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Abstract: Multi-criteria ABC classification is a useful model for automatic inventory management
and optimization. This model enables a rapid classification of inventory items into three groups,
having varying managerial levels. Several methods, based on different criteria and principles, were
proposed to build the ABC classes. However, existing ABC classification methods operate as black-box
AI processes that only provide assignments of the items to the different ABC classes without providing
further managerial explanations. The multi-criteria nature of the inventory classification problem
makes the utilization and the interpretation of item classes difficult, without further information.
Decision makers usually need additional information regarding important characteristics that were
crucial in determining the managerial classes of the items because such information can help managers
better understand the inventory groups and make inventory management decisions more transparent.
To address this issue, we propose a two-phased explainable approach based on eXplainable Artificial
Intelligence (XAI) capabilities. The proposed approach provides both local and global explanations of
the built ABC classes at the item and class levels, respectively. Application of the proposed approach
in inventory classification of a firm, specialized in retail sales, demonstrated its effectiveness in
generating accurate and interpretable ABC classes. Assignments of the items to the different ABC
classes were well-explained based on the item’s criteria. The results in this particular application
have shown a significant impact of the sales, profit, and customer priority as criteria that had an
impact on determining the item classes.

Keywords: eXplainable Artificial Intelligence (XAI); explainable clustering; shapely additive expla-
nations (SHAP); ABC model; multi-criteria ABC classification; inventory management

1. Introduction

Efficient inventory management plays an essential role in the management optimiza-
tion of the overall supply chain. The procurement of raw materials and the manufacturing
of products with the lowest stock-levels significantly contribute to cost reduction. Given
that hundreds to thousands of items must be monitored and managed, it would be unreal-
istic to focus on each item separately. To address this issue, managers often attempt to use
machine learning and data-driven methods to automatically classify items, commodities,
and products into inventory classes in order to effectively manage each inventory group of
items. This automatic process is referred to as inventory classification or item classification.

To effectively control the inventory and optimize the management of the supply
chain, accurate inventory classification is required. Several methods and techniques for
performing automatic inventory classification have been proposed [1–3]. ABC classification
is one of the well used methods which divides inventory items into three managerial classes
based on item description criteria. The first class, referred to as class A, contains a relatively
small number of items that mostly contribute to the activity of the company. The second
class, referred to as class B, includes items that are considered important, but having lesser
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importance than those of class A. The third class, referred to as class C, contains a large
number of items having the least importance.

Although the classification of items was previously carried out based on one criterion,
the “annual dollar usage” [4], several more recent works [5] in the literature consider other
criteria as a basis for the classification of the items, including inventory holding unit cost,
variability of replenishment lead time, scarcity, dependence to other items, substitutability,
etc. The multi-criteria nature of the inventory classification problem makes the utilization
and the interpretation of items classes, when these are derived from a black box process,
difficult to understand. This is because knowing only which item belongs to which class
is insufficient in real life business applications. Managers need to also understand which
criterion and/or criteria has really contributed to the decision of assigning an item to
a specific class rather than assigning it to the other classes. Unfortunately, when the
automatic classification process operates as a black-box, it only gives a final organization of
the items into three managerial classes without providing explanations about the reasons
for assigning the items to a class. Yet, such explanations, when available, may help
decision makers to transparently and effectively determine the right inventory management
strategies for the items.

To solve this issue, we propose an eXplainable Artificial Intelligence (XAI) approach for
multi-criteria ABC item classification. The proposed approach is based on the explainable
artificial intelligence framework, SHape Additive exPplanations (SHAP), that provides
an easy schematizing of the contribution of each criterion when building the inventory
classes. It also allows to explain reasons behind the assignment of each item to any class.
Such explanations make the resulting ABC inventory classes more transparent for decision
makers. The rest of the paper is organized as follows: Section 1 gives an overview of
inventory classification methods while describing the different criteria used to organize the
inventory. Then, Section 2 describes the theoretical background for explainable artificial
intelligence and the SHAP framework. Sections 3 and 4 then describe the theoretical
framework and empirical experiments for the proposed explainable clustering method for
inventory organization. Finally, Section 5 gives the conclusion and future directions.

1.1. Literature Review of Inventory Classification Methods

Given the complexity of enterprise operations and architectures, an effective manage-
ment of the inventory requires intelligent tools, techniques and methods to better increase
service efficiency. In this context, ABC inventory classification is widely used to automati-
cally organize the items into three groups of different managerial-levels and sizes. Several
methods, based on different criteria and principles, have been proposed for ABC inventory
classification [6–8]. Existing methods can be classified based on the used approach to build-
ing the different classes. These approaches can be categorized into: (i) Decision making,
(ii) Mathematical programming and (iii) Machine learning and soft computing approaches.
We review these approaches below.

The first category of item classification methods, decision-making methods, are based
on probabilistic or conceptual data modeling techniques to look for an optimal classification
of the items. Usually, these methods consist of several phases to solve the multi-criteria
problem. An example of such methods is the Analytic Network Process (ANP) method [9]
for evaluating the logistic strategies and the production speed. This method models
the multi-criteria problem by a network involving the internal dependency of criteria to
make the decision-making more efficient. Other existing works [10,11] proposed to extend
Annual Dollar Usage, and Scoring methods to build an ABC classification of the items.
Examples of such methods are those proposed by Liu and Hung [10] who proposed a
Data Envelopment Analysis (DEA) model to define the ABC classes and Onwubolu and
Dube [11] who proposed using spreadsheets to solve the multi-criteria problem. More
recent decision-making methods have been proposed to build inventory classes such as
the works of Zheng et al. [12] who applied Shannon’s entropy to look for optimal ABC
classes and the works of Wu et al. [13] who used the weighted least-squares dissimilarity
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approach to obtain a set of local item weights which are then aggregated in the overall
evaluation score function. Another interesting decision-making system is proposed in the
works of Eraslan and Ic [3] who developed an efficient decision support system to help
decision-makers build the ABC classes of the items. This system gives high flexibility to
decision-makers by introducing subjective criteria.

The second category of item classification methods, mathematical programming meth-
ods, are essentially based on linear and nonlinear programming models to build a vector
or a matrix that optimizes weighted item scores. An overall score is usually calculated by
an objective function that would be optimized. Examples of conventional mathematical
programming methods include the weighted linear optimization model [14] and the Ng-
model [15]. Extensions of the Ng-model were presented in the works of [16] that proposed
both the H-model and F-model approaches. More recent mathematical-based methods
incorporate a cross-efficiency evaluation method into a weighted linear optimization model
for ranking the items, as presented in the works of [2] which proposed a Cross-Evaluation
methodology to optimize the weighted linear optimization problem. In addition, the work
in [17] integrated an alternative overall measure within the Ng-model to optimize the
descending ordering of the items.

The third category of existing methods comes from the machine learning and soft
computing domains. A learning process is integrated that allows estimating the final
assignment of the items while optimizing a learning model or an objective function. Several
machine learning classification methods are used to build the ABC classes such as k-
means, Fuzzy c-means (FCM), K-nearest neighbors and Support Vector Machines (SVM)
algorithms. In [18], Chu et al. proposed the ABC-Fuzzy Classification (ABC-FC) method
which is based on the Fuzzy c-means (FCM) algorithm and incorporates decision makers’
judgment of inventory classification. In the same way, Keskin and Ozkan [1] and Cebi
et al. [19] proposed to design an FCM-based process to solve the multi-criteria classification
problem in order to help managers make better decisions under fuzzy circumstances. In
the works of [5], the authors proposed the AHP–FCM–Rveto method that is based on three
phases to build the final inventory classes which are AHP phase, FCM phase and Revised-
Veto phase. Other machine learning techniques have been used to build the ABC classes
such as Artificial Neural Networks. Partovi and Anandarajan [20] proposed a genetic
algorithm (GA)-based learning method to develop an artificial neural network for inventory
classification. The obtained results have shown that neural network-based inventory
classification can give higher predictive accuracy than conventional inventory classification
methods. An interesting comparative study is presented in the works of [21]. The authors
compared the performance of three machine learning-based classification models, namely
SVM, Back Propagation Networks and KNN when building inventory classes.

1.2. ABC Inventory Classification: Problem Definition and Challenges

Let X = {x1 . . . xn} be a dataset of n inventory items, also called Stock Keeping Units
(SKU), where each item xi is described over m quantitative criteria j1, j2, ..., jm. We also
assume that the m criteria are of benefit-type and have a positive relation to the importance
level of the items. If one criterion is not positively related to the importance level of the
items, the reciprocal can be used to make it positively related. The objective of the ABC
inventory classification process is to organize the n items into three groups (classes) of
different sizes namely A, B and C. The distribution of the items over the three different
groups must follow as follows: class A items will be a small percent of inventory, but
contribute most in terms of activity and revenue, class C items will form a large percent of
inventory, but contribute the least to activity and revenue, and finally, class B items will
fall in the middle. Theoretically, ABC aims to build an assignment matrix U(n, 3) where
each row i corresponds to an item xi, and each column t represents one class. The matrix
values uit, ∀i ∈ [1..n], ∀t ∈ [1...3] are binary where the value uit = 1 corresponds to the
categorization of an item xi as belonging to the class t. To meet the ABC classification model
principles, the sizes of class A, B and C must be in the intervals [10%...20%], [20%...30%]
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and [50%...70%], respectively. Figure 1 gives an overview of the inputs and outputs of the
multi-criteria ABC inventory classification process.

Figure 1. Inputs and outputs of the multi-criteria ABC inventory classification process.

In this work, we focus on learning-based multi-criteria ABC inventory classification
methods which are usually based on the application of conventional clustering techniques
to build the different ABC classes. Although this category of methods has been widely
used and has shown good performance, it raises the issue of non-explainability and non-
transparency of results in real-life applications. In fact, the clustering algorithm works
like a black-box process that ends by giving a final categorization of the items into three
groups without giving sufficient explanations relative to the decision of assigning an item
to any particular class. In practice, given the multi-criteria nature of the problem, managers
usually need additional information regarding the criterion (or criteria) that was crucial in
determining the assignment of an item to the A, B or C class. Such information allows a
better analysis of the items, allows easy detection of miss-classified items, helps managers
to better understand the inventory groups and makes inventory management decisions
more flexible. To the best of our knowledge, there is no existing work that studied the
explainability of ABC inventory classes.

To deal with the non-explainability of ABC inventory classes, we propose a new multi-
criteria ABC inventory classification approach based on Explainable Artificial Intelligence
(XAI) capabilities. We present, in the next section, the background and basic concepts of
the used approach.

2. Background on Explainable Clustering
2.1. Explainable Clustering

Clustering offers a solution to analyze a large amount of real-world unlabeled data.
However, most of the existing clustering methods do not provide a way for decision-makers
to understand their results especially for non-domain experts. Hence, these methods act
as “black-boxes” and build clusters without providing any explanations regarding the
reasoning behind their creation. This issue reduces user trust and makes interpretations
and choices less transparent.
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Explainable clustering, a branch of Explainable Artificial Intelligence (XAI), attempts
to address this problem by allowing decision-makers to interpret and evaluate the clusters
by providing additional explanations of used features. XAI methods were firstly designed
to interpret complex supervised methods by focusing on feature importance in black-box
models [22]. Several XAI methods were proposed in the literature [22–24] which can be
classified into model-specific and model-agnostic. Model-agnostic methods can be applied
to any machine-learning model. Typically, model agnostic models require labels on data
records to achieve interpretability. Model-specific methods are restricted to a particular
model. Small decision trees are one such example of model specific interpretable model, as
the splitting criteria used to explain decision trees are restricted to decision tree algorithms.
All of these methods provide either Local or global explanations, or both at once. Local
explainability can be used to explain why a specific data point belongs to a given class or
how to change the label of a data point by changing its feature values. Global explainability
can be defined as generating explanations on why a set of data points belongs to a specific
class, the important features that decide the similarities between points within a class and
the feature value differences between different classes.

In the same way as for supervised models, explainability was also studied for unsu-
pervised models, especially clustering methods. Existing explainable clustering methods
try to generate explanations in terms of the underlying features used in the black-box
clustering process. Some existing explainable methods [25–27] were proposed, to visualize
the resulting clusters across two or three Principal Component Analysis (PCA) axes. The
main limitation of these methods is the dimensionality reduction, which does not show
relationships between the clusters and the original features. Furthermore, cluster interpre-
tations become difficult since PCA axes cannot be readily interpreted in the case of input
features. Other existing explainable clustering methods propose to generate cluster repre-
sentatives to facilitate the understanding of clusters by either computing cluster-centroids
or by choosing a small subset of data objects [28–30]. These methods may make it easier to
analyze each cluster through a simple interpretation of the cluster representatives, but they
are particularly sensitive to the geometry of clusters and assume a strict feature similarity
between data objects within a cluster, which is not the case in real life-applications.

Recently, a two-step process was proposed for explainable clustering [31–33] to explain
the clusters using recent XAI agnostic-method. The first step is devoted to the label assign-
ments (i.e., clusters), then in the second step, these labels are used as target variables in a
classification task. Explanations are then built based on the obtained supervised learning
model. For example, researchers in [33] have used existing supervised XAI methods for
interpreting clustering approaches (EXPLAIN-IT). First, they cluster the input data using
existing clustering methods such as K-Means or DBSCAN. A classifier is then trained on
input data using the generated cluster labels as class labels for the classifier. Finally, the
classifier is explained using existing model agnostic methods such as LIME [34]. LIME is
one of the most popular interpretability methods, which can generate interpretations for a
single prediction produced by any classifier. Although LIME is powerful and straightfor-
ward, it was designed for mainly providing local explanations. So, we propose in this paper
to use the SHAP method to improve the explanations of the ABC item classification. SHAP
can provide local and global explanations at the same time, and it has a solid theoretical
foundation compared to other XAI methods [35].

2.2. SHAP (Shapley Additive Explanations)

SHAP is a model-agnostic XAI method, used to interpret predictions of machine
learning models [36]. It is based on ideas from game theory and provides explanations
by detecting how much each feature contributes to the accuracy of the predictions. SHAP
also provides the most important features and their impact on model prediction. It uses
the Shapley values to measure each feature’s impact on the machine learning prediction
model. Shapley values are defined as the (weighted) average of marginal contributions. It
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is characterized by the impact of feature value on the prediction across all possible feature
coalitions. The Shapley value for an instance x is defined as follows:

φjr (x) = ∑
S⊆{j1 ...jm}\{jr}

η

m!
×ωjr (1)

with
ωjr = [ϕS∪jr (x)− ϕS(x)] (2)

η = (m− | S | −1)!× | S |! (3)

where φjr (x) denotes the Shapley value for the feature value having the index jr ∈ [1..m],
S is a subset of the features used in the prediction model, |S| is the cardinality of S, m
denotes the number of features, ϕS∪jr (x) and ϕS(x) are the prediction function for the set
of feature values in S with and without including the feature jr, respectively. The Shapley
value φjr (x) measures how much the feature jr contributes to the prediction model, either
positively or negatively. For that reason, the model is trained with and without including
this feature and then predictions from the two models are compared for all feature subset
S ⊂ {j1, ..., jm} \ {jr}. When φjr (x) is a large positive value, it means that feature jr has a
large positive impact on the prediction model. However, when this value is negative, it
means that feature jr has a large negative impact on the prediction model.

3. Proposed Explainable Clustering Method for Multi-Criteria ABC Inventory
Classification

In order to deal with the complexity of explaining ABC inventory classes, we propose
a new explainable clustering approach based on both k-means based clustering and XAI
capabilities. The proposed approach, referred to as Explainable k-means (Ex-k-means),
includes two main phases: item classification and explanation generation. In the first phase,
a k-means-based clustering is applied to guide the item classification process to build
three classes having varying sizes respecting the ABC distribution of the items. A second
phase, the ABC-inventory-interpretation phase, is devoted to improving the transparency
of the obtained ABC classes based on the XAI SHAP method capabilities. Because the
transparency and the easy-interpretation of inventory classes are almost as important as
item classification accuracy, SHAP-based process is designed to have as outputs detailed
explanations of the global structure of inventory classes as well as local explanations of
the assignment of each item to any specific ABC class. Figure 2 gives an overview of the
two main phases of the proposed explainable clustering approach as well as the inputs and
outputs of the proposed approach.

3.1. Phase 1: Item Classification

This phase uses, as inputs, the numerical description of the set of items and returns,
as outputs, the built ABC inventory classes by using a k-means clustering process. This
process aims to build three ABC inventory classes based on an alternating iterative process.

Given a dataset X = {x1 . . . xn} containing n items, described by m criteria, the aim
of Ex-k-means is to find k = 3 clusters {UA

1 , UB
2 , UC

3 } by minimizing the overall within-
cluster-sum-of-squares, denoted (J), as follows:

J =
n

∑
i=1

k

∑
t=1

uitd(xi, rt), (4)
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where uit takes value 1 if item xi is assigned to cluster t or 0 otherwise, rt ∈ {rA, rB, rC} is
the representative of cluster t and d(xi, rt) is the Euclidean distance between xi and cluster
representative rt. The cluster Representative rt is calculated for each cluster t by :

rt =

|rt |

∑
i=1

xi

|rt|
, (5)

where |rt| the number of items assigned to cluster t.

Figure 2. The main phases of the proposed explainable clustering approach for multi-criteria ABC
items classification. Phase 1: item classification and phase 2: ABC item interpretations.
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The minimization of the overall within-cluster-sum-of-squares (J) is performed by
using an alternating optimization of two independent sub-steps: item assignment and
update of the set of clusters representatives {rA, rB, rC}. The first sub-step assigns each item
to the nearest cluster representative. After assigning all items, the next sub-step updates
the new cluster representative of each of the three ABC clusters. These two sub-steps are
repeated until convergence is reached. The convergence is characterized by a maximal
number of iterations or no improvement in the objective criterion between two repeated
iterations.

3.2. Phase 2: ABC-Inventory-Interpretation Phase

The goal of this phase is to generate the explanations for the ABC classes which are
obtained in the previous phase. These explanations help decision makers to understand
and interpret the final ABC item classification in terms of local and global built structures.
Local explanations have the objective to explain the reasons behind the assignment of each
item to any ABC class in terms of feature values while global explanations try to explain
important feature values for each ABC class. The proposed explanation phase is based on
the SHAP method. First, the resulting ABC clusters are configured as the target supervised
variables of the explainable process. Then, local and global explanations are built by using
the SHAP functionalities.

For local explanations of the items, we compute the Shapley value at the item level
for each criterion with respect to the assigned ABC class. These Shapley values objectively
quantify the contribution of each criterion when deciding to assign any items to the ABC
classes. These local explanations allow decision makers to understand the reasons behind
assigning an item to the A, B or C class. The decision-makers can also evaluate the impacts
of increasing or decreasing the criterion value of each item on the predicted class label.

For global explanations, we provide detailed explanations regarding the importance
and contributions of the features when building each ABC class. Local Shapley values of
data items are summarized and used as “atomic units” for building the global explanations
as follows:

Gj =
1
n

n

∑
i=1

∣∣φj(xi)
∣∣ (6)

where φj(xi) denotes the Shapley value of criterion j for item xi, Gj refers to the overall
Shapley value of criterion j and n is the total number of items in the dataset. Global
Shapley values are then sorted in decreasing order to show the most important feature
when building ABC classes.

We give, in the following, an illustrative example of local and global explanations. Let
us consider a small dataset including 7 items that are described by 4 criteria j1, j2, j3, and
j4, we want to interpret the multi-criteria ABC classification of these items in terms of the
local and global explanations. Figure 3 illustrates the outputs of the proposed explanation
process based on the SHAP method. First, the Shapley value of each data item and each
criterion is calculated with respect to the class label using Equation (1). Then, an average of
Shapley values from each criterion are summarized using Equation (6).
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Figure 3. An illustrative example of the SHAP method on a set of 7 items described by 4 criteria.

For local explanations, criteria with high Shapley values are interpreted as having
high impact on the decision of item assignments, whereas criteria with low Shapley values
have lower impact. In fact, it is important to note that criteria with high Shapley values are
interpreted as pushing toward one class and low Shapley values as pushing towards the
other classes. For example, for item x4, we can see that the criteria with the highest Shapley
values are j1 and j4 while for the item x2, criteria with the highest Shapley values are j2 and
j3. For global explanations, the criteria with the highest values are interpreted as largely
contributing to the decision of class labels of the items. For example, we can observe that
the first criterion (j2) has the largest contribution in the decision of building the overall
ABC classes while the third criterion (j3) has the lowest contribution.

4. Experiments and Results

We use a dataset from a company specializing in retail sales. An extract of the first
tenth raw data is reported in Figure 4. The dataset contains 301 inventory items described by
10 numerical criteria as follows: Sales, Profit, Lead time, Synergy, Customer priority, Customer
sensitivity, Substitution, Expiry or obsolescence risk, Competition for the supplier, Dangerous good
classification. Figure 5 reports histograms of data values and their respective frequencies
for each criterion. A multi-criteria ABC inventory classification seems mandatory for the
company to help decision-makers automatically define different managerial levels for the
set of items.
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Figure 4. Extract of the first tenth raw data of the dataset.

Figure 5. Cont.



J. Theor. Appl. Electron. Commer. Res. 2023, 18 858

Figure 5. Histograms schematizing intervals and frequencies of item numerical criteria.

We begin by studying the data variability for all the item criteria. Table 1 shows mini-
mum, 1st quartile, median, mean, 3rd quartile and maximum values for each criterion. This
table shows good data centrality around the median and mean except for those obtained
for Profit, Sales and Lead Time. These three criteria also have large scales compared to the
other criteria, which require normalized data before building the ABC clusters. A min-max
normalization [0...1] was performed using the following formula:

x̌ij =
xij − xjmin

xjmax − xjmin

(7)

where x̌ij is the normalized value of the data item xi for criterion j, xjmin is the minimum
value of criterion j and xjmax is the maximum value of criterion j. Once data are normalized,
we used the proposed Ex-k-means algorithm, to build the different ABC classes.

Table 1. Statistics of the item descriptive criteria: minimum, first quartile, median, mean, third
quartile and maximum values for each criterion.

Min 1st Qu. Median Mean 3rd Qu. Max

Profit 1 150 1975 29,910 13,460 1,582,146
Sales 90 6600 28,213 173,467 103,401 6,790,487
Lead Time 3 20 20 46.41 30 60
Synergy 1 2 5 4.85 7 10
Customer Priority 1 5 5 6.48 10 10
Customers Sensitivity 1 3 5 5.21 8 10
Substitution 1 3 5 5.31 8 10
Expiry or Obsolescence Risk 1 3 5 4.96 7 10
Competition for the Supplier 1 1 5 4.7 7 9
Dangerous Good Classification 1 3 5 5.12 7 10

4.1. Evaluation of the Clustering Performance

We evaluate the performance of the proposed explainable clustering method compared
to existing ones AHP-k-means [37], AHP-k-means-Veto [37], AHP-FCM [5] and AHP-FCM-
Rveto [5]. Table 2 shows the cluster-sizes obtained by each method by fixing the number
of clusters k = 3 for all methods. We assigned the A, B and C classes respecting the sizes
of the built clusters from lowest to highest, respectively, (class A for the cluster with the
minimal size). Table 2 shows that AHP–FCM, AHP–FCM–Rveto and Ex-k-means methods
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gives a good distribution of the items over the three classes. We show large differences
in the sizes of the obtained ABC classes. AHP-k-means and AHP-k-means-Veto build a
cluster (Class A items) with very small size. The AHP-FCM-Rveto method build the best
distributed clusters, based on the ABC principles, given its integrated Rveto phase.

Table 2. Cluster-sizes build by the proposed Ex-k-means compared to those obtained by AHP-k-
means, AHP-k-means-Veto, AHP-FCM and AHP-FCM-Rveto. We considered for all methods that the
smallest cluster is A, the biggest one is C and the last one is B.

Method A B C

AHP-k-means 1% 16% 83%
AHP-k-means-Veto 1% 10% 89%
AHP-FCM 9% 15% 76%
AHP-FCM-Rveto 21% 30% 49%
Ex-K-means 8% 12% 80%

Next, we evaluate the quality of the obtained ABC clusters by using the internal
validation measures, Silhouette Coefficient (SC) [38], Davies–Bouldin Index (DBI) [39],
and Calinski–Harabasz Index (CHI) [40]. These validation measures aim to measure the
compactness and separation of the clusters. Compactness measures how closely related the
items in a cluster are while separation measures how distinct or well-separated a cluster
is from other clusters. Higher values of the SC and DBI measures indicate a good quality
partition, while lower values of the CHI measure indicate the best partition. The results are
reported in Table 3. This table shows that the proposed Ex-k-means method outperforms
the compared methods in terms of DBI and CHI measures.

Table 3. Comparison of the clustering performance of Ex K-means with existing methods using
three internal validation measures (Silhouette Coefficient (SC), Davies–Bouldin Index (DBI), and
Calinski–Harabasz Index (CHI)).

Method SC DBI CHI

AHP-k-means 0.87 630.27 0.51
AHP-k-means-Veto 0.03 12.80 2.40
AHP-FCM 0.59 434.43 0.66
Ex-k-means 0.86 1203.03 0.28

4.2. Local Explanations of Item Assignment to the ABC Classes

The local explanation has the objective to build an easy item-interpretable model
explaining the decision behind the assignment of each item to any ABC class. We used
the force plot which schematizes how features contributed to the cluster assignment of
each item separately. This plot provides a deep understanding and easy interpretation
of the classification of any particular item. We randomly selected a set of 3 items from
each class and then the force plot of Shapley values of each item is reported. Figures 6–8
show the contribution of each criterion, at the item level, when building the ABC inventory
classes. The bold numeric values on the right side of these figures evaluate the probability
of the decision of assigning one item to its current class rather than any other class. We
obtain a high probability for the selected items from all classes (higher than 97%) except
for the probability reported for the third item assigned to class A (Figure 6c) which reports
a probability of 85%. High probability indicates the facility of identifying the respective
class of the item by using the proposed classification model. However, any item with a low
probability value, or a probability converging to the base value, indicates the difficulty of
determining its correct class given its dissimilarity with all built classes. The base value is
the average value that would be predicted if we did not know any criteria for the current
item. The base value is the average of the model labels in the training dataset. We show in
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Figures 6–8 that base values correspond to the considered cluster-sizes (20%, 30% and 50%)
for the A, B and C classes, respectively.

The reported numbers below the plot arrow represent the value of each criterion for
that item. Two colors are then used to schematize criteria value impact: red for criteria
values that pushed the model classification probability higher and blue for criteria values
that pushed the model classification probability lower. The bigger the arrow size, the bigger
the impact of the criterion on the model classification. Figure 6 shows that the decision
of assigning the selected set of items to class A was based on a very high value of sales
(average '1,100,000 for the three selected items), high Profit (average '92,000 for the three
selected items) and high Customer priority ('10). All these criteria values have positively
contributed (red color) to increase the probability of assigning the respective items to class
A. Figure 6a,c show that the decision of assigning the respective items to class A has been
negatively (blue color) affected by the low value of profit ('139) for the first item and the
high value of substitution ('10) for the second item. This fact explains the low reported
probabilities in Figure 6a,c compared to the reported probability in Figure 6b.

Figure 6. Local explanations of three items assigned to class A: (a) force plot of Shapley values of
item 1 (b) force plot of Shapley values of item 2 (c) force plot of Shapley values of item 3.

Figure 7. Local explanations of three items assigned to class B: (a) force plot of Shapley values of item
1 (b) force plot of Shapley values of item 2 (c) force plot of Shapley values of item 3.
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Figure 8. Local explanations of three items assigned to class C: (a) force plot of Shapley values of
item 1 (b) force plot of Shapley values of item 2 (c) force plot of Shapley values of item 3.

Concerning the items of class B, Figure 7 shows that the decision of assigning these
items was based on moderate volumes of Sales (Average '77,000 for the three selected
items), high profit Profit (average '7000 for the three selected items), high values of
both Synergy ('6) and CompetitionForTheSupplier ('6). These criteria values increase the
probability to judge the item as belonging to class B. All these criteria values lie between
the average and the third quartile values. However, Figure 7a,b show that a low value of
Expiry Obsolescence Risk ('2) and a high value of Competition For The Supplier ('9) slightly
decrease (blue color) the probability of assigning these two items to class B.

Items of the third class, class C, are reported in Figure 8. This figure shows that criteria
values which mostly contributed to the assignment of these items are very low Sales Volume
(average '5700 for the three selected items), very low Profit (average '500 for the three
selected items) and moderate values of both Expiry obsolescence risk ('5) and Competition
For the Supplier ('5). All these low criteria values increase the probability of assigning
the items to class C, while it is not the case for the high value of Customer priority ('10)
(reported in Figure 8a) that highly reduces the probability of assigning the respective item
to class C.

These locally built explanations can be very useful to decision-makers for a deep
understanding of the assignment of each item separately. In some cases, further analysis
would be required to decide the class of some items, especially those having low classifica-
tion probability. The local explanations increase the classification model transparency and
improve the quality of determining the right managerial classes for the items.

4.3. Global Explanations of ABC Classes

Global explanations have the objective of easily interpreting the ABC classification
model at the level of classes rather than the local item level. For each ABC class, the criteria
that mostly contributed to the decision of assigning items to a specific class are stacked
and reported. We used the feature-importance plot, in which items Shapley values are
summarized for each class separately. Figure 9 reports the most important criteria after
summarizing shape values for items assigned to A, B and C classes separately. These
criteria are schematized according to their contribution to the classification model from
highest (at the top of the plot) to lowest (at the bottom of the plot). The contribution of
each criterion within each class is reported with a different color: navy-green for class A,
pink for class B and blue for class C. Figure 9 shows that Sales, Profit, Customer priority,
and Competion for the supplier criteria have the largest impact on the classification model
compared to the other criteria. In addition, we can see that the criterion Customer priority
largely contributes to determining class B items compared to the other classes. We can
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also see that Expiry or obsolescence risk and Synergy criteria have the same low contribution
for all classes. These findings are broadly in accordance with the literature on inventory
classification.

The feature-importance plot only shows the importance of each criterion when build-
ing the ABC classes, without explaining its impact (positively or negatively) on the clas-
sification model. In order to show criteria impacts for each class, we build the feature-
summary-plot that combines feature importance and impact. Figure 10 shows the positive
and negative relationships of criteria values with the target class. Every single point in
these sub-figures is a Shapley value of one criterion for a specific item. The position on the
y-axis is determined by the criterion, and the x-axis is determined by the Shapley value. The
color represents the criterion value from low (blue) to high (red). First, this figure confirms
the finding that Sales and Profit criteria have the highest importance when deciding the
inventory class of any item and for the three classes A, B, and C. On the other hand, Lead
Time, Expiry obsolescence risk and Synergy have the lowest importance which tends to be
negligible. Besides, Figure 10a shows that the larger the values of Sales and Profit (red
points), the larger the Shapley value is (points are located at the right of the x-axis). This
shows the positive impact of high values of Sales, and Profit on the decision of assigning the
items to class A. In the opposite way, Figure 10c shows the negative impacts of the same
criteria on the decision of assigning one item to class C. Items with high Shapley values
in terms of Sales and Profit, which are located at the right of the x-axis, are characterized
by low criteria values (blue points) in terms of Sales and Profit. Concerning the decision of
assigning items to class B, Figure 10b shows that high values of criteria Sales and Profit were
also crucial in assigning the items to this class, but also items of this class are characterized
by high Customer priority and high Competition for the supplier compared to the other classes.

Another important finding that can be interpreted from Figure 10a,c is that high values
of Sales and Profit (relatively low) cannot be by itself good criteria to decide whether an
item belongs to A or C classes. For example, we show in Figure 10a some items with low
values of Sales and Profit (blue points), but having high values of both Substitution and Lead
time. This finding demonstrates the multi-criteria nature of the item classification task.

Figure 9. Average criteria importance of the proposed inventory classification method.
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Figure 10. Relationships of the criteria values with the target class.
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5. Conclusions

We proposed a multi-criteria ABC classification approach that deals with the issue
of the non-explainability of ABC inventory classes. The proposed approach is based on
alternating clustering and explainable artificial intelligence capabilities to generate micro
and macro explanations. It includes two independent phases: item classification and model
interpretation. The first phase aims to build ABC item classes based on a rapid kmeans-
based clustering while the second phase is devoted to the generation of local and global
explanations. The generated explanations allow decision-makers to better interpret the
built ABC classes at both the item and the class levels.

The application of explainable artificial intelligence to the classification of products of
a retail company has shown high transparency in explaining the unsupervised ABC classes.
The generated global explanation has shown a large impact of the criteria Sales, Profit, and
Customer priority, compared to the other criteria, in determining the ABC inventory class
of the items. Concerning local explanations, the results showed that assigning any items
to class A was mainly based on high values of Sales, Profit, and Customer priority. On the
other hand, the decision to assign items to class C was mainly based on low values of Sales,
Profit, and also smaller values of Expiry obsolescence risk and Competition For the Supplier.
Local explanations have also shown that items having high values of Customer priority
have a large probability to be assigned to the A or B classes rather than the C class. These
findings are relative to the data of the studied company and cannot be generalized to any
company type (industrial, commercial, retail, ..., etc.) or any business field (chemicals,
technology, foods, ..., etc). However, the proposed model is generic and can easily be
applied to explain the ABC inventory classification of any company type. It would be
interesting to evaluate this proposed model in explaining ABC classes of other company
types and business domains.

In this work, we only considered the explainability of ABC classes based on numerical
item criteria. The proposed approach can be improved by exploring the possibility of
integrating other data types such as categorical and symbolic criteria, unless the data gets
transformed to numerical type. This direction may require adopting other explainable
artificial intelligence models designed to deal with such diverse types of data. Besides,
equal feature weights were considered to build the ABC classes. A more advanced ABC
classification models may assign different weights for the input criteria. In that case, it
would be interesting to investigate the adjustment of the XAI-SHAP model to take into
account differences in initial feature weights.
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5. Yiğit, F.; Esnaf, Ş. A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification.

J. Intell. Manuf. 2021, 32, 1517–1528. [CrossRef]
6. Chen, Y.; Li, K.W.; Marc Kilgour, D.; Hipel, K.W. A case-based distance model for multiple criteria ABC analysis . Comput. Oper.

Res. 2008, 35, 776–796.
7. Saaty, T. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; Advanced Book Program; McGraw-Hill

International Book Company: New York, NY, USA, 1980.
8. Xu, R.; Zhai, X. Fuzzy logarithmic least squares ranking method in analytic hierarchy process. Fuzzy Sets Syst. 1996, 77, 175–190.

[CrossRef]
9. Meade, L.; Sarkis, J. Analyzing organizational project alternatives for agile manufacturing processes: An analytical network

approach. Int. J. Prod. Res. 1999, 37, 241–261. [CrossRef]
10. Liu, Q.; Huang, D. Classifying ABC Inventory with Multicriteria Using a Data Envelopment Analysis Approach. In Proceedings

of the Sixth International Conference on Intelligent Systems Design and Applications, Jinan, China, 16–18 October 2006; Volume 1,
pp. 1185–1190. [CrossRef]

11. Onwubolu, G.; Dube, B. Implementing an improved inventory control system in a small company: A case study. Prod. Plan.
Control 2006, 17, 67–76. [CrossRef]

12. Zheng, S.; Fu, Y.; Lai, K.K.; Liang, L. An improvement to multiple criteria ABC inventory classification using Shannon entropy. J.
Syst. Sci. Complex. 2017, 30, 857–865. [CrossRef]

13. Wu, S.; Fu, Y.; Lai, K.K.; Leung, J. A Weighted Least-Square Dissimilarity Approach for Multiple Criteria ABC Inventory
Classification. Asia-Pac. J. Oper. Res. 2018, 35, 1850025. [CrossRef]

14. Ramanathan, R. ABC inventory classification with multiple-criteria using weighted linear optimization. Comput. Oper. Res. 2006,
33, 695–700. [CrossRef]

15. Ng, W.L. A simple classifier for multiple criteria ABC analysis. Eur. J. Oper. Res. 2007, 177, 344–353. [CrossRef]
16. Hadi-Vencheh, A. An improvement to multiple criteria ABC inventory classification. Eur. J. Oper. Res. 2010, 201, 962–965.

[CrossRef]
17. Karagiannis, G. Partial average cross-weight evaluation for ABC inventory classification. Int. Trans. Oper. Res. 2021, 28, 1526–1549.

[CrossRef]
18. Chu, C.W.; Liang, G.S.; Liao, C.T. Controlling inventory by combining ABC analysis and fuzzy classification. Comput. Ind. Eng.

2008, 55, 841–851. [CrossRef]
19. Çebi, F.; Kahraman, C.; Bolat, B. A multiattribute ABC classification model using fuzzy AHP. In Proceedings of the 40th

International Conference on Computers and Indutrial Engineering, Awaji City, Japan, 25–28 July 2010; pp. 1–6. [CrossRef]
20. Partovi, F.Y.; Anandarajan, M. Classifying inventory using an artificial neural network approach. Comput. Ind. Eng. 2002, 41,

389–404. . [CrossRef]
21. Yu, M.C. Multi-criteria ABC analysis using artificial-intelligence-based classification techniques. Expert Syst. Appl. 2011, 38,

3416–3421. [CrossRef]
22. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins,

R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf.
Fusion 2020, 58, 82–115. [CrossRef]

23. Das, A.; Rad, P. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv 2020, arXiv:2006.11371.
24. Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable ai: A review of machine learning interpretability methods.

Entropy 2020, 23, 18. [CrossRef] [PubMed]
25. Arias-Castro, E.; Lerman, G.; Zhang, T. Spectral clustering based on local PCA. J. Mach. Learn. Res. 2017, 18, 253–309.
26. Ding, C.; He, X. K-means clustering via principal component analysis. In Proceedings of the Twenty-First International

Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 29.
27. Jafarzadegan, M.; Safi-Esfahani, F.; Beheshti, Z. Combining hierarchical clustering approaches using the PCA method. Expert

Syst. Appl. 2019, 137, 1–10. [CrossRef]
28. Kacem, M.A.B.H.; N’cir, C.E.B.; Essoussi, N. MapReduce-based k-prototypes clustering method for big data. In Proceedings of

the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 19–21 October 2015;
pp. 1–7.

29. Mahmud, M.S.; Rahman, M.M.; Akhtar, M.N. Improvement of K-means clustering algorithm with better initial centroids based
on weighted average. In Proceedings of the 2012 7th International Conference on Electrical and Computer Engineering, Dhaka,
Bangladesh, 20–22 December 2012; pp. 647–650.

30. Yedla, M.; Pathakota, S.R.; Srinivasa, T. Enhancing K-means clustering algorithm with improved initial center. Int. J. Comput. Sci.
Inf. Technol. 2010, 1, 121–125.

31. Bandyapadhyay, S.; Fomin, F.; Golovach, P.A.; Lochet, W.; Purohit, N.; Simonov, K. How to Find a Good Explanation for
Clustering? In Proceedings of the AAAI-2022, Virtually, 22 February–1 March 2022; Volume 36.

32. Dasgupta, S.; Nave Frost, M.M.; Rashtchian, C. Explainable k-Means and k-Medians Clustering. In Proceedings of the 37 th
International Conference on Machine Learning, Virtually, 13–18 July 2020.

http://dx.doi.org/10.1007/s12530-019-09276-7
http://dx.doi.org/10.1007/s10845-020-01633-7
http://dx.doi.org/10.1016/0165-0114(95)00073-9
http://dx.doi.org/10.1080/002075499191751
http://dx.doi.org/10.1109/ISDA.2006.122
http://dx.doi.org/10.1080/09537280500366001
http://dx.doi.org/10.1007/s11424-017-5061-8
http://dx.doi.org/10.1142/S0217595918500252
http://dx.doi.org/10.1016/j.cor.2004.07.014
http://dx.doi.org/10.1016/j.ejor.2005.11.018
http://dx.doi.org/10.1016/j.ejor.2009.04.013
http://dx.doi.org/10.1111/itor.12594
http://dx.doi.org/10.1016/j.cie.2008.03.006
http://dx.doi.org/10.1109/ICCIE.2010.5668233
http://dx.doi.org/10.1016/S0360-8352(01)00064-X
http://dx.doi.org/10.1016/j.eswa.2010.08.127
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.3390/e23010018
http://www.ncbi.nlm.nih.gov/pubmed/33375658
http://dx.doi.org/10.1016/j.eswa.2019.06.064


J. Theor. Appl. Electron. Commer. Res. 2023, 18 866

33. Morichetta, A.; Casas, P.; Mellia, M. EXPLAIN-IT: Towards explainable AI for unsupervised network traffic analysis. In Proceed-
ings of the 3rd ACM CoNEXT Workshop on Big Data, Machine Learning and Artificial Intelligence for Data Communication
Networks, Orlando, FL, USA, 9 December 2019; pp. 22–28.

34. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

35. Wang, M.; Zheng, K.; Yang, Y.; Wang, X. An explainable machine learning framework for intrusion detection systems. IEEE
Access 2020, 8, 73127–73141. [CrossRef]

36. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions . Adv. Neural Inf. Process. Syst. 2017, 30.
37. Lolli, F.; Ishizaka, A.; Gamberini, R. New AHP-based approaches for multi-criteria inventory classification. Int. J. Prod. Econ.

2014, 156, 62–74. [CrossRef]
38. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
39. Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 224–227. [CrossRef]
40. Calinski, T. A dendrite method for cluster analysis. Commun. Stat. 1974, 3, 1–27.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.2988359
http://dx.doi.org/10.1016/j.ijpe.2014.05.015
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1109/TPAMI.1979.4766909

	Introduction
	Literature Review of Inventory Classification Methods
	ABC Inventory Classification: Problem Definition and Challenges

	Background on Explainable Clustering
	Explainable Clustering
	SHAP (Shapley Additive Explanations)

	Proposed Explainable Clustering Method for Multi-Criteria ABC Inventory Classification
	Phase 1: Item Classification
	Phase 2: ABC-Inventory-Interpretation Phase

	Experiments and Results
	Evaluation of the Clustering Performance
	Local Explanations of Item Assignment to the ABC Classes
	Global Explanations of ABC Classes

	Conclusions
	References

