Hn(a),
bounded from below, such that each member pθ of the model satisfies the variational principle (12) with
these Hamiltonians and with this set of parameters.

This definition corresponds with the notion of natural generalised exponential family as introduced
by Grünwald and Dawid [13]. It extends slightly the notion of phi-exponential family found in [11].

Clearly, entropy functions which differ only by a scalar factor determine the same generalised expo-
nential family.

8. Uniqueness theorem

Let us now turn to the question whether a given model (pθ)θ∈D can belong to two different generalised
exponential families.

Theorem 4 Let be given a model (pθ)θ∈D. Assume that there exists an open subset D0 of D with the
property that the set of values of pθ,a covers the open interval (0, 1)

(0, 1) ⊂ {pθ,a : θ ∈ D0, a ∈ A}. (28)

If the model belongs to two different generalised exponential families, one with entropy function I1(p),
the other with entropy function I2(p), then there exists a constant λ such that I2(p) = λI1(p) for all p.

Proof
Take any point u in (0, 1) and a corresponding θ ∈ D0 and a such that pθ,a = u. From the previous
theorems follows that there exist functions αi(θ) and Hamiltonians Hi1(a), Hi2(a), · · ·, Hin(a), with
i = 1, 2, such that

pθ,a = f−1
i,a

(
−αi(θ)−

n∑
j=1

θjHi,j(a)

)
. (29)
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Let Fa = f2,a ◦ f−1
1,a . Note that this is a strictly increasing continuous function. Then one has

Fa

(
−α1(θ)−

n∑
j=1

θjH1,j(a)

)
= −α2(θ)−

n∑
j=1

θjH2,j(a). (30)

This relation holds also on a vicinity of θ ∈ D0. It therefore implies the existence of λa and Ki,j such
that

H2,j(a)−K2,j = λa(H1,j(a)−K1,j), j = 1, 2, · · · , n. (31)

Then one can rewrite (30) as

Fa(v) = γa(θ) + λav, (32)

with

γa(θ) = −α2(θ)−
n∑

j=1

θjK2,j + λa

[
α1(θ) +

n∑
j=1

θjK1,j

]
, (33)

valid for some neighbourhood of the given θ. Using the definition of Fa(v) one obtains

f2,a(u) = γa(θ) + λaf1,a(u), (34)

valid on some neighbourhood of the given u ∈ (0, 1). Because u is arbitrary and the functions fia are
continuous, the same expression must hold on all of (0, 1]. From 0 = hi,a(0) =

∫ 1

0
du fi,a(u) now

follows that γa(θ) = 0. Therefore (33) becomes

λa =
α2(θ) +

∑n
j=1 θjK2,j

α1(θ) +
∑n

j=1 θjK1,j

. (35)

In particular, λa does not depend on a ∈ A. One concludes therefore that there exists λ so that f2,a(u) =

λf1,a(u). This implies I2(p) = λI1(p).
¤

9. Thermodynamics

Throughout this Section, let be given a statistical model (pθ)θ∈D belonging to the generalised expo-
nential family.

Note that if pθ and pη both belong to the same set PU then they satisfy I(pθ) = I(pη). Hence, a
function S(U) can be defined by

S(U) = I(pθ) whenever 〈pθ, Hj〉 = Uj for j = 1, 2, · · · , n. (36)

In the physics literature, this function is called the thermodynamic entropy (it was called specific entropy
in [13]; but note that specific entropy has a different meaning in thermodynamics). The concept of
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thermodynamic entropy was first introduced by Clausius around 1850. The Legendre transform of the
thermodynamic entropy is given by

Φ(θ) = sup{S(U)−
n∑

j=1

θjUj}. (37)

This function was introduced by Massieu in 1869. The suprememum is taken over all U for which S(U)

is defined by (36). The function is convex — this is a well-known property of Legendre transforms.

Proposition 1 One has

Φ(θ) = I(pθ)−
n∑

j=1

θj〈pθ, Hj〉, θ ∈ D. (38)

Proof
Given θ ∈ D there exists pθ for which the variational principle holds. Then one has, with Uj = 〈pθ, Hj〉,

I(pθ)−
n∑

j=1

θj〈pθ, Hj〉 = S(U)−
n∑

j=1

θjUj ≤ Φ(θ). (39)

This proves the inequality in one direction. Next, fix ε > 0 and let U be such that

Φ(θ) ≤ S(U)−
n∑

j=1

θjUj + ε, (40)

with U such that S(U) is defined by (36). Then, there follows from the definition of S(U) that η ∈ D
exists such that S(U) = I(pη) with 〈pη, Hj〉 = Uj , j = 1, 2, · · · , n. The variational principle now
implies that

I(pθ)−
n∑

j=1

θj〈pθ, Hj〉 ≥ I(pη)−
n∑

j=1

θj〈pη, Hj〉

= S(U)−
n∑

j=1

θjUj

≥ Φ(θ)− ε. (41)

Because ε > 0 is arbitrary, the inequality in the other direction follows now.
¤

The inverse Legendre transformation reads

S(U) = inf
θ
{Φ(θ) +

n∑
j=1

θjUj}. (42)

It is a concave function.

Proposition 2 One has S(U) = S(U) for all U for which S(U) is defined by (36).



Entropy 2008, 10 141

Proof
From the definition of the Massieu function Φ(θ) there follows that

Φ(θ) ≥ S(U)−
n∑

j=1

θjUj for all θ ∈ Rn. (43)

This implies that S(U) ≤ S(U). On the other hand, from the definition (36) of S(U) follows that

S(U) = Φ(θ) +
n∑

j=1

θjUj, (44)

where θ is such that pθ ∈ PU . This implies S(U) ≥ S(U). The two inequalities together establish the
desired equality.

¤

10. Thermodynamic relations

Like in the previous Section, there is given a statistical model (pθ)θ∈D belonging to the generalised
exponential family. In addition, let D0 be an open subset of D on which the map θ → 〈pθ, Hj〉 is
continuous.

The following results are typical properties of Legendre transforms. For completeness, proofs are
given.

Proposition 3 The first derivative of the Massieu function Φ(θ) exists for θ in D0. It satisfies

∂Φ

∂θj

= −〈pθ, Hj〉, θ ∈ D0. (45)

Proof
From the definitions one has for θ and θ + η in D0

Φ(θ + η) = I(pθ+η)−
n∑

j=1

(θj + ηj)〈pθ+η, Hj〉

≥ I(pθ)−
n∑

j=1

(θj + ηj)〈pθ, Hj〉

= Φ(θ)−
n∑

j=1

ηj〈pθ, Hj〉, (46)

and

Φ(θ) = I(pθ)−
n∑

j=1

θj〈pθ, Hj〉

≥ I(pθ+η)−
n∑

j=1

θj〈pθ+η, Hj〉
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= Φ(θ + η) +
n∑

j=1

ηj〈pθ+η, Hj〉. (47)

Expression (45) now follows using the continuity of the map θ → 〈pθ, Hj〉.
¤

Introduce the metric tensor

gi,j(θ) =
∂2Φ

∂θi∂θj

. (48)

Because the Massieu function Φ(θ) is convex the matrix g(θ) is positive definite, whenever it exists. By
the previous Proposition one has

gi,j(θ) = − ∂

∂θi

〈pθ, Hj〉 (49)

for those θ in D0 for which the derivative exists.
In thermodynamics, the derivative of S(U) equals the inverse of the absolute temperature T . Here,

the analogous property becomes

Proposition 4 Let θ ∈ D0 and define U by Uj = 〈pθ, Hj〉. Then one has

∂S

∂Uj

= θj, j = 1, 2, · · · , n. (50)

Proof
On a vicinity of θ is S(U) = Φ(θ) +

∑n
j=1 θjUj . Hence, one can write

∂S

∂θj

=
n∑

k=1

(
∂Φ

∂θk

+ Uk

)
∂θk

∂Uj

+ θj. (51)

But the first term in the r.h.s. vanishes because the previous Proposition holds. Hence, the desired result
follows.

¤

The two relations (45) and (50) are dual in the sense of Amari [18]. In thermodynamics, the entropy
S(U) and Massieu’s function Φ(θ) are state functions, the energies Uj are extensive thermodynamic
variables, the parameters θj are the intensive thermodynamic variables.

11. Escort probabilities

Let us now make the additional assumption that the function f(u), which enters the definition (6) of
the generalised entropy, has a derivative f ′(u). Because f(u) was supposed to be strictly increasing, one
can write

f(u) = f(1)−
∫ 1

u

dv
1

φ(v)
, u ∈ (0, 1], (52)
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where φ(v) = 1/(df/dv) is a strictly positive function.
As before, there is given a statistical model (pθ)θ∈D belonging to the generalised exponential family,

and D0 is an open subset of D on which the map θ → 〈pθ, Hj〉 is continuous. The set A0(θ) is the set of
a ∈ A for which pθ(a) = 0. From theorems 1 and 2 now follows

∂

∂θj

pθ,a = φ(pθ,a)

(
− ∂α

∂θj

−Hj(a)

)
, θ ∈ D0, a ∈ A \ A0(θ). (53)

This expression was used in [11] as a condition under which a generalisation of the well-known bound
of Cramér and Rao is optimal. An immediate consequence of (53) is

Proposition 5 Assume the regularity condition

0 =
∑

a

∂

∂θj

pθ(a). (54)

Assume in addition that

z(θ) =
∑ ′

φ(pθ,a) < +∞, (55)

where
∑ ′

denotes the sum over all a ∈ A \ A0(θ). Then one has

∂α

∂θj

= − 1

z(θ)

∑ ′
φ(pθ,a)Hj(a). (56)

Proof
On a vicinity of the given θ one has (53). Hence, by summing (53) over a ∈ A \A0(θ) one obtains using
(54)

0 =
∑ ′

φ(pθ,a)

(
− ∂α

∂θj

−Hj(a)

)
, θ ∈ D0, a ∈ A \ A0(θ). (57)

¤

The probability distribution

Pθ,a =
1

z(θ)
φ(pθ,a), pθ,a 6= 0,

= 0, otherwise, (58)

when it exists, is called the escort of the model (pθ)θ∈D. With this notation, one can write the result of
the Proposition as

∂α

∂θj

= −〈Pθ, Hj〉. (59)
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12. Generalised Fisher information

Let be given a model (pθ)θ∈D for which z(θ), as given by (55), converges. The escort probabilities
Pθ,a are defined by (58). Then one can define a generalised Fisher information matrix by

Ii,j(θ) = 〈Pθ, Xi(θ)Xj(θ)〉, (60)

where the score variables are defined by

Xi,a(θ) ≡ 1

Pθ,a

∂

∂θi

pθ,a. (61)

Note that in the standard case of h(u) = −u ln u one has φ(u) = u so that the escort probabilities Pθ

coincide with the pθ. Then (60) reduces to the conventional definition.
Fix now a set of Hamiltonians H1(a), H2(a), · · ·, Hn(a). Then one can define a covariance matrix

σ(θ) by

σi,j(θ) = 〈Pθ, HiHj〉 − 〈Pθ, Hi〉 〈Pθ, Hj〉. (62)

Proposition 6 Assume a finite alphabet A. Then one has

Ii,j(θ) = z(θ)gi,j = z2(θ)σi,j. (63)

Proof
From (53) follows

Xj,a(θ) = z(θ)

(
− ∂α

∂θj

−Hj(a)

)
(64)

for all θ ∈ D0 and a ∈ A \ A0(θ). Hence, the Fisher information matrix becomes

Ii,j(θ) = z2(θ)
∑
a∈A

Pθ,a

(
− ∂α

∂θi

−Hi(a)

)(
− ∂α

∂θj

−Hj(a)

)
. (65)

Using (59) there follows Ii,j(θ) = z2(θ)σi,j .
On the other hand, from (49) and (53) there follows

gi,j(θ) = − ∂

∂θi

∑
a∈A

pθ,aHj(a)

= −
∑
a∈A

Pθ,a

(
− ∂α

∂θi

−Hi(a)

)
Hj(a). (66)

Using (56) there follows gi,j(θ) = z(θ)σi,j .
¤

The assumption of a finite alphabet is made to ensure that the conditions of Proposition 5 are fulfilled
and that the sum and derivative may be interchanged in (66).
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The generalised inequality of Cramér and Rao, in the present notations, reads [11]

(∑

kl

σklukul

)(∑

kl

Iklvlvk

)
≥

(∑

kl

gklukvl

)2

, (67)

with u and v arbitrary real vectors. The previous Proposition then implies that the inequality becomes an
equality when u = v, when P is related to p via (58), and when pθ belongs to a generalised exponential
family.

13. Non-extensive thermostatistics

Define the q-deformed logarithm by [7, 19]

lnq(u) =
1

1− q

(
u1−q − 1

)
. (68)

It is a strictly increasing function, defined for u > 0. Indeed, its derivative equals

d

du
lnq(u) =

1

uq
> 0. (69)

In the limit q = 1 the q-deformed logarithm converges to the nature logarithm ln u.
The deformed logarithm can be used in more than one way to define an entropy function. The q-

entropy (3) can be written as

Iq(p) =
∑
a∈A

pa lnq

(
1

pa

)
. (70)

Comparison with (4) gives

h(u) =
u

1− q

(
uq−1 − 1

)
= u lnq

(
1

u

)
. (71)

One has h(0) = h(1) = 0. Taking the derivative gives

f(u) = −dh

du
=

1

q − 1

(
quq−1 − 1

)
. (72)

It is a strictly increasing function on (0, 1] when q > 0. The function φ(u) is given by

φ(u) =
1

q
u2−q. (73)

The probability distributions belonging to the generalised exponential family, corresponding with (70),
are

pa = q1/(1−q)

[
1− (q − 1)α− (q − 1)

∑
j

θjHj(a)

]1/(q−1)

+

, (74)
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with [u]+ = max{0, u}. This is indeed the kind of probability distribution discussed in the original paper
of Tsallis [4]. However, more often used is the alternative of [9]. In the latter paper the concept of escort
probability distributions was introduced into the literature. They were defined by

Pa =
1

Z
pq

a, (75)

which in the present notations corresponds with φ(u) proportional to uq. This can be obtained by replac-
ing the constant q by 2− q in (70). The entropy function then reads

I(p) = −
∑

a

pa lnq(pa), (76)

which is not the expression that one would write down based on the information theoretical argument
that ln(1/pa) is the amount of information (counted in units of ln 2), gained from an event occurring with
probability pa. Note that with this definition of entropy function the condition q < 2 is needed in order
to satisfy the requirements that the function f(u) = d

du
(u lnq(u) is an increasing function.

14. The percolation problem

This example has been treated in [20]. It is a genuine example of an important model of statistical
physics which does not belong to the exponential family. In addition, it is an example which fits into the
present generalised context provided that one allows that the function h(u) appearing in the definition
(4) of the generalised entropy function is stochastic.

In the site percolation problem [21], the points of a lattice are occupied with probability q, independent
of each other. The point at the origin is either unoccupied, with probability p∅, or it belongs to a cluster
of shape i, with probability pi. This cluster is finite with probability 1, provided that 0 ≤ q ≤ qc, where
qc is the percolation threshold. The probability p∞ that the origin belongs to an infinite cluster is strictly
positive for q > qc. However, for the sake of simplicity of the presentation, 0 < q < qc will be assumed
— see [20] for the general case.

These probabilities are given by

pi = ciq
s(i)(1− q)t(i), (77)

where ci is the number of different clusters of shape i, s(i) is the number of occupied sites in the cluster,
and t(i) is the number of perimeter sites, this is, of unoccupied neighbouring sites. Note that (77) also
holds when the origin is not occupied, provided that one convenes that c(∅) = 1, s(∅) = 0 and t(∅) = 1.

Choose the Hamiltonian

H(i) =
t(i)

t(i) + s(i)
. (78)

and introduce the parameter θ by

θ = ln
q

1− q
, q =

1

1 + e−θ
. (79)
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Then one can write

ln
pi

ci

= [−α(θ)− θH(i)] [s(i) + t(i)] , (80)

with

α(θ) = ln(1 + e−θ) (81)

This looks like an exponential family, except for the extra factor [s(i) + t(i)] in the r.h.s.. Introduce the
stochastic function

fi(u) =
ln u

s(i) + t(i)
. (82)

Then the above expression is of the form (14). By integrating fi(u) one obtains

hi(u) = − u ln u

s(i) + t(i)
. (83)

It is now straightforward to verify that the percolation problem belongs to a generalised exponential
family. The relevant entropy function for the percolation model in the non-percolating region 0 < q < qc

is therefore

I(p) = −
∑

i

pi ln pi

s(i) + t(i)
. (84)

15. Discussion

Sections 3 to 6 of the present paper discuss the variational principle, which is stronger than the max-
imum entropy principle. It is shown that the method of Lagrange multipliers leads to the correct result,
even in the context of generalised entropy functions. The difficulty that arises is known as the cut-
off problem: the optimising probability distribution may assign vanishing probabilities to some of the
events. To cope with this situation the two cases have been considered separately. Theorem 1 treats the
standard case, Theorem 2 copes with the vanishing probabilities.

In Section 7, a generalised definition of an exponential family is given. It identifies the members of
the generalised exponential family with the solutions of the variational principle, given a generalised
entropy function of the usual form (4). The definition of the standard exponential family corresponds
of course with the Boltzmann-Gibbs-Shannon entropy. Entropy functions I(p) and λI(p), with λ > 0,
determine the same exponential family. Assuming some technical condition, the intersection of different
generalised exponential families is empty — see Theorem 4. As a consequence, a one-to one relation has
been established between generalised exponential families and classes of equivalent entropy functions.

In [11], the notion of phi-exponential family was introduced. The ’phi’ in this name refers to the
function φ(v), introduced in (52). It is one divided by the derivative of the function f(v) appearing in
the expression (6) for the entropy function I(p). The assumption that the derivative of f(v) exists for all
v > 0 has been eliminated in the present paper. More important is that the definition of a generalised ex-
ponential family is now given directly in terms of the entropy function I(p), via the variational principle,
without relying on the notion of deformed exponential functions.
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Sections 9 to 12 discuss the geometric properties of a generalised exponential family, using a termi-
nology coming from 150 year old thermodynamics. The main result is (63), proving the equality of the
three quantities generalised Fisher information, metric tensor times partition sum z(θ), and covariance
matrix multiplied with z2(θ). The covariance matrix is calculated using the escort family of probability
distributions.

Many applications of generalised exponential families are found in the literature, in the context of
nonextensive thermostatistics. The latter has been discussed in Section 13. A completely different kind
of example is found in percolation theory — see Section 14. It illustrates the possibility that the function
f(u), which determines the entropy function I(p) via (6), is of a stochastic nature. One can expect that
many other applications will be found in the near future.

Finally note that the present work has a quantum analogue. Let be given a strictly increasing function
f(u), continuous on (0, 1]. The expression (6) can be generalised to

I(ρ) = −
∫ 1

0

dv Tr ρf(vρ), (85)

where ρ is any density operator in a Hilbert space. The Bregman divergence (8) generalises to

D(ρ||ρ′) = I(ρ′)− I(ρ)− Tr (ρ− ρ′)f(ρ). (86)

The basic inequality D(ρ||ρ′) ≥ 0 is proved using Klein’s inequality — see 2.5.2. of [17].
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