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Abstract: Meeting customer requirements in software project management, even for large digital
enterprises, proves challenging due to unpredictable human factors. It involves meticulous planning
and environmental factor analysis, ultimately benefiting both companies and customers. This paper
came as a natural extension of our previous work where we left ourselves curious about what impact
environmental complexity factors (ECFs) have in a use case point (UCP) approach. Additionally, we
wanted to possibly decrease the mean magnitude relative error (MMRE) with deep learning models
such as long-short-term-memory (LSTM) and gradient recurrent unit (GRU). The data augmentation
technique was used to artificially increase the number of projects, since in the industry world, digital
enterprises are not keen to share their data. The LSTM model outperformed the GRU and XGBoost
models, while the average MMRE in all phases of the experiment for all models achieved 4.8%.
Moreover, the post-agnostic models showed the overall and individual impact of eight ECFs, where
the third ECF “team experience” on a new project has been shown as the most influential one. Finally,
it is important to emphasize that effectively managing human factors within ECFs in UCPs can have
a significant impact on the successful completion of a project.

Keywords: environmental complexity factors; digital enterprises; use case points (UCPs); recurrent
neural networks (RNNs); post-agnostic models

1. Introduction

Newly founded or small enterprises are particularly vulnerable to misguided human
resource assessments since they often have limited resources in general. Through thorough
project planning and a detailed investigation of environmental complexity factors within
digital enterprises, the success of projects can be significantly increased [1,2]. Additionally,
accurate software development effort estimation can improve project management and
cost effectiveness, which is advantageous to both tech companies and their customers [3,4].
Both project clients and project managers place a high value on project development time.
The quantity of money needed to invest in a project determines whether it will begin and
whether it will be completed within the specified time range. To satisfy consumer needs,
digital enterprises also employ, besides human expertise, a range of software tools and
services [5]. There are numerous ways to gauge the size, complexity, and development
time of software. For determining the actual size of a software project, the Use Case
Point approach is frequently employed. This method takes into account the system’s
use cases when evaluating the amount of work needed to implement it. To accurately
estimate the required resources, it examines system users and various circumstances. It
uses 21 parameters for evaluation, of which 8 are environmental complexity factors and
13 are system technical qualities [5,6].
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This research represents a natural extension of our previous work [4], in which we
were intrigued by understanding the impact of environmental complexity factors within
the UCP approach. Our goal was to optimize and further reduce the model’s relative error
by gaining deeper insights into these environmental complexity factors, including compli-
ance with the used development process, experience with applications, team proficiency
in technologies, the capabilities of the chief analyst, team motivation, stability require-
ments, adaptation of team members’ working hours, and complexity of the programming
language. Properly managing these factors can significantly decrease the likelihood of
project failure, especially when utilizing a single machine learning model and a subset
of deep learning models, particularly recurrent neural networks (RNNs). Additionally,
employing data augmentation techniques to artificially increase the instances in the UCP
Benchmark Mendeley dataset [7] helped us conduct our experiment more effectively, as
it is well-known that the industry often hesitates to share data, and this approach pro-
vided a viable solution. Furthermore, in pursuit of an interpretable component for our
top-performing model, we utilized SHAP and LIME post-agnostic models. As a result of
these advancements, software project management could become more dependable and
successful, benefiting the digital industry and its clients.

The following research objectives are the primary goals that guided us:

RO1: Increase the dataset using data augmentation techniques and further reduce MMRE
within the UCP approach by employing deep learning models such as LSTM and GRU.
RO2: Examine the overall impact of ECF within the UCP approach by tracking human
resources transactions.
RO3: Determine, using SHAP and LIME, which of the 8 ECF factors is the most influential
on the best-performing model.

The rest of the paper is organized as follows: Section 2 delves into the state-of-the-art
literature related to advancements in the UCP field. Section 3 presents the experimental
setup used in the research methodology. Section 4 showcases the obtained results, while
Section 5 discusses them. Concluding remarks are provided in Section 6.

2. Related Work

In this section, we will showcase cutting-edge research rooted in the UCP approach
in software project management, highlighting its effective application within digital en-
terprises. We will explore its standalone effectiveness and its synergistic use in ensemble
models, aiming to further enhance accuracy and reliability.

The most contemporary widely used method for estimating the time and costs in-
volved in creating software solutions within digital enterprises is definitely UCP. The lowest
relative estimating error when utilizing only this method is around 10% [8]. An estimating
error rate of 7.5% was achieved in the study [4] by combining Taguchi’s optimization
method with this strategy. However, other researchers [9–11] have merged this approach
with additional parametric models and various artificial intelligence models. In one study,
using Android mobile applications as a case study, the UCP technique was used to esti-
mate the size and effort needed for mobile applications. A modified variation of the UCP
approach was additionally introduced [12]. A framework for UCP-based techniques was
introduced by the authors in [13] in order to improve reusability in the creation of software
applications. Their conclusions showed that the framework effectively met five require-
ments for quality and showed how it might be used throughout the early stages of software
development. A systematic review was carried out in [14] to find publications demon-
strating best practices in the field of effort estimating methods that included both UCP
and expert judgment-based approaches. Numerous models, including the UCP method
and neuro-fuzzy logic, were also researched to improve the estimation’s accuracy [15]. It
was found that the Neuro-fuzzy logic model with updated use case points and modified
environmental factors offers the best fitting accuracy at an early stage when compared to
other models. In seven actual software development repositories, the advantages of various
work estimating methods were examined. The traditional UCP approach and iUCP, an HCI
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(human-centric) augmented model, were compared in this study. They also presented an
improved iteration of the initial iUCP effort estimation formula [16]. Introducing “UCP
for IoT” or adapting the use case points method to estimate the size and effort for IoT
systems was presented in [17]. It was validated with a case study of three IoT systems,
demonstrating applicability and highlighting the need for further improvement and data
collection in future work.

The possibility of utilizing ensemble ML models to improve software effort and cost
estimation was demonstrated in earlier work by [3]. The study [6] The presents a powerful
ensemble model, merging seven statistical and machine learning techniques including K-
nearest neighbor, random forest, support vector regression, multilayer perception, gradient
boosting, linear regression, and decision tree with grid search optimization, showcasing
promising estimation accuracy across four datasets.

Another interesting approach was to further elucidate the relationship between the
impact of data locality on productivity within use case points (UCPs), employing environ-
mental factors for data segmentation and clustering algorithms to create homogeneous
subsets. It introduces an ensemble approach using three regression models, each informed
by identical training sets, to enhance prediction. The resulting productivity forecasts
are refined through weighted averages from each model’s output, presenting a nuanced
understanding of UCP variables’ interplay [18].

The study introduces a fuzzy cognitive mapping (FCM) method to identify optimal
machine learning strategies for estimating Web application projects. FCM capitalizes on
the interrelated dynamics of system variables, tailoring recommendations to a project’s
specific configuration. Addressing the vagueness inherent in system variable interactions,
the paper advocates the integration of fuzzy numbers into the FCM framework. This
enhanced approach yields a promising 70% probability of successfully recommending
software estimation techniques, providing a strategic tool for managing the complexities of
Web application development [19]. Besides the recurrent neural networks underpinning
FCM models, one study proposed a hybrid approach combining particle swarm optimiza-
tion with a deep learning model to improve the evaluation metrics of the approach [20].
Furthermore, an artificial bee colony guided analogy-based estimation (BABE) model was
introduced, which combines the artificial bee colony (ABC) algorithm with analogy-based
estimation (ABE) for more accurate estimations. The limitation of this model, however, is
its reliance solely on variables used in function point analysis, which do not always capture
the complexity and size determined by the intricacies of the actors and the systems they
interact with [21].

In software estimation and related areas, it is usual to carry out substantial meta-
analyses that typically encompass correlated estimates of effect size [22,23]. The authors
in [23] evaluated meta-heuristic algorithms, specifically grey wolf optimizer (GWO) and
strawberry (SB), to enhance a deep neural network model for software effort estimation.
Testing on nine benchmark functions, the GWO outperforms other methods, proving
more accurate in its estimations. Generally, approaches to network meta-analysis used for
quantitative data synthesis employ Bayesian optimization for these purposes [24].

Ultimately, in [25] a detailed analysis underscores the significance of accurate software
effort estimation for project success within budgets and deadlines. It addresses the issues
of overestimation and underestimation and evaluates 35 studies using mean magnitude of
relative error and PRED (25) to compare ensemble and solo machine learning techniques,
with ensembles frequently providing superior accuracy.

While prior research has primarily focused on improving estimation accuracy by
integrating the UCP approach with traditional (parametric) or artificial intelligence (non-
parametric) models, it has become evident that there is a gap in the literature. There
is a dearth of studies investigating the potential of harnessing deep learning models,
especially LSTM, for this purpose, as well as employing data augmentation techniques to
artificially expand the dataset, given the challenge of obtaining real data from the industry.
Additionally, model-agnostic approaches like SHAP are not mentioned. This innovative
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approach ensures that even when the software industry lacks readily available data, precise
estimation outcomes can still be achieved in the domain of software project management
for digital enterprises.

3. Methodology

In this Section, we will describe the experimental setup of our methodology. Graphical
representation of the methodology pipeline is presented in Figure 1.
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3.1. Dataset Description

For experimental purposes, we used the Use Case Point Benchmark Dataset [7],
compiled by Radek Silhavy from three different software companies. UCP, extensively
utilized in software project management to determine the size of a software project, is
based on a technique created by Karner in 1993 [26]. This technique involves analyzing
system use cases to determine the effort required for implementation while considering
both the technical and environmental aspects of the system. It utilizes a set of 21 parameters,
including 13 technical and 8 environmental complexity factors. The original dataset contains
71 projects with 26 columns, where 4 input quantities are formed/calibrated based on
21 input parameters that represent technical factors and environmental factors. The first
column indicates the project ID, the next four columns are the obtained values of UAW,
UUCW, TCF, and ECF. The sixth column is the measured real value of the project, and
the following 21 columns represent individual values of T1 . . . T13 (technical factors) and
E1 . . . E8 (environmental factors). The aggregated 21 factors are reduced to a normalized
6-dimensional vector through the ETL process in the Pentaho Spoon Data Integration tool
for visualization purposes [27]. After that, with an SQL query we created a View that
provides 6 main input variables, 4 linearly independent and 2 linearly dependent. After
that, the range of values for 8 ECFs is observed through user system transactions and use
cases Figure 2.

J. Theor. Appl. Electron. Commer. Res. 2024, 19, FOR PEER REVIEW 5 
 

 

3.1. Dataset Description 
For experimental purposes, we used the Use Case Point Benchmark Dataset [7], com-

piled by Radek Silhavy from three different software companies. UCP, extensively uti-
lized in software project management to determine the size of a software project, is based 
on a technique created by Karner in 1993 [26]. This technique involves analyzing system 
use cases to determine the effort required for implementation while considering both the 
technical and environmental aspects of the system. It utilizes a set of 21 parameters, in-
cluding 13 technical and 8 environmental complexity factors. The original dataset contains 
71 projects with 26 columns, where 4 input quantities are formed/calibrated based on 21 
input parameters that represent technical factors and environmental factors. The first col-
umn indicates the project ID, the next four columns are the obtained values of UAW, 
UUCW, TCF, and ECF. The sixth column is the measured real value of the project, and the 
following 21 columns represent individual values of T1 … T13 (technical factors) and E1 
… E8 (environmental factors). The aggregated 21 factors are reduced to a normalized 6-
dimensional vector through the ETL process in the Pentaho Spoon Data Integration tool 
for visualization purposes [27]. After that, with an SQL query we created a View that pro-
vides 6 main input variables, 4 linearly independent and 2 linearly dependent. After that, 
the range of values for 8 ECFs is observed through user system transactions and use cases 
Figure 2. 

 
Figure 2. Data pre-preparation and organization in Pentaho Spoon. 

System users and use cases are jointly utilized to determine the actual size using the 
UCP method. System users are categorized into three groups based on their interaction 
with the system: simple (assigned a weight factor of 1 depending on system interaction), 
average (assigned a weight factor of 2 depending on internal/external communications), 
and complex (assigned a weight factor of 3 depending on the complexity of interactions). 

Additionally, there are three categories of use cases defined based on the number of 
transactions executed (number of users and the system for message transmission): simple 
(assigned a weight factor of 5 for fewer than 3 transactions), average (assigned a weight 
factor of 10 for 4 to 7 transactions), and complex (assigned a weight factor of 15 for more 
than 8 transactions). 

Figure 2. Data pre-preparation and organization in Pentaho Spoon.

System users and use cases are jointly utilized to determine the actual size using the
UCP method. System users are categorized into three groups based on their interaction
with the system: simple (assigned a weight factor of 1 depending on system interaction),
average (assigned a weight factor of 2 depending on internal/external communications),
and complex (assigned a weight factor of 3 depending on the complexity of interactions).

Additionally, there are three categories of use cases defined based on the number of
transactions executed (number of users and the system for message transmission): simple
(assigned a weight factor of 5 for fewer than 3 transactions), average (assigned a weight
factor of 10 for 4 to 7 transactions), and complex (assigned a weight factor of 15 for more
than 8 transactions).
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Moreover, a transaction where data or control information are transferred between
an actor (which could be a user or another system) and the system under observation
is commonly referred to as a transaction. It is a discrete unit of interaction that can be
characterized as an entire series of actions that accomplish an actor’s objective.

Real effort is represented by the UCP approach as a 6-dimensional vector Table 1, and
its value is determined by calculating the vector’s norm [4,26], Formulas (1) and (2):

UCP = (UAW, UUCW, UUCP, TCF, ECF, AUCP) (1)∥∥∥∥ →
UCP

∥∥∥∥ = UAW + UUCW + UUCP + TCF + ECF + AUCP (2)

where UUCP = UAW + UUCW, and AUCP = UUCP × TXF × ECF.

Table 1. Input features.

Feature Name
UCP Model Original Type Description

Unadjusted Actor
Weight (UAW) Numerical Point size of the software that accounts

for the number and complexity of actors
Unadjusted Use Case

Weight (UUCW) Numerical Complexity and size of the use cases

Unadjusted Use Case
Point (UUCP) Numerical Unadjusted use case point

Technical Complexity
Factor (TCF) Numerical Factor that is used to adjust the size

based on technical considerations
Environmental

Complexity Factor (ECF) Numerical Factor that is used to adjust the size
based on the considerations

Adjusted Use Case
Point (AUCP) Numerical Adjusted use case point

ECF is calculated as follows [4,26], Formulas (3) and (4):

ECF = 1.4 + (−0.03 × FactorE) (3)

FactorE = ∑ Weight ∗ AssignedValue, (4)

where AssignedValue from 0 to 5 and represents a environmental factor of the estimated
process Table 2.

Table 2 is an example of calculating one ECF for a single project from the original
dataset, using the Karner formula. The total ECF value can have different values for
different projects, but within the range of [0.57; 1.12].

Table 2. Eight environmental factors—example.

Factor Description Weight Assigned Value Weight × Assigned
Value

E1 Compliance with the used development process 1.5 3 4.5
E2 Experience with applications 0.5 3 1.5
E3 Team experience with technologies 1.0 3 2
E4 Capabilities of the chief analyst 0.5 5 2.5
E5 Team motivation 1.0 2 2
E6 Stability of requirements 2.0 1 2
E7 Part-time staff −1.0 0 0
E8 Programming language complexity −1.0 4 −4

Total (EF): 10.5
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For each dataset, a weight factor is assigned depending on the number of transactions.
Increasing the number of transactions increases the value of FactorE, which leads to a
decrease in the overall ECF value, thereby increasing the risk and model error. The same
holds true in reverse. Changing the number of transactions between system users and use
cases has a significant impact on the ECF value. For each real project, the value can be
calculated: δE1, δE2, · · · , δE8 and represents the contribution or share of each individual
factor. Ei, i =

(
1, 8

)
as follows (5):

FactorEi =
ECF − 1.4

0.03
i =

(
1, 8

)
(5)

The View component in the Pentaho tool is designed to execute queries whenever
specific data need to be selected. This improves performance, particularly when it is
necessary to optimize the database system. Moreover, using Views ensures consistency in
the way data are queried and presented. Any changes can be made by altering the View’s
definition rather than modifying the SQL query directly. This is beneficial when performing
transformations or generating reports. Furthermore, this method of presenting, organizing,
and structuring data aligns with business concepts, not just database structures, because
the Views are based on the logic defined within them.

Given that we had aggregated data, the ETL process enabled us to perform the
necessary transformations to ascertain the scope of ECF factors, that is, to determine their
minimum and maximum values within the newly aggregated data. From Table 3, the range
of total ECF values is [0.71; 1.12] for the original dataset and in Table 4, it is [0.57; 1.08]. The
significance of the ETL process in data analysis lies in its capability to efficiently manage
large datasets, ensuring that data from various sources are accurately combined, cleaned,
and transformed into a consistent format that is ready for analysis. In this context, the ETL
process was crucial in consolidating disparate data sources, thereby allowing us to derive
meaningful insights about the range of ECF factors. This range is vital as it represents the
variability within the data which could have significant implications for the interpretation
of the ECFs and their subsequent impact on the analysis or models that rely on these data.
Moreover, the ETL process is not just about preparing data for analysis; it is also about
maintaining data integrity and quality. Transforming the aggregated data through ETL
ensured that the resulting datasets in Tables 3 and 4 were reliable and that the ECF values
reflected true variations rather than discrepancies caused by data entry errors, missing
values, or incompatible data formats. Therefore, the ETL process is not a mere step in
data preparation; it is a comprehensive approach that enhances the robustness of data
analysis, enabling us to derive accurate and actionable insights from the aggregated data.
The clear definition of the ECF range is a testament to the meticulous data processing
performed through ETL, underscoring its indispensable role in the analytical workflow.
This explanation underscores the critical role that ETL processes play in preparing data for
analysis, ensuring its quality, and supporting the derivation of accurate insights from data,
which is especially important when working with aggregated datasets that can come from
various sources and can contain a wide variety of data types and formats

Table 3. Exploratory data analysis—old datasets.

Datasets ECF N Min Value Max Value Mean Standard
Deviation

Dataset_1 [0.71; 1.08] 50 5775.0 7920.0 6506.9 653.0
Dataset_2 [0.94; 1.12] 21 6162.6 6525.3 6393.9 118.2
Dataset_3 [0.71; 1.12] 18 2692.1 3246.6 2988.4 233.2
Dataset_4 [0.71; 1.08] 17 2176.0 3216.0 2589.4 352.1
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Table 4. Exploratory data analysis—new datasets.

Datasets ECF N Min Value Max Value Mean Standard
Deviation

Dataset_1 [0.57; 1.08] 648 4892.3 6548.1 5402.5 538.2
Dataset_2 [0.94; 1.08] 216 5430.7 7123.4 6208.4 456.7
Dataset_3 [0.71; 1.12] 108 43,890.4 6291.3 5467.8 652.9
Dataset_4 [0.57; 1.08] 108 2856.7 4775.6 3818.9 438.0

3.2. Dataset Pre-Processing

To gain even better insights about environmental complexity factors which are related
to human factors such as compliance with the used development process, experience
with applications, team proficiency in technologies, the capabilities of the chief analyst,
team motivation, stability requirements, adaptation of team members’ working hours,
and complexity of the programming language, we expanded our dataset from 71 [4] to
1080 instances by applying a data augmentation technique [28], recognizing the potential
for overfitting with such a small dataset [29]. The range of ECF factor values in the old
dataset Table 3 across all phases is [0.71; 1.12], while in the new dataset Table 4, it is
[0.57; 1.08].

To achieve this, we employed a data augmentation technique known as the ‘Trun-
cated Normal Distribution’ [30]. This method involves generating synthetic data points
by sampling from a truncated normal distribution tailored to the statistical characteristics
of the original dataset. Initially, in dealing with missing data, a prevalent strategy is to
impute missing values with the mean value of the corresponding attribute. Considering
the heterogeneous nature of the dataset, i.e., projects differ in terms of size, programming
languages used, technologies, etc., it becomes imperative to employ the min–max nor-
malization scaling technique [31,32] within a specific narrow range [0, 1]. This ensures
the creation of a new scaled dataset based on the original, effectively harmonizing the
varied parameter units. After selecting the features, removing the outliers, and conducting
the min–max normalization technique along with data augmentation technique the new
datasets revealed that there are no missing values. For each input value, the minimum,
maximum, and mean values, along with the standard deviation, were provided for the
‘Real Effort’ values.

Ultimately, the ‘Truncated Normal Distribution’ as a data augmentation technique can
be particularly advantageous in the UCP method of software estimation, which relies on
numerical data to assess software project size and complexity. In UCP, handling outliers is
crucial, as atypical use cases can disproportionately affect the estimation. The truncation
aspect of this technique ensures that the range of data considered for software estimation is
realistic, aligning with actual use case scenarios and preventing the skewing of estimations
that could result from the inclusion of unrealistic outliers that are sometimes present in a
standard normal distribution. Maintaining the properties of a normal distribution within
the constraints of real-world data ensures that the UCP method reflects the true scope and
complexity of the software project. It enables more accurate modeling of the use cases by
reflecting real-world limits on use case complexity, thus enhancing the robustness of the
model, and ensuring that the estimations are representative of the range of likely scenarios.
By ensuring data consistency in the use case estimations and allowing for customization
based on the specific characteristics of the project, the truncated normal distribution aligns
with the practical needs of the UCP approach. This tailored fit makes it more suitable for
the UCP method than other data augmentation techniques, which may introduce too much
variability and undermine the accuracy of the software estimation process.

The train-test split utilized a hold-out approach combined with random search cross-
validation. After conducting numerous trial-and-error experiments, we found that the
60:20:10:10 split yielded the most favorable results. This allocation comprised 60% for the
training set, 20% for the test set, and two separate validation sets, each containing 10% of
the data.
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3.3. Model Descriptions

XGBoost will represent a baseline model in this experiment. In the context of investi-
gating human factors for successful project completion, XGBoost harnesses the power of
gradient tree boosting and excels at handling software-related data analysis in the context
of examining human variables for software project success [33]. It is highly suited for the
complexity of software project management since it provides quick computations, excellent
prediction accuracy, and built-in safeguards for preventing overfitting [34]. This area bene-
fits especially from XGBoost’s capacity to handle complex relationships, deal with outliers,
and deal with imbalanced data. It uses boosting approaches to maximize predictions while
being guided by an objective loss function, demonstrating its skill in spotting complex
connections and patterns in software estimation data [35]. The following parameters have
been tuned for the analysis’s needs:

1. subsample: denotes the fraction of observations to be randomly sampled for each tree;
2. colsample_bytree: the subsample ratio of columns when constructing each tree;
3. max_depth: the maximum depth of a tree;
4. min_child_weight: defines the minimum sum of weights of all observations required in

a child;
5. learning_rate: the shrinkage made at every step.

A particular type of RNN, known as the LSTM network, is also well-suited for the
task of effective software project management. It was created to address the problem of
vanishing gradients, which typically occurs when dealing with long-term dependencies in
standard RNNs [36]. The modeling and forecasting of time series data using LSTM have
proven to be remarkably effective, adding significant value when estimating project length.
This neural network architecture excels at retaining information from previous states and
making accurate predictions based on the complex patterns present in the data [37]. Given
that prior states must be considered to provide accurate predictions in scenarios with
prolonged dependencies, LSTM emerges as the optimal choice. Moreover, LSTM offers a
wide range of parameters that can be fine-tuned [38]. In our investigation, we selected the
following parameters:

1. defining the number of LSTM units;
2. defining the number of LSTM layers;
3. defining the dropout rate;
4. determining LSTM’s time step input.
5. learning_rate: the shrinkage made at every step.

GRU models, which belong to the RNN family and are particularly adept at managing
sequential data, are an invaluable tool for software project management. In project esti-
mation for digital enterprises, where past trends and contextual knowledge are vital for
making precise predictions, GRU models are created to capture and remember long-range
connections in data. GRUs have gained popularity recently as a result of their sleek and
effective design. While they might not always outperform LSTM in terms of performance,
they typically produce outcomes that are competitive while drastically cutting training
times [39,40].

3.4. Evaluation Metrics

In this experiment, we employ MSE, MRE, and MMRE, as defined by Formulas
(6)–(8), as the metrics to assess the model performances [41,42]. These criteria allow us
to thoroughly evaluate the effectiveness of the models in forecasting target values. The
precision of regression models is commonly assessed using MSE, a widely recognized
statistic. However, it is important to note that the interpretation of MSE may be influenced
by the scale of the target variable. To gain deeper insights into the model’s prediction
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performance and to provide a more easily understandable measure of error, we also utilize
both MSE and MMRE for the final observations.

MRE =
1
n

· ∑n
i=1 MREi (6)

MSE =
1
n

· ∑n
i=1(MREi)

2 (7)

MMRE = mean (MRE) (8)

3.5. Post Agnostic Models: SHAP i LIME

Machine learning and deep learning models are viewed as inaccessible functions
when using post-agnostic model explanation techniques like SHAP (shapley additive
explanations) and LIME (local interpretable model-agnostic explanation). These methods
do not need access to internal information like the neural network’s structure, learning
parameters (weights, biases), or activation levels; instead, they just rely on the model’s
output. Because of this quality, model-agnostic techniques like SHAP and LIME are flexible
and adaptable to different kinds of deep learning and machine learning models [43–45].
Without explicit understanding of the model’s internal mechanics, we can learn more about
the role and importance of characteristics in the decision-making process by using SHAP
as a post hoc method. The SHAP and LIME approach with the top-performing model
formulas will be used as follows (9) and (10):

SHAPvi = ∑n
i=1 MDki · Tk (9)

where SHAPvi represents the SHAP value for the ith data instance, represents the marginal
contribution of feature (variable) ki in the prediction for the ith instance, represents the
weight of feature k included in the Shapley sum [46].

With the use of a Gaussian (RBF) kernel, LIME assigns weights to each generated
point. The size of the meaningful weights’ circle around the red dot is determined by the
kernel width kw option [47].

RBF
(

x(i)
)
= exp(−

∥∥∥x(i) − x(re f )
∥∥∥2

kw
) (10)

4. Results

In this section, we present the findings from our conducted experiment. We start with
a comparison of the results among the used models, along with the selected hyperparam-
eter combinations and evaluation metrics. In our study, the target variable had a range
of values between 2856.7 and 6548.1. From Table 5, it is evident that the LSTM model
achieved the best MRE value of 0.992 on the testing set, and on the training set, it achieved
0.983. Meanwhile, it achieved 0.984 on the first validation set and 0.980 on the second
validation set.

Table 5. Model performances.

Models
Training Testing Validation1 Validation2

MRE MSE MRE MSE MRE MSE MRE MSE

XGBoost 0.935 252.29 0.915 257.80 0.923 255.57 0.931 253.37
Taguchi method 0.933 252.82 0.929 253.92 0.920 256.40 0.917 257.24

LSTM 0.983 239.98 0.992 236.84 0.984 239.73 0.980 240.70
GRU 0.971 242.94 0.980 240.70 0.973 242.44 0.968 243.69

MMRE 0.955 0.954 0.950 0.949
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The GRU network achieved slightly lower results, with an MRE value of 0.980 on the
testing dataset and 0.971 on the training dataset. On the first and second validation sets,
it achieved values of 0.973 and 0.968, respectively. The optimal number of decision trees
for XGBoost was set to n_estimators = 500. The number of units/neurons and layers are
the two most critical factors in determining the architecture of deep learning models. We
used 64 units for both LSTM and GRU, and the number of layers that provided the highest
accuracy was 2. This decision was influenced by the relatively limited dataset, which, after
applying data augmentation techniques, contained 1080 cases. The best MMRE value for
all algorithms was 0.955 and was achieved during the training phase.

The influence δ(Ei) of individual ECFs can be seen in Table 6. The factor E3 = “Team
experience with technologies”, has the greatest impact, averaging 1.9% of the total share
of ECFs. In second place is E6 = “Stability of requirements” with 1.0% of the total share
of ECFs. The least impact is observed for E7 = “Part-time staff”, and E8 = “Programming
language complexity”, each contributing only 0.1% to the total share of ECFs.

Table 6. The influence δ(Ei) in total share of ECFs.

ECF Factors
Training Testing Validation1 Validation2 Total

δD1 δD2 δD3 δD4 δD5

E1 0.7 0.6 0.7 0.6 0.7
E2 0.5 0.5 0.5 0.6 0.5
E3 1.7 1.8 1.9 2.0 1.9
E4 0.2 0.3 0.4 0.4 0.3
E5 0.1 0.2 0.3 0.2 0.2
E6 0.9 1.0 1.1 1.2 1.0
E7 0.1 0.1 0.1 0.1 0.1
E8 0.1 0.2 0.1 0.1 0.1

Total 4.3 4.7 5.1 5.2 4.8

Our SHAP-based analysis reaffirmed the significance of the ECF factor, specifically
E3 = “Team experience with technologies”, in the context of the best-performing model,
LSTM, as illustrated in Figure 3. Moreover, utilizing the LIME method on LSTM, we
acquired insights into the impact of each ECF on the variation of MMRE values, as depicted
in Figure 4.
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5. Discussion

This section discusses the experimental results by addressing the research questions
outlined in the introduction.

The first research objective aimed to expand the original dataset using augmentation
techniques, given the challenge in obtaining real industry data, as companies are often
reluctant to share such information. Additionally, the objective was to further reduce
the model error, specifically MMRE, in comparison to the best result achieved in prior
research [4]. The applied data augmentation techniques contributed to a reduction in
MMRE for all models used throughout the experiment, including XGBoost as the baseline
model. In the previous study, utilizing the Taguchi optimization technique, the minimum
MMRE achieved was 7.5% with two different artificial neural network architectures. In
contrast, in this experiment, the MMRE for all proposed models averaged 4.8%, with the
best-performing model being LSTM, which achieved an accuracy of 99.2%.

The second research objective was associated with the overall impact of ECF factors
within the UCP approach, specifically the influence of human factors, skills, and knowledge
within digital enterprises through transactions on successful project completion. While
each ECF represents a portion of human resources, the most influential factor is skill and
knowledge of the team, i.e., E3 = “Team experience with technologies”, contributing to
1.9% of the total impact on successful project implementation within digital enterprises.
Client requirements can be complex, especially when working on a new project, and this
complexity is evident through the influence of E6 = “Stability of requirements” in the
overall distribution of ECFS. Finally, SHAP confirmed the influential factors through an
analysis of the best-performing LSTM model, while LIME revealed a negative influence
of specific factors Ei = (E5 = “Part-time staff” and E7 = “Team motivation”) on the overall
distribution of ECF in terms of MMRE changes.

Limitations and Future Directions

Applying Shapley values to software project management indeed presents a significant
challenge due to computational complexity, especially when dealing with modern models
like deep neural networks with high-dimensional inputs. However, it is essential to empha-
size that the intricacy of these models, particularly LSTM networks, introduces its own set
of limitations that must be considered. LSTM networks, renowned for their ability to handle
sequential data, have their constraints. They require substantial computational resources
and can struggle when faced with intricate feature relationships [48,49]. These limitations
can significantly impact their effectiveness in software project management predictions.
Balancing the intricacies and limitations of both LSTM networks and Shapley value com-
putations, future research in software project management should explore innovative and
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integrated approaches to effectively address these challenges. Given these constraints,
future research in project management with diverse datasets should explore deep learning
models. Recurrent neural networks, notably fuzzy cognitive maps, demonstrate potential
in handling missing data and extracting intricate patterns from extensive datasets [50,51].
Leveraging these models could help mitigate challenges related to missing data, ultimately
enhancing the precision, reliability, and applicability of project management predictions by
conducting additional ‘what-if’ simulations.

6. Conclusions

In conclusion, our comprehensive study in the domain of project management within
digital enterprises yielded valuable insights. We successfully expanded our dataset through
augmentation techniques, significantly reducing the MMRE across all models, with LSTM
emerging as the top performer, achieving an impressive accuracy of 99.2%. Furthermore,
our investigation highlighted the paramount role of human factors, particularly team
expertise, in project success within digital enterprises. The meticulous analysis using SHAP
and LIME affirmed these findings, shedding light on influential factors and offering a
deeper understanding of their impact. This study not only enhances our understanding
of digital project management but also underscores the critical importance of skilled
teams in navigating the complexities of the digital landscape, paving the way for more
successful endeavors and data-driven decision-making in future projects. Moreover, it
reaffirms that, in the realm of digital project management, the human element remains an
irreplaceable cornerstone for success, highlighting the need for continuous investment in
developing and nurturing the skills and expertise of project teams. These findings stress
that the collaborative synergy of skilled professionals is the driving force behind achieving
excellence and innovation in digital enterprises.

The utilization of UCP approach offers tangible benefits for project management and
requirements engineering. One significant benefit is the ability of managers to leverage
UCP size metrics as a tool for forecasting productivity, and by extension, the efforts required
for a project. This means that managers have the option to selectively use data that are
the most representative, sharing similar environmental factor values, rather than relying
on a broader data set. A positive aspect of this approach is the relative ease of measuring
environmental factors during the initial project stages, which does not necessitate extensive
expertise. Nonetheless, the creation of a comprehensive guide detailing the assessment of
these factors is essential to minimize uncertainties in their measurement.

Another advantage of the UCP approach is its capacity to address the challenges of
over or underestimating software development efforts in the early stages. With a more
accurate forecast, managers can place more effective bids on software development projects.
Our future directions will also be devoted to the subsequent research to delve into how
local nuances and combined methodologies affect the accuracy of productivity predictions
based on environmental factors.
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