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Abstract: Sentiment analysis is a new tool on new social media platforms, locations very attractive
to the global consumer industry to investigate, due to their relevance and increased consumption
in a pandemic. This study aims to determine the predominant sentiment and emotions on Twitter
through a sentiment analysis in the consumer electronics industry, according to the top 30 companies
of the Consumer Electronic Show 2020, by analyzing 96,000 tweets with a total of 273,221 words.
The methodology used is quantitative, of a descriptive type, that integrates the study of emotions
and sentiment through a statistical analysis of the tweets with R. The main results identify that the
predominant sentiment is of positive assessment and the emotions of anticipation and confidence
were the most representative. The contribution of this research is to provide empirical evidence of the
global consumer electronics industry for correct decision-making through a data language analysis
procedure on Twitter.
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1. Introduction

In today’s hyper-connected society, social networks have become indispensable to the
lives of millions of people around the world [1]. In companies that are still made up of
people, and that play a role within social networks, social networks are a tool that allows
them to analyze information published in large quantities, as well as to know from the
original source peoples’ opinions and comments about the brand [2–4].

Organizations invest in new and innovative analyses that can deliver and analyze
more information to improve their sales, and it can be beneficial to include their products
in the networks. Sentiment analyses have become key tools for social networks since they
allow companies to obtain a general perspective on different topics. Thus, companies
worldwide have made part of their improvement in the extraction and analysis of data
from their social networks [5,6].

Currently, there are several different social networks (Facebook, Instagram, LinkedIn,
Twitter, WhatsApp, Snapchat); however, Twitter has achieved exponential growth in dif-
ferent industries since its appearance after 2006 [7]. There is a lack of sentiment analysis
studies with greater depth on Twitter, meaning that companies are missing the representa-
tive and diverse input of the public opinion of its users [5]. Thus, there is an opportunity to
delve into this new, attractive, and little-explored subject.

Therefore, this paper aims to determine the predominant sentiment and emotions
through a sentiment analysis in the global consumer electronics industry on Twitter. Pro-
viding empirical evidence on the subject will guide decision-makers, future researchers,
digital developers, computer scientists, and programmers.

The work was organized into sections. In Section 2 a literature review is conducted,
where social networks, Twitter, and sentiment analysis are explored in more depth. Section 3
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describes the separate methods in the sample and in the instrument. Section 4 presents the
results through tables and graphs obtained from the analysis. Finally, Section 5 corresponds
to the discussion, conclusions, and future lines of research.

2. Review of Literature
2.1. Social Networks

Social media is structured as a group of Internet-based applications that allow for
the creation and exchange of content between users of the same applications [8]. Social
networks are defined as a space for social disclosure in which a personal worldview is
expressed, reflecting personalities, ideologies, and experiences [9].

In addition, they provide a useful and effective service for companies, optimizing
communication with their customers, where they interact, advertise, or speak directly,
obtaining direct opinions of their products or services. Therefore, organizations can under-
stand the thinking of their clients, enhancing their strategies to generate advantages for the
company [10,11]. Companies need social networks to be part of their strategies [12], since
these can serve as a source of individual analysis of interests and the effects of personal life,
through a large amount of data on many individuals [13].

Twitter

Twitter is one of the most important social networking platforms in the last decade
worldwide, created in 2006 as a microblogging platform. As of 2021, it allows instant
messages to be shared with a maximum of 280 characters, with the possibility of sharing
photos, videos, and links [14].

With the existence of internet and mobile internet, the use of microblogs has in-
creased [15]. Moreover, these platforms attract a large number of users because of the large
amount of content that can be found and how quickly a common topic can go viral.

Twitter, as the largest microblogging platform, has attracted the attention of companies
from different industries interested in exposing their product to many users quickly and
efficiently [16]. That is why Twitter is the ideal tool for conducting sentiment analysis,
because of to the large amount of information that can be found in tweets issued by the
companies, as well as the tweets issued by the customers of the companies.

One way to access the information provided by Twitter is the use of APIs (application
programming interfaces). Using the search API that allows us to collect data in real-time,
you can obtain the historical tweets of an account. At the same time, there are other types
of API that are paid, with which more information can be obtained, but according to
the authors [17], most APIs used in research are free, since using paid APIs becomes too
expensive for researchers.

2.2. Sentiment Analysis

According to [18], sentiment analysis is known as “opinion mining” or “artificial
intelligence”, where the use of natural language processing is alluded to. Thus, the use of
data mining to extract sentiment in different areas can be highlighted, as in the case of this
research, and it will be used in the context of Twitter microblogs.

Sentiment analysis is an area of research that provides various natural language
processing techniques, it quantifies an opinion or a comment. In the case of this research,
it is possible to quantify sentiments, whether they are positive or negative, and emotions,
whether they are disgust, joy, fear, surprise, sadness, confidence, anger, or anticipation [10].
According to [19], the common use of sentiment analysis has different purposes such as
distinguishing objective from subjective propositions, qualifying positive and negative
texts, determining the source of different opinions expressed in a document, creating
applications that include mining of data to summarize the opinion of consumers and
politicians, and business and government intelligence. Ref. [20] indicates that “sentiment
analysis tries to find out the polarity of the subjective text, that is, how much of the given
textual data is positive, and how much is negative” (p. 577).
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On the other hand, ref. [21] shows that sentiment analysis is comprised of the automatic
identification of the sentiment expressed in a text, so it can apply the same analysis in
different areas, such as monitoring sentiments, or to a product, movies, politicians, or
companies. The authors also point out that in recent decades usage of microblogging
platforms such as Twitter has increased considerably, generating interest in analyzing the
sentiment of brief texts in various areas such as commerce, health, military intelligence,
and natural disaster management.

Thus, sentiment analysis in microblogs helps companies to collect better feedback on
the products they offer to their customers, allowing them to improve the quality of products
offered in the future by developing better products to suit their customers’ tastes [6].

Sentiment Analysis Emotions

When performing the sentiment analysis, it provides separate data sets for sentiments
that are negative and positive, and at the same time it separates these two data sets into
anger, anticipation, sadness, joy, surprise, disappointment, trust, and fear. Each word of
each tweet is separated into one or more of these emotions, thus generating a score for each
of these, which is what ends up being a positive or negative sentiment.

A theoretical model to separate each of the emotions into negative and positive was
proposed by [22], but they did not include certain emotions that were included in our study,
such as anticipation. The proposed model is presented below in Figure 1.
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3. Methodology

To the goal of this study was to determine the predominant sentiment and the most
repetitive emotion through a sentiment analysis of the consumer electronics industry on
Twitter. This research was developed through analysis with a quantitative, descriptive
statistical approach, through Twitter API and R software. The period used for data extrac-
tion was from the week of 21 to 27 September 2020. From this, 3200 tweets were extracted
per company, which would be approximately 96,000 total tweets. For all these tweets, the
sentiment analysis managed to analyze 273,221 words in total.

Data

The industry investigated was consumer electronics, which encompasses many com-
panies related to technological innovations worldwide [23]. From this industry, a sample
was obtained comprising 30 companies selected from CES 2020, an event where the most
important organizations in the world in the technological field were presented.

The 30 selected companies (Appendix A) were included in the R software, where
the data were extracted using the verified accounts of each of these companies. Selected
accounts were LG Electronics @LGUS, Huawei @Huawei, Samsung Electronics @Sam-
sung, Sony @Sony, Xiaomi @Xiaomi, Motorola @Moto, HP @HP, ASUS @ASUS, Nokia
@nokia, Microsoft @Microsoft, Dell @Dell, Lenovo @Lenovo, Intel @intel, Google @Google,
AMD @AMD, Amazon @amazon, NVIDIA @nvidia, Logitech @logitech, Canon USA
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Corp. @canonusa, TCL USA @TCL_USA, Toshiba @toshibausa, OnePlus @oneplus, Philips
@philips, Nintendo of America @nintendoamerica, NikonUSA @nikonusa, Bose @bose,
Kodak @kodak, Panasonic Corp. @panasonic, Hitachi @hitachiglobal, and Pebble @pebble.

For the extraction of information from the research, different scripts were used to divide
it into 4 parts, starting with the packages used in the R studio software (version), then the
scripts that allow access to Twitter information through its free APIs, the extraction script
of the tweets, ending with the scripts that allow the text to end up being analyzed by the
software using the lexicon of emotions and sentiment created by the National Research
Council Canada (NRC), which is available in 40 languages, so it can be used in other studies.

The packages mentioned above are described below. The first package is in Figure 2.
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Figure 2. Function 01.

• SnowballC created by Milan Bouchet-Valat (2020) aims to extract the words and
analyze the text, it should be noted that this package includes different types of
functions to use.

• The tm package (text mining package) is another tool used for data mining, similar to
SnowballC, it includes different types of functions to use.

• The TwitterR package helps us to find all the information of a twitter user, such as the
users, tweets, time of the tweet, and how many liked tweets. Similar to the previous
packages, this one has its own functions to use.

• The Syuzhet package is responsible for extracting the sentiments and emotions from
the text filtered by the previous packages.

It should be noted that these packages have been essential to carry out this research
and to obtain the results thereof, since each one fulfilled the function described above,
greatly helping the ability to solve the objective of the research. (See in Figure 3).
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The objective of this function is to access the information necessary for this research
(in Figure 4), such as the tweets of each selected company, the tweets, URL, and unique ID
number of the tweet, through the API provided by Twitter.
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This function is the tool for extracting the tweets emitted by a Twitter account (in
Figure 5). For example, the Samsung Company can extract a maximum of 3200 tweets since
it is the maximum allowed by the API that Twitter gives us, since it is a search API.
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After extracting the tweets, the function line n.tweet allows us to make sure we know
the length of the tweets, that is, how many tweets were extracted from the @Samsung
account. It should be noted that it will only show the number of tweets extracted, not the
detailed tweets.

These lines of functions allow us to transform the information previously extracted
into a spreadsheet with the tweets where we can find:

• The text in the original tweet issued by the company.
• If the company has favored its own tweet.
• How many favorites that a particular tweet has had.
• The exact date the tweet was created, which gives us information not only about the

date the tweet was issued but also about the time it was issued.
• The ID of the tweet, since each tweet has a unique ID, which consists only of numbers.

(in Figures 5–8).
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In these lines of functions, we find different important factors for the investigation. In
the first 6 lines, we find the cleaning functions for the tweets, that is, all punctuation marks,
numbers, links, emoticons are eliminated. Once the tweet has been filtered and cleaned, the
function for sentiment analysis is implemented, using get_nrc_ sentiment, analyzing each
word of the tweets and classifying them according to the criteria of the nrc lexicon, and
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creating a data frame showing the eight sentiments and the positive and negative polarities,
as can be seen in the following Figure 9.
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Figure 9. Companies and emotions.

As can be seen in Figure 9, in the first tweet, the lexicon rates three words with the
following emotions: anticipation, joy, and surprise, and at the same time, those three words
are rated according to their polarity, where the lexicon rates all three as positive words.
Then, in the function line, we find the cbind code, that allows us to calculate the total sum
of the sentiments and emotions found in the data frame of the tweets as seen in Table 1.



J. Theor. Appl. Electron. Commer. Res. 2023, 18 771

Table 1. Emotions grouping of the lexicon.

Emotion Total

Anger Anticipation 117
Disgust 796

Fear 62
Joy 225

Sadness 523
Surprise 119

Trust 226
Negative 817
Positive 209

1738

4. Research Findings

The following section is about the results of the research and contains a summary of
the sentiment and eight emotions of all companies analyzed. In the following table xx, the
total results of the investigation are presented, showing each of the emotions in color and
classifying each of the companies on the “X” axis and the number of words analyzed in
each of the companies on the “Y” axis.

Figure 10 shows the major companies with the number of words analyzed, for example
Amazon, Logitech, Lenovo, and Nintendo equaling or exceeding 8000 words analyzed.
As a first global analysis, it was observed that the most notable emotions are confidence,
joy, and anticipation. To have more clarity on this, it was necessary to do a more in-depth
analysis of tables.
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Figure 11 presented a total summary of positive and negative sentiments, which are
composed as a score based on the eight sentiments. With (Figure 10), it was observed that
clearly, the predominant sentiment in each of the companies was positive, where the main
companies above the 4000 score were Amazon and Huawei.

Figure 12 presented a summary of the number of words related to the eight differ-
ent emotions in the research. The graph allows us to determine that the emotions that
accumulated the greatest number of words were anticipation, joy, and trust.
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Finally, from the results section, two figures related to emotions and companies were
presented. First, a figure with eight different tables, each corresponding to an emotion. Each
of these tables ranks the top five companies that had the most words based on sentiment.

Thus, the first table in Figure 12 was related to anger, where no company exceeded the
amount of 1000 words and the company that had the highest amount was Nintendo, with
8.05% of the words related to anger.

Then, there was anticipation, where an increase in the number of words was observed,
confirming the information obtained in Figure 10. In this table, the company that stood
out the most in terms of the number of words was Amazon with 6.36% and followed by
Nintendo with 5.17% related to anticipation.
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The next emotion was disgust, this emotion had the lowest number of words compared
to the other sentiments. In this emotion, the LGUS Company stood out with 12.9% of words
related to disgust.

Then, fear was presented; two companies stood out for fear: Logitech and Nintendo,
obtaining 7.93% and 7.61% of the words, respectively. It should be noted that Nintendo
was already presented as one of the companies with the highest amount of anger and now
in this case of fear as well.

The following table corresponds to the emotion of happiness, where, by a vast majority,
the company that had the highest number of words was Amazon, with 10.15% of the total
number of words. Similar to Nintendo in the previous situation, Amazon repeats in an
emotion, but in this case with anticipation.

Then, the emotion of sadness was also presented, where the Logitech company stands
out with 10.16% words related to sadness. This is also mentioned for the second time, since
it also had the highest number of words relating to fear.

The next emotion was surprise, where the Amazon Company stood out for the third
time with 7.34% of the words, and closely following this, Nintendo presented with 6.4% of
words related to surprise.

And finally, there was the emotion of confidence, this being one of the emotions where
more words were accumulated, with most companies contributing over 8000 words each.
The company that accumulated the most words was LGUS, with 6.92% of words related
to emotions.

As the last section of the results, an analysis of network graphics related to emotions
and companies was carried out Figure 13. This exposed the top eight companies with the
highest number of followers, how the words published in their tweets were classified, and
which emotion they corresponded to.
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Therefore, Figure 13 begins with the Google chart where the most prominent emotion
was confidence. This was followed by Nintendo, where the most prominent emotion was
anticipation. Then, Microsoft follows, with the most prominent emotion being trust. Then,
Huawei follows, where the emotion of trust was highlighted. Intel followed next, where the
most prominent emotion was trust. Then, Sony follows, with the most prominent emotion
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being anticipation. Next, Amazon followed, where the most prominent emotion was
happiness. Finally, there was Xiaomi, where the most prominent emotion was anticipation.

With this, it was possible to determine that there was a clear trend between the major
companies and the emotions that the analysis showed, since there was a constant repetition
of the confidence and anticipation emotions.

5. Discussion

Social networks, in general, are products that help reinforce positive and/or negative
habits, since many of these platforms facilitate users to live experiences, generate self-
reflection, growth, and new learning, and more importantly, increase their degree of
happiness [24]. Based on the above and the study carried out, the analyzed industry had a
positive assessment, so that should lead to reinforcing these same types of habits. However,
we cannot affirm that the publications made in the tweets of the different companies in the
industry increase happiness thanks to a reinforcement of positive habits.

However, the foregoing does not remove the great importance of analyzing the senti-
ments and emotions of the publications (or in this case tweets) of users in different social
networks, since thanks to these comments, it has sometimes been possible to predict the
market for values [25]. Similarly, it has been suggested that Twitter mood predicts the stock
market [26–29].

For this reason, companies must also pay special attention to the comments they make
on their accounts and see what impact they generate.

6. Conclusions

In this study, the objective was to determine the predominant sentiment and prevailing
emotions through a sentiment analysis of the consumer electronics industry on Twitter. It
analyzed 96,000 tweets with a total of 273,221 words.

The main results of the sentiment and emotion analysis for this research identified
that positive valuation predominates, and emotions such as anticipation and confidence
were the most representative in this study.

This study provides strategic information about the feelings and emotions perceived in
the global consumer electronics industry [30], which helps firms to make the right decisions
to enhance customer attraction and loyalty strategies, using accessible, technological, and
current tools such as the Twitter data language procedure. Proposed future lines of research
are linked to the analysis of other social networks and economic activity, as well as carrying
out the analysis with other software such as Python.
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Appendix A

Name of the Companies Name in Twitter

LG Electronics @LGUS
Huawei @Huawei
Samsung Electronics @Samsung
Sony @Sony
Xiaomi @Xiaomi
Motorola @Moto
HP @HP
ASUS @ASUS
Nokia @nokia
Microsoft @Microsoft
Dell @Dell
Lenovo @Lenovo
Intel @intel
Google @Google
AMD @AMD
Amazon @amazon
NVIDIA @nvidia
Logitech @logitech
Canon USA Corp. @canonusa
TCL USA @TCL_USA
Toshiba @toshibausa
OnePlus @oneplus
Philips @philips
Nintendo of America @nintendoamerica
NikonUSA @nikonusa
Bose @bose
Kodak @kodak
Panasonic Corp. @panasonic
Hitachi @hitachiglobal
Pebble @pebble

Source: Own elaboration.
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