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Abstract: This paper builds a theoretical framework to model individualization in online markets.
In a market with consumers of varying levels of demand, a seller offers multiple product bundles
and prices. Relative to brick-and-mortar stores, an online seller can use pricing algorithms that can
observe a buyer’s online behavior and infer a buyer’s type. I build a generalized model of price
discrimination with Bayesian learning where a seller offers different bundles of the product that are
sized and priced contingent on the posterior probability that the consumer is of a given type. Bayesian
learning allows the seller to individualize product menus over time as new information becomes
available. I explain how this strategy differs from first- or second-degree price discrimination models
and how Bayesian learning over time affects equilibrium values and welfare.
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1. Introduction

In the first quarter of the year 2023, online retail spending accounted for about 15% of
the total retail spending in the US [1]. The convenience of online shopping, as well as the
health concerns associated with in-store shopping during the pandemic, were major factors
in the expansion of online markets. This is happening at a time when the technology of
communication, tracking, data collection and processing is developing at a fast pace.

The increased access to information in online markets has affected market participants
in profound ways. For example, the availability of consumer reviews for products has
increased consumer confidence as they are better able to identify credible sellers, which in
turn has increased sales [2–5]. On the other hand, sellers have utilized buyers’ information
that is available online to individualize products and prices. Many online sellers have used
pricing algorithms, which are computer programs that can use the available high-frequency
information regarding buyers’ behavior, market demand, cost and competition to more
accurately determine and adjust prices and quantities.

Such technological developments spurred research investigating firm behavior in
online markets and how it differs from the well-understood behavior of brick-and-mortar
stores. Some research has focused on the potential for pricing algorithms used by competing
firms to collude as they learn that collusion results in higher profit [6–9]. However, other
research has focused on the enhanced ability of firms to price discriminate based on the
increased availability of consumer information. Sellers can access buyers’ information,
e.g., age, gender and location. In addition, sellers may track buyers’ behavior online
by identifying websites they have visited and their past purchases. (There is anecdotal
evidence that sellers use buyers’ demographic and geolocation information to generate the
products displayed to a user as well as to set their prices. It was reported that Staples.com
charged buyers different prices based on their location. Buyers who were in close proximity
to an Office Depot or Office Max were charged lower prices for the same products than
buyers who had less access to competing stores [10]. Other retailers, for example, Home
Depot, were also found to alter prices based on the location of the user [11]. In 2000,
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Amazon charged people different prices for the same DVD. This was discovered by a
buyer who erased the cookies on his device and saw the price drop [12]. Similarly, online
travel agencies have relied on cookies and more advanced technologies to identify when
buyers are most ready to buy [13]. Several researchers have tried to find evidence of price
discrimination in online markets. They have also tried to identify the factors on which
price discrimination is based (e.g., demographic variables, location or click history) [14–19].

However, the theoretical contributions to this topic are very limited. In fact, the
theoretical research on online markets has utilized very simplified economic models that do
not capture the realities of online markets. By relying on the existing price discrimination
theories (first- and second-degree) to model online firm behavior, these models represent
extreme outcomes where either (1) the firm can identify each buyer’s type with certainty
(and thus they adopt a first-degree price discrimination model) or (2) the firm cannot
identify a buyer’s type but knows the distribution of buyer types in the market (and
thus use a second- or third-degree price discrimination model). For example, Acquisiti
and Varian [20] use a second-degree pricing model, where firms discriminate based on
consumers’ purchase histories. Bang and Kim [21] use a second-degree price discrimination
model, where the firm chooses where to sell (online, offline or both) and chooses the level
of product information to provide to each market. Prasad et al. [22] use a second-degree
price discrimination model to analyze product bundling online with myopic and strategic
buyers. Alternatively, other research papers have relied on first-degree price discrimination
models to describe online behavior. For example, Rayna et al. [23] use a first-degree
price discrimination model to illustrate the potential to achieve a win–win scenario for
firms and buyers in online markets when buyers have an incentive to misrepresent their
types. Also, Shiller [24] shows that using data for a Netflix subscription that improves
access to buyers’ information leads to significantly higher profits. He thus concludes that
personalization (synonymous with first-degree price discrimination) is likely to become the
norm in markets. He argues that first-degree price discrimination, which used to be just a
theoretical illustration, will become the modelling approach for firm behavior.

I argue that neither first nor second-degree price discrimination theories adequately
address firm behavior in online markets, where sellers continuously use the available
information to improve their ability to predict consumer types and adjust or “individual-
ize” quantities and prices accordingly. I develop a model of individualization in online
markets that offers a generalized price discrimination framework that describes all price
discrimination outcomes resulting from access to different levels of information. The firm
uses the available consumer information to make inferences about the consumer’s type and
accordingly offers him a menu of products with different prices and sizes. I use Bayesian
learning which has been used in many contexts to model learning [25–27]. to model how
the firm uses newly available information in every time period to update its inference
about the buyer type and adjust the menu of products offered. As the firm obtains more
information over time, the model results converge to those under first-degree price discrim-
ination. However, when the firm has no access to buyers’ information, the model results
become identical to those under second-degree price discrimination models. Our results
indicate that individualization reduces the consumer surplus of most types of buyers and
increases firm profit. Overall, social welfare improves as quantities approach their socially
optimal levels.

2. The Model

Consider an online market with I consumer types that differ in the extent of demand
and, therefore, their willingness to pay for the product. Let Vij denote the utility of a type i
consumer, where I = 1 to I, who buys a bundle, j, where j = 1 to J. Consistent with the price
discrimination literature, I assume Vij > Vkj and V′ij > V′ij for I > k, i.e., a higher-demand
buyer has a higher total and marginal utility from buying bundle j [28,29]. I assume a
monopoly (the assumption of a monopoly market is widely used in the literature on price
discrimination, where some monopoly power is a prerequisite for building the model.
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While it can potentially be a limiting assumption and should be relaxed in future research,
it allows me to focus on the process of individualization and learning) firm that produces
goods at a constant unit cost of c. The firm knows Vij. The number of buyers in the market
is denoted by N, and the number of type i buyers is denoted by ni. The firm offers a menu
of J bundles of the product, i.e., J different product sizes and prices.

2.1. The Standardized Product Menu

I start by assuming a one-period model where the firm cannot identify a buyer’s type
at the point of purchase. Following the price discrimination literature, I assume the firm
offers J bundles of the product, where J = I, i.e., the number of bundles offered equals the
number of consumer types. (Under certain parameter values, it is possible for the firm
to produce fewer bundles than the number of consumer types, i.e., J < I. In the following
section, we assume parameter values that ensure the firm produces a number of bundles
equal to the number of buyer types.) Each bundle has Qi units of the product and sells at a
price of Ri. While the firm does not know with certainty the type of consumer, it assumes
that he is probably type i (the prior). pi is given by pi =

ni
N where ∑I

i=1 pi = 1. Based on
this information, the firm offers him a maximum of I bundles to choose from. The firm
maximizes the expected profit, π, realized from selling to consumer i, given by

π = ∑I
i=1 pi(Ri − cQi) (1)

The firm chooses Qi, where i = 1 to I, to maximize the expected profit in (1), subject to
the participation and self-selection constraints given by Equations (2) and (3), respectively,
as follows:

Vii − Ri ≥ 0, (2)

and
Vii − Ri ≥ Vij − Rj, (3)

where Vij denotes the utility of a consumer of type i buying bundle j. The self-selection
constraint in (3) ensures that consumer i chooses the ith bundle over any other bundle. The
participation constraint in (2) ensures he chooses to buy rather than to not buy. Simplifying
(2) and (3), I obtain the price of bundle i:

Ri = Vii −∑i
j=2

(
Vj j−1 −Vj−1 j−1

)
(4)

for i > 1 and R1 = V11.
Differentiating (1) with respect to Qi gives the first-order condition, Fi, as follows:

Fi = pi

(
∂Ri
∂Qi
− c
)
+ ∑I

j=i+1 pj

(
∂Rj

∂Qi

)
(5)

Note that ∂Ri
∂Qi

= Pi, where Pi is consumer i’s inverse demand. Since ∑I
j=i+1 pj

(
∂Rj
∂Qi

)
< 0 for

all i 6= I, in equilibrium (where Fi = 0), the firm offers Qi, where ∂Ri
∂Qi

= V′ii = Pi > c. Therefore,
all the quantities offered (except for QI, the largest size bundle (the largest bundle offered, QI, is

the one where price equals the marginal cost, PI = c, since ∑I
j=i+1 pjt

(
∂Rj
∂QI

)
= 0)) are not socially

optimal, i.e., are below the point where price equals marginal cost. The distortion in Qi increases
as pjt increases, where j ≥ i + 1. Thus, as the likelihood that a buyer is of a higher demand type
increases, the quantity designed for lower-demand buyers decreases. This is necessary given
that the firm does not know the buyer’s type with certainty and therefore chooses the quantities
to ensure self-selection. Increasing the quantity offered to lower-demand-type buyers would
lead a given buyer to move away from the bundle intended for him.

The equilibrium outcome in this case is consistent with that of the second-degree price
discrimination models (see, for example, Tirole [29]), where in equilibrium, the firm distorts
the quantity provided to all buyers except the one offered to the highest-demand buyer to
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ensure incentive compatibility. In our case, the firm distorts all bundles in the menu offered
to a given consumer except the largest-sized bundle. Since consumers are unidentifiable at
purchase, the firm offers a standardized menu of products to all consumers.

2.2. Bayesian Learning

Alternatively, an online firm can use a pricing algorithm that tracks buyers’ online
behaviors to better identify their types. I assume that while buyers differ in terms of utility,
they also differ in terms of another parameter, βt, where βt = 0 or 1. βt represents an online
behavior that can be observed by the pricing algorithm at time t. βt can represent, for
example, whether a buyer buys luxury products or not at time t. I assume that βt correlates
with a buyer’s type such that P(βt = 1|i) > P(βt = 1|j) for i > j, i.e., βt = 1 is more likely
for higher-demand-type buyers.

I model the firm’s maximization problem, assuming that the firm can observe βt for
consumer i at time t = 2 to T and sets the menu prices and quantities accordingly. I assume
that at time t = 1, the firm does not observe β1 and, therefore, produces a standardized
menu, as in the previous section. At t = 1, the firm determines the quantities offered
based on the prior. I use this as a benchmark case for comparison with the individualized
equilibrium outcomes in periods t = 2 to T. Every period, the firm updates the probability
distribution of buyers based on βt.

Following the work of Gelman et al. [30], we define pit to be the Bayesian probability
that a buyer is of type i, conditional on the observed values of β and the prior, pi. The
probability in period t that a buyer is of type i is given by

pit = p(i|β1, .., βt) =
P(β1, . . . ., βt|i)
P(β 1, . . . , βt)

. pi (6)

Equation (6) can be modified to reflect the Bayesian updating of pit from the period
t − 1, where

pit =
P(βt|i)
P(βt)

. pit−1 (7)

In that case, pit−1 becomes the new prior, which is updated as new information
becomes available in period t.

In light of the updated probability distribution, the firm chooses Qit to maximize the
expected profit in period t, given by

πt
β = ∑I

i=1 pit(Ri − cQi) (8)

This is subject to the participation and self-selection constraints defined in (2) and (3).
The resulting menu (prices and quantities) is individualized based on consumer i’s observed
values of βt. Hence, the firm deviates away from offering a standardized menu to all
buyers, as illustrated in Section 2.1, and offers an individualized menu. The individualized
equilibrium will be described in the following section.

3. The Individualized Equilibrium under Bayesian Learning

In this section, I solve for market equilibrium and show how Bayesian learning changes
the equilibrium values over time. I start by investigating how βt determines the probability
distribution across types for a consumer i, which in turn affects the menu prices and
quantities offered to him. I investigate the resulting effects on the equilibrium, particularly
focusing on Qi and Ri, the incentive-compatible bundle intended for consumer i.

For simplicity, I assume three buyer types, a high-demand (H), medium-demand (M)
and low-demand (L), and I assume nH = nM = nL. I assume that in the period t = 1, the
firm does not observe β1 and, therefore, produces a standardized menu. At t = 1, the firm
determines the quantities offered based on the prior pH1 = pM1 = pL1 = 1/3. I use this as a
benchmark for comparison with the individualized equilibrium outcomes in periods 2 to T.
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However, for t > 1, the firm observes βt for a given buyer and determines the probabil-
ity distribution across types of consumers, conditional on the current and all past values
of βt. The firm then offers an individualized menu, on which prices and quantities are
set accordingly.

The Bayesian probability that a buyer is of type i (where i = H, M or L) in period t
is denoted by pit, conditional on this probability in the previous period, pit−1, and the
observed value of βt, based on Equation (7) (note that the denominator in (9), ∑j pjt−1.pβj =
pHt−1.pβH + pMt−1.pβM + pLt−1.pβL, is simply the probability that βt is one, which is the
denominator in (7). Similarly, the denominator in (10), ∑j pjt − 1.

(
1− pβj

)
, is the probability

that βt is 0), as follows:

pit =
pβi

∑j pjt−1.pβj
. pit−1 if βt = 1, (9)

and

pit =

(
1− pβi

)
∑j pjt−1.

(
1− pβj

) .pit−1 if βt = 0, (10)

where j = H, M or L. Thus, (9) and (10) demonstrate how the firm updates its expec-
tations based on newly available information. For simplicity and without a loss of
generality, I assume that pβH = P(βt = 1|H) = 0.9, pβM = P(βt = 1|M) = 0.8 and
pβL = P(βt = 1|L) = 0.7. The analysis below will first explain how the probability dis-
tribution across buyer types for a given consumer changes overtime in response to the
observed value of βt (Proposition 1). Then, the analysis will show the corresponding effect
on the equilibrium quantities and prices (Propositions 2–4). Proofs of the propositions are
provided in Appendix A.

Proposition 1. The probability distribution across types at time t depends on βt.

i. If βt = 1, then (a) ∆pHt > 0, (b) ∆pMt > 0 if pLt−1 > pHt−1 and (c) ∆pLt < 0.
ii. If βt = 0, then (a) ∆pHt < 0, (b) ∆pM < 0 if pLt−1 > pHt−1 and (c) ∆pLt > 0.

If βt = 1, then ∆pHt > 0 and ∆pLt < 0, i.e., it becomes more likely that the buyer is a high-
demand type and less likely that he is a low-demand type in comparison to the previous
period. However, the effect on ∆pMt is determined by the previous period probabilities.
∆pMt > 0 in response to βt = 1 only if pLt−1 > pHt−1.

I assume the demand functions of each group are linear in price and are given by
PH = AH − BHQH , PM = AM − BMQM and PL = AL − BLQL, and the unit cost is constant
and given by c, where AH > AM > AL > c. I also assume AH

BH
> AM

BM
> AL

BL
to ensure the

demand functions do not intersect. Based on those functions, the equilibrium quantities
offered to consumer i are given by the following (the equilibrium quantities are obtained by
maximizing the profit, as shown in (7), where the bundle prices, Ri, are given in (A9)–(A11)):

QHt =
AH − c

BH
(11)

QMt =
AM(pMt + pHt)− AH pHt − cpMt

BM(pMt + pHt)− BH pHt
(12)

QLt =
AL − AM(1− pLt)− c(pLt)

BL − BM(1− pLt)
(13)

where pHt, pMt, pLt are the probabilities that consumer i is a high-demand, medium-
demand or low-demand type. Note that the output levels, except QHt, depend on the
probability distribution across the types. (Note that if pLt<

AM−AL
AM−c , then QLt < 0, and in

that case, we set QLt = 0. Thus, when the likelihood that the buyer is of a low-demand
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type is low enough, the firm does not offer a low bundle. Similarly, when pMt < AH−AM
AM−c pHt,

the firm does not offer a medium-sized bundle).
The equilibrium quantities and prices are illustrated in Figure 1. Figure 1 shows

that QHt is set where PH equals the marginal cost. However, QMt and QLt are below
the point where the price equals the marginal cost. The under provision of the output is
consistent with the results from the second-degree price discrimination theory, as explained
in Section 2.1. This is necessary to ensure self-selection, i.e., to ensure that the high-demand
(or medium-demand)-type buyer does not buy the medium (or low) bundle.
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The change in the output levels over a single period of time will depend on βt, as
follows.

Proposition 2. The menu quantities offered to consumer i change as follows:

i. If βt = 1, then ∆QLt
∆t < 0.

ii. If βt = 0, then ∆QLt
∆t > 0.

iii. ∆QMt
∆t will depend on the parameter values in either case.

The firm adjusts the menu quantities (except QHt) in response to the change in the
probability distribution across the types of consumers while ensuring self-selection. From
proposition 1, when βt = 1, it becomes more likely that consumer i is a high-demand-type
consumer, ∆pHt > 0, and less likely that he is a low-demand-type consumer, ∆pLt < 0. This,
in turn, will result in a decrease in QLt and a decrease in QMt only if ∆pMt < 0. The firm can
adjust quantities to reduce the information rent given to consumer i and thus raise profit
while still ensuring incentive compatibility.

The menu prices will change over a single period of time in response to the changes in
menu quantities, as described in Proposition 3.

Proposition 3. The menu prices offered to consumer i will change as follows:

i. If βt = 1, then ∆RLt
∆t < 0.

ii. If βt = 0, then ∆RLt
∆t > 0.

iii. ∆RHt
∆t and ∆RHt

∆t will depend on the relative parameter values.

If βt = 1, then QLt decreases, as is clear from Proposition 2, and, in turn, RLt also
decreases. The shaded areas in Figure 2 show the menu prices of each of the three bundles.
It is clear from Figure 2a that a reduction in QLt reduces RLt. If everything else is equal,
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this change will increase RMt, as shown in Figure 2b, as QLt moves to the left. The net
effect on RMt will depend on how QMt responds to βt = 1. If ∆QMt > 0, then RMt increases.
Similarly, the change in RHt will depend on how QMt and QLt change. If ∆QMt > 0 in
response to βt = 1, then the change in RHt is ambiguous. Based on Figure 2c, the effect of
∆QMt > 0 while ∆QLt < 0 will depend on the relative sizes of the changes as well as the
demand curves.
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The above analysis explains how the menu prices and quantities change from one
period to another in response to the observed value of βt. While some of these changes
from one period to another may be ambiguous, the equilibrium prices and quantities for
a given buyer type will converge to certain values. I explain this in Proposition 4 below,
which explains how the prices and quantities of the incentive-compatible bundle converge
over time.

Proposition 4. The equilibrium prices and quantities of the incentive-compatible bundle will
converge as follows:

i. Qit →
Ai−c

Bi
for consumer i, for i = M and L;

ii. Rit →
∫ Qit

0 Pi for consumer i, where i = H, M and L.

Bayes theorem and the law of large numbers imply that through learning, pit→1 for
consumer i, and pjt→0 for j 6= I [30]. As a result, the quantity of the incentive-compatible
bundle will increase over time to the point where demand meets the marginal cost (except
for the quantity of the high bundle, which does not change). As a result, the price of the
incentive-compatible bundle will increase. For the high-demand buyers and medium-
demand buyers, that increase eliminates the consumer surplus, which is extracted by firms
(the consumer surplus of the low-demand buyer is always zero). Thus, individualization
over time eliminates the consumer surplus, which becomes producer profit, an outcome
that is equivalent to the equilibrium under the first-degree price discrimination models.

4. Simulation

In this section, I simulate market equilibrium, where the firm learns over time and
individualizes its menu of products for a given buyer. In this section, I generate values for βt
and show how the firm responds to the newly available information in period t by changing
prices and quantities. I assume an equal number of buyers in each group, i.e., in the period
t = 1, the priors are pH1 = pM1 = pL1 = 1/3. I assume the firm observes βt for a given
buyer for t = 2 to 21. I generate values of βt (0 or 1) for each buyer type for 20 periods such
that pβH = P(βt = 1|H) = 0.9, pβM = P(βt = 1|M) = 0.8 and pβL = P(βt = 1|L) = 0.7,
as assumed in Section 3. After generating values for βt, the probability distribution of each
buyer type is calculated in each of the 20 periods using Equations (9) and (10).
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Figure 3 shows βt for the different buyer types, (represented by the light gray bars)
and the resulting probability distributions. As stated in Proposition 1, P(H|β) decreases
and P(L|β) increases in response to βt = 0, which suggests that the buyer is less likely
to be a high-demand-type consumer and more likely to be a low-demand-type con-
sumer, and vice versa. In periods where pLt−1 < pHt−1, pMt increases (for example,
Figure 3A, t = 5 to 6). Figure 3A represents a high-demand-type buyer, where
P(βt = 1) = 0.9. Thus, I assume βt = 1 in 18 out of 20 periods, i.e., for all t except two
periods, specifically t = 6 and t = 11, where βt = 0. Figure 3B represents a medium-demand-
type buyer (βt = 1 in 16 out of 20 periods), while Figure 3C shows a low-demand-type
buyer (βt = 1 in 14 out of 20 periods). Note that through Bayesian learning, the firm moves
closer to identifying the buyer type. For example, at t = 21 in Figure 3A, while the firm
has not identified the buyer type with certainty, pHt exceeds both pMt and pLt for the
high-demand-type buyer.
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I assign parameter values to the demand and cost functions based on the model
assumptions described earlier. I also choose parameter values such that all output levels
calculated using Equations (10)–(12) are positive in period 1, i.e., the firm offers a menu
of three bundles to each of the three buyer types. This allows me to demonstrate the
model results fully and show how the output levels change over time. For simplicity and a
without loss of generality, I assume that the demand functions are given by PH = 180−Q/2,
PM = 160−Q and PL = 140− 3Q/2. I also assume the unit cost c = 10. The demand and
cost parameters are consistent with the model assumptions outlined in Section 2.

As explained in the previous section, the firm adjusts the menu prices and quantities
offered to consumer i over time as the probability distribution across the consumer types
changes. While Proposition 4 explains how the equilibrium values converge over time, the
analysis here will show the changes from one period to another for each of the buyer types.
Figures 4–6 show the menu prices and quantities offered to each of the buyer types. The
incentive-compatible bundle price and quantity are shown using the bold lines. In periods
where βt = 0, the probability that consumer i is a low-demand-type buyer always increases,
resulting in an increase in QLt and RLt. The effect of βt = 0 on pMt, QMt, RMt and RHt is
less clear, as illustrated in Propositions 1–3.
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Figure 4 shows the menu of products offered to the high-demand-type buyer. The
price of the high bundle is trending upward, while the other prices are trending downward
as it becomes more likely that the buyer is of a high-demand type. Similarly, the quantities
of the medium and the low bundles decrease as it becomes more likely the buyer is of a
high-demand type. At t = 17, the firm does not offer a low bundle in the menu of choices
to the high-demand-type buyer as the probability the buyer is of a low-demand type is
low enough. Note that β6 and β11 are zero. In both periods, pMt increases, which, in
combination with the decrease in pHt, increases QMt (Equation (A7)). As both QLt and QMt
increase, RHt decreases.

The menu prices and quantities offered to the medium-demand-type buyer change
over time, as shown in Figure 5. Since βt = 1 for t = 2 to 5, pMt decreases. However, when
β6 = 0 , pMt increases (since pL5 < pH5), which, in combination with the decline in pHt,
increases QMt. The overall effects of these changes results in a higher RM and a lower RH
(see Figure 2). Similar changes take place in periods t = 11, 14 and 16, where βt = 0.

Figure 6 shows that βt = 0 is a more frequent occurrence since this represents is a
low-demand-type buyer. In those periods, QL increases relative to the previous periods,
creating an upward trend in QL and, therefore, RL. For t = 4, pMt increases, while pHt
decreases, which increases QMt. However, in t = 6, 8, 13, 16 and 19, both pMt and pHt
decrease. The combined effect of these changes in principle is ambiguous (Equation (A7)),
yet in this case it results in a higher QMt. In those periods, RHt decreases as both QLt and
QMt increase.

5. Conclusions

This paper builds a theoretical model to analyze individualization in online markets,
where firms use pricing algorithms that continuously utilize the available high-frequency
market information to optimize the menu of products offered to individual consumers.
Previous research analyzing online firm behavior has relied upon the established models
of first-degree price discrimination models (where the firm knows the buyer type with
certainty) or second-degree price discrimination models (where the firm cannot identify the
buyer type), which do not capture the realities of online markets. I expand on the existing
models and offer a generalized model of price discrimination that adequately models
individualization in online markets. This model (1) provides an analysis of firm behavior
when the firm has some, but not all, information about a buyer’s type, and (2) models
firm learning as new buyer information becomes available,; and, (3) describes how the
menu of products offered changes in response to this information. As the firm collects new
information, it updates the probability distribution across buyer types for a given buyer
through Bayesian learning and offers a product menu that is incentive-compatible.

The paper analyzes the effects of individualization on the quantities and prices offered.
While it is generally understood that individualization might be useful to buyers as they
are targeted with relevant information and products, this paper shows that individual-
ization reduces consumer surplus, especially for buyers with higher demand, as it raises
prices and therefore raises firm profit. While individualization skews the market surplus
towards firms, it improves social welfare as firms move towards producing the socially
optimal amounts. So, policymakers who aim to address the distributional consequences of
individualization need to do so in a way that does not distort incentives to produce.

The extent of individualization adopted by firms will depend on the availability of
relevant data on consumers and the firms’ ability to access these data, which will depend
on the cost of collecting data and the dynamics of the data market. Higher data costs
may reduce the extent of individualization as less information is utilized. Therefore, a
future extension of this work might consider an analysis of the data market and how it
can potentially affect individualization. Market competition is another factor that can
potentially limit the extent of individualization by firms as firms compete and offer lower
prices to attract buyers. Addressing the impact of market structure on individualization is
another future area of research.
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Appendix A Proofs of Propositions

Proposition 1. The change in the probability distribution, ∆pit = pit − pit−1, conditional on βt
= 1, is calculated using Equation (8) and simplifying to obtain

∆pHt = pHt−1.
0.1pMt−1 + 0.2pLt−1

0.9pHt−1 + 0.8pMt−1 + 0.7pLt−1
(A1)

∆pMt = pMt−1.
0.1(pLt−1 − pHt−1)

0.9pHt−1 + 0.8pMt−1 + 0.7pLt−1
(A2)

∆pLt = pLt−1.
−0.2pHt − 0.1pMt

0.9pHt−1 + 0.8pMt−1 + 0.7pLt−1
(A3)

Similarly, the change in the probability distribution, conditional on βt = 0, is given by

∆pHt = pHt−1.
−0.1pMt−1 − 0.2pLt−1

0.1pHt−1 + 0.2pMt−1 + 0.3pLt−1
(A4)

∆pMt = pMt−1.
0.1(pHt−1 − pLt−1)

0.1pHt−1 + 0.2pMt−1 + 0.3pLt−1
(A5)

∆pLt = pLt−1.
0.2pHt−1 + 0.1pMt−1

0.1pHt−1 + 0.2pMt−1 + 0.3pLt−1
(A6)

As is clear from (A1), if βt = 1, then ∆pHt > 0 and ∆pLt < 0, i.e., it becomes more likely that
the buyer is of a high-demand type and less likely he is of a low-demand type in comparison to the
previous period. On the other hand, the effect on ∆pMt is less clear. If βt = 1, then ∆pMt > 0 only
if pLt−1 > pHt−1. �

Proposition 2. Differentiating Equation (12) with respect to pHt and pMt, I obtain ∂QMt
∂pHt

=
(BH(AM−c)−BM(AH−c)).pMt

(BM(pMt+pHt)−BH pHt)
2 < 0 and ∂QMt

∂pMt
=

(BM(AH−c)−BH(AM−c)).pHt

(BM(pMt+pHt)−BH pHt)
2 > 0, respectively, since

AH
BH

> AM
BM

. Differentiating Equation (13) with respect to pLt, I obtain dQLt
dpLt

=
BL(AM−c)−BM(AL−c)

(BL−BM(1−pLt))
2

> 0 since AM
BM

> AL
BL

.
The change in the output level, ∆QMt, is given by

∆QMt =
∂QMt
∂pMt

.∆pMt +
∂QMt
∂pHt

.∆pHt

[ + + /− − +]
(A7)

From proposition 1, when βt = 1, ∆pHt > 0, while ∆pMt will depend on the parameter
values. Thus, based on the signs of the different terms in (A7), I can conclude that if ∆pMt < 0,
then ∆QMt > 0. Otherwise, ∆QMt can increase or decrease depending on the relative values of the
above term. On the other hand, the change in QLt is given by

∆QLt =
dQLt
dpLt

.∆pLt

+ −
(A8)

And dQLt
dpLt

is always negative when βt = 1. �

https://www.mdpi.com/article/10.3390/jtaer18040104/s1
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Proposition 3. Using (4) and assuming the demand functions are given by Pi = Ai − BiQi, and,
therefore, Vii =

∫ Qi
0 Pi = AiQi − Bi

2 Q2
i , I obtain the prices as follows:

RH = AHQH −
BH
2

Q2
H −

[
AHQM −

BH
2

Q2
M − RM

]
(A9)

RM = AMQM −
BM
2

Q2
M −

[
AMQL −

BM
2

Q2
L − RL

]
(A10)

RL = ALQL −
BL
2

Q2
L (A11)

The change in the price of the high bundle is given by

∆RHt =
∂RHt
∂QHt

.∆QHt +
∂RHt
∂QMt

.∆QMt +
∂RHt
∂QLt

.∆QLt

0 − +/− − −
(A12)

Note that ∆QHt = 0. If βt = 1, then ∆QLt < 0, while ∆QMt will depend on the parameter
values, as explained in Proposition 2. Substituting (A10) in (A9) and differentiating (A9) with
respect to QMt and QLt, I obtain ∂RHt

∂QMt
= −AH + AM + (BH − BM)QM < 0 and dRHt

dQLt
=

AL − AM + (−BL + BM)QL < 0, respectively. Thus, if ∆QMt < 0, then ∆QHt = 0∆RHt > 0.
If the firm reduces both QMt and QLt in response to βt = 1, then it can extract more consumer
surplus and raise the price of the high bundle. However, if ∆QMt > 0, then ∆RHt will depend on
the relative values of the terms above.

Similarly, I can calculate

∆RMt =
dRMt
dQMt

.∆QMt +
dRMt
dQLt

.∆QLt

+ + /− − −
(A13)

Differentiating (A10) with respect to QMt and QLt, I obtain ∂RMt
∂QMt

= AM − BMQM > 0 and
∂RMt
∂QLt

= AL − AM − BLQL + BMQL < 0. If ∆QMt > 0, then ∆RMt > 0. Thus, if ∆QMt > 0,
then ∆RMt > 0. Finally, I calculate

∆RLt =
dRLt
dQLt

.∆QLt

+ −
(A14)

Differentiating (A11) with respect to QLt, I obtain dRLt
dQLt

= AL − BLQL > 0. Since ∆QLt < 0
in response to βt = 1, then ∆RLt < 0. �

Proposition 4. Since Bayes theorem and the law of large numbers imply that through learning,

pit →1 for consumer i and pjt →0 for j 6= i [30], then, for simplicity, I assume dpit
dt > 0 and

dpjt
dt < 0

for j 6= i.
For the high-demand-type buyer, QHt does not change over time. However, since dpHt

dt > 0,
dpMt

dt < 0 and dpLt
dt < 0, QMt will decrease over time through Bayesian learning since

dQMt
dt = ∂QMt

∂pMt
. dpMt

dt + ∂QMt
∂pHt

. dpHt
dt < 0

+ − − +

And ∂QMt
∂pMt

> 0 and ∂QMt
∂pHt

< 0 from Proposition 2. QLt will decrease over time since

dQLt
dt = dQLt

dpLt
. dpLt

dt < 0
+ −
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And dQLt
dpLt

> 0 from proposition 2. Both changes imply that RHt will increase since

dRHt
dt = ∂RHt

∂QHt
. dQHt

dt + ∂RHt
∂QMt

. dQMt
dt + ∂RHt

∂QLt
. dQLt

dt > 0.
+ 0 − − − −

When pHt = 1, then QHt → Q c
H = AH−c

BH
, QMt →0 and QLt →0 . Therefore, from (A9),

RH = AHQc
H −

BH
2 Qc2

H , i.e., the consumer surplus of the high-demand type is driven down to zero.
For the medium-demand-type buyer: dpHt

dt < 0, dpMt
dt > 0 and dpLt

dt < 0. QMt will increase
over time since

dQMt
dt = ∂QMt

∂pMt
. dpMt

dt + ∂QMt
∂pHt

. dpHt
dt > 0

+ + − −

QLt will decrease over time since

dQLt
dt = dQLt

dpLt
. dpLt

dt < 0
+ −

Both changes imply that RMt will increase since

dRMt
dt = ∂RMt

∂QMt
. dQMt

dt + ∂RMt
∂QLt

. dQLt
dt > 0.

+ + − −

When pMt = 1, then QMt → Q c
M = AM−c

BM
and QLt →0. Therefore, from (A10), RM =

AMQc
M −

BM
2 Qc2

M, i.e., the consumer surplus of the medium-demand type is driven down to zero.
For the low-demand-type buyer: dpHt

dt < 0, dpMt
dt > 0 and dpLt

dt > 0. And, therefore,

dQMt
dt = ∂QMt

∂pMt
. dpMt

dt + ∂QMt
∂pHt

. dpHt
dt

+ − − −

Which is indeterminate. QLt will increase since

dQLt
dt = dQLt

dpLt
. dpLt

dt > 0
+ +

Both changes imply that RLt will increase since

dRLt
dt = dRLt

dQLt
. dQLt

dt > 0.
+ +

When pLt = 1, then QLt → Q c
L = AL−c

BL
. Therefore, from (A11), RL = ALQc

L −
BL
2 Qc2

L ,
i.e., the consumer surplus of the medium-demand type is driven down to zero. �
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