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Abstract: This study aimed to examine users’ experiences of using running applications. A total of
20,243 online reviews posted by running-application users were collected from the Google Play Store.
The data were analyzed using Leximancer to conduct the qualitative content analysis. The software
identified six themes of running-app users’ experiences: “app”, “use”, “track”, “free”, “ads”, and
“support”. Moreover, the results showed that users were generally positive toward the usefulness of
running applications’ functions. The findings of this study help designers better understand running-
application users’ experience and improve running applications’ features in order to optimize users’
exercise experience.
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1. Introduction
1.1. Research Background

Recently, smartphones have become a necessity for many consumers as they have
been used in all areas of their daily lives, such as media, entertainment, education, and
exercise [1,2]. With the rapid development of smartphone-related technologies, many
activities have become possible. For example, consumers use global positioning system
(GPS) functions to navigate, play games using augmented-reality technology, measure
sleep quality through sensors, and so forth. Moreover, the shutdown caused by COVID-19
stimulated the demand for different mobile applications [3,4]. As the mobile-application
ecosystem has developed over the past decade, the offline-oriented industrial structure
has been reorganized into mobile applications to collect information and improve pro-
ductivity. Global Market Insights [5] expects the global digital-healthcare market to reach
USD 86.4 billion in 2018 and grow by 29.6% annually, forming a market of more than USD
504.4 billion by 2025. In particular, mobile healthcare (mHealth), a healthcare market using
mobile devices, is expected to grow at an annual growth rate of 38.8% from 2019 to 2025, sur-
passing the overall digital-healthcare-market growth rate. The mobile-application market
is expected to generate USD 935 billion in revenue, including payments and paid down-
loads, in 2023, while the global mHealth market size is estimated to reach USD 310 billion
by 2027 [6]. Mobile-healthcare applications support disease prevention, treatment, and
health management by converging IT technologies with existing healthcare-management
technologies. For instance, Apple Health, Samsung Health, and Google Fit are healthcare
applications that track and manage sleep patterns, exercise records, and calorie intake.
Mobile applications for health purposes provide telemedicine services based on patient
monitoring and disease detection, and even digital treatments offer advanced medical
services, including treatment [7,8].

As such, global sports brands also launch their exercise applications, providing var-
ious benefits by combining them with multiple events when using exercise applications.
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In particular, running is a sports event covered by many applications, with Adidas’ Run-
tastic having more than 50 million downloads, Nike’s Nike Run Club having more than
10 million downloads, and Asics’ Runkeeper having more than 10 million downloads. As
such, these running applications are relatively popular and widely used by consumers.
However, in general, the vast majority of applications have issues regarding continued
usage and retention rate. About 25% of the applications are used only once after being
downloaded [9,10]. Nearly half of customers report that they would delete an application if
they found a single bug [11]. As such, easy installation and simple accessibility through ap-
plication markets, which are strengths of applications, reduce reuse through easy deletion
and removal. Although previous studies have examined the usability of fitness applications,
application developers are working on various ways to induce continued usage [12–14].

However, despite the importance of understanding app-user experiences to enhance
the retention rate, most studies have focused on what influences users’ adoption of mobile
applications using some well-known, researcher-driven theoretical frameworks, such as the
technology acceptance model (Davis [15], TAM) and unified theory of acceptance and use
of technology (Venkatesh et al. [16], UTAUT). While these theoretical frameworks provide
a well-versed perspective on mobile-application users’ behaviors, especially regarding the
adoption behavior of mobile applications, this researcher-driven approach may uninten-
tionally overvalue the salience of some attributes or determinants [17]. At the same time, it
may neglect potentially meaningful predictors [18,19]. Given that application users have
changed their role from passive consumers to active ‘prosumers’ and creators, it became
imperative to identify what are more relevant attributes and elements for application users
using user-generated content (UGC) from a market- or data-driven approach [18]. In doing
so, the current study may fill a gap in the literature on what influences running-app users’
experiences and continued use.

1.2. Relevant Literature and Research Gap

The development of Internet technology in the Web 2.0 era has made it easy for
individuals to communicate in both directions with large amounts of information. In
other words, the role of Internet users has changed not only to consume but to produce
and spread information [20]. Liu [21] stated that user-generated content (UGC) is also
a creative work published on websites where anyone can access information for public
purposes, even more potent than marketer-created content (MGC) as part of big data. UGC
unbiasedly provides real consumer input and insights from an insider’s perspective [22,23].
UGC allows customers to embrace specific products better than MGC. Of the various UGC,
online reviews have been widely utilized to understand various consumer attitudes and
behavior, such as preferences, satisfaction, and recommendation in diverse settings.

One of the most significant disadvantages users perceive in purchasing mobile appli-
cations is that they have no choice but to use limited information in acquiring goods [24,25].
As a result, online consumers have begun to refer to other people’s opinions and ex-
periences, such as online user reviews, which are most easily accessible on distribution
channels. Research on online user reviews using the text-mining approach has continuously
attempted to understand users’ experience and intention to use [26,27]. With more than
20 years of online distribution channels and explosive growth, online user reviews are
also increasing. The importance of content analysis and opinion mining on consumers is
growing. In particular, in the mobile-application field, users choose applications to down-
load based on reviews or evaluations from other users rather than using all applications
when dozens of mobile applications are pouring in a day. In this increasingly advanced
application industry, consumer reviews are emphasized.

As previously mentioned, text mining has been a useful tool for information extraction
and classification in various fields when analyzing consumer reviewers. For example,
Ban and Kim [28] used online reviews from Skytrax, a U.K.-based consultancy for airline
reviews and ranking. They found a set of six evaluation factors, including seat comfort,
staff, food and beverage, entertainment, ground service, and value for money, to be the most
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critical attributes that influence customer satisfaction and recommendation in the context of
the top 10 airlines (i.e., full-service airlines) [28]. In the context of Chinese online teaching
platforms, Chen et al. [29] evaluated five platforms using crawled data of online users and
found the seven most influencing factors that affect user experiences, such as platform
privacy, platform design environment, platform functionality, and network technology
environment. Similarly, using a text-mining approach, Shankar et al. [30] found that privacy
and security, navigation, customer support, convenience, and efficiency are the critical
success factors of a sustainable mobile-banking application. In a wearable-device context,
Zhou and Zhou [31] conducted a sentiment analysis of elderly wearable-device users by
analyzing review comments from Taobao, a Chinese online-shopping platform, and found
such negative keywords as “battery”, “voice (sound volume, noise, and voice recognition)”
and “function”, emerged to be critical factors to which wearable-device manufacturers
need to pay attention.

Overall, the above-mentioned studies [28,30,31] illustrated the utility of text mining
or sentiment analysis using online user comments, especially in an era of e-commerce
and social media, because text mining, as a data-driven approach, allows us to explore
unbiased and deeper consumer responses [19,32], consequently complementing traditional
researcher-driven approaches. However, despite the running applications’ potential con-
tributions to building a better brand community of sports brands and enhancing users’
health [33], consumer experience toward mobile applications, especially running applica-
tions, has been under-explored. In this study, we want to extract key elements of users’
interest in running applications currently in circulation by analyzing reviews from real
users who perform the exercise using running applications.

1.3. Research Goals and Questions

Therefore, this study aims to identify users’ experience with running applications and
enhance user satisfaction as users observe and study real users through text mining and
network analysis of application-review data from the Google Play Store. The findings of
the current study would be helpful to mobile-application developers and sports brands
in meeting consumer expectations, developing marketing strategies, and enhancing user
experience. This study is guided by the following research questions.

Research Questions:

1. Which key concepts/topics (themes) are evident in UGC about running applications?
2. What thematic patterns are found in UGC about running applications?
3. Do the key concepts/topics (themes) differ by sentiment valence (i.e., positive or negative)?

2. Methodology
2.1. Data Source and Collection

In this study, users’ reviews were collected from the Google Play Store to investigate
their opinions on using running applications. The Google Play Store was selected as
the data source as it had much more applications, downloads, and updates than other
application markets (e.g., Apple’s App Store, Samsung’s Galaxy Store, and Amazon’s
App Store) [6,34]. Moreover, the large volume of reviews can generate reliable results and
in-depth opinions from users’ perspectives. Running applications with at least 1 million
downloads were selected for this study, including Nike Run Club, Runtastic, Zeopoxa,
Mifit, Runkeeper, and Sports Tracker. Review data were collected by the software program
BeautifulSoup of Python. As a result, a total of 20,243 reviews were collected for further
analysis using Leximancer (version 4.0).

2.2. Data Analysis through Leximancer

Recently, various studies have utilized different text-mining programs to explore
consumers’ experiences and opinions [35–39]. This study conducted data analysis by
Leximancer (version 4.0), a computer-assisted qualitative data analysis (CAQDA) software.
Leximancer was chosen for this study for three reasons. First, Leximancer can efficiently



J. Theor. Appl. Electron. Commer. Res. 2023, 18 176

analyze large volumes and immediately identify concepts and themes of textual data like
other CAQDA software (e.g., NVivo). Second, Leximancer does not have pre-existing
assumptions about the meaning of the works, reducing the probability of researchers’
subjective bias. Third, Leximancer operates with minimal manual intervention from
researchers, offering an alternative way of looking at data and reducing the impact of
manual coding [40]. Therefore, Leximancer has been regarded as a useful tool for analyzing
consumers’ experiences in different disciplines [20,41,42] as it addresses some common
issues of qualitative research, such as subjective coding, questionable inter-coder reliability,
and disputable interpretations [20].

Moreover, a large number of reviews (N = 20,243) were deemed appropriate for
Leximancer analysis for this study [43]. Leximancer combines qualitative and quantitative
techniques to comprehensively explore natural-language textual data, such as reviews
and interview transcripts [44]. Specifically, Leximancer processes natural language based
on Bayesian theory [44,45]. Leximancer provides statistical analysis and visualization
of electronically written documents through text analysis, such as semantic and rational
information [46]. As shown in Figure 1, there are three levels of the extraction process:
words, concepts, and themes. Leximancer starts by semantically extracting the text (i.e.,
words) to create a ranked list of terms (i.e., concepts). As a next step, Leximancer groups
essential concepts at the higher levels (themes) based on the frequency occurrence of the
concepts [44,46–48]. Leximancer provides a hot map that visually shows the main concepts
contained within the text data and information about how frequently it co-occurred. The
relative position and size distance of concepts depend on the strength of the semantics and
the connection between concepts. The essential themes are shown as bright circles, and the
frequency of the concepts is implied from the circle sizes [47].
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Figure 1. The extraction process of Leximancer analysis (Adopted from Crofts and Bisman 2010).

In addition, sentiment analysis was further conducted to better understand running-
application users’ positive and negative sentiments. Sentiment analysis has been useful in
exploring consumers’ opinions and evaluations of product features [49,50]. The function of
Sentiment Lens in Leximancer was performed to generate insight into concepts contribut-
ing to positive and negative emotions in users’ online reviews of running applications.
Sentiment Lens can identify relevant sentiment terms consistently while processing and
help increase the accuracy of sentiment analysis [51]. Moreover, Leximancer calculates the
prominence score using Bayesian statistics. The prominence score indicates the probability
of a concept being mentioned in a favorable and unfavorable context. In particular, a
prominence score higher than 1.0 means that the co-occurrence occurs more frequently than
by chance, and a prominence score higher than 3.0 indicates that the concepts are unique
and essential characteristics [51,52].

3. Results and Findings

The Leximancer program initially extracted forty-eight concepts from 20,243 reviews of
Google Play Store. A stemming algorithm was further employed to identify the headword
for initial thesaurus items, and then the concept list was generated. However, only some
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concepts that appear in the results are meaningful for further analysis [48]. Leximancer
produces “The co-occurrence frequency” and “meaning of concepts” through text analysis,
and the significant results derived from the analysis were analyzed [53]. Consequently,
unnecessary concepts for solving research problems were eliminated under the researcher’s
judgment [44]. This study did not consider simple brand names (e.g., Samsung, Apple) as
meaningful concepts in analyzing users’ experience of running applications. In addition,
unnecessary concepts of application usage period were excluded from the analysis (e.g.,
during, weeks), removed descriptive words related to other wearable devices (e.g., band,
watch). Finally, 48 concepts remained for further analysis (see Table 1).

Table 1. Leximancer concept frequencies.

Concept Frequencies % Concept Frequencies %

app 10852 100 training 463 4
use 4597 42 keeps 458 4

track 2996 28 walking 456 4
running 2896 27 progress 448 4

love 1780 16 nice 448 4
work 1721 16 update 444 4
time 1637 15 speed 432 4

distance 1417 13 voice 417 4
accurate 1007 9 pace 412 4

free 1000 9 start 401 4
easy 970 9 user 365 3

features 966 9 rate 344 3
version 927 9 stop 343 3

need 786 7 ads 324 3
best 740 7 map 313 3

phone 632 6 route 307 3
miles 585 5 watch 301 3
useful 555 5 day 296 3
data 551 5 option 280 3

better 549 5 band 279 3
workout 524 5 support 268 2
fitness 489 5 sleep 250 2

calories 481 4 down 224 2
premium 463 4 account 192 2

3.1. Users’ Overall Experiences of Running Applications

The concept map created by Leximancer showed that the theme map consisted of
48 concepts (shown as small gray nodes) that were grouped into eleven dominant themes.
Figure 2 indicates six major themes in the running-application experiences, (1) app, (2) use,
(3) track, (4) free, (5) ads, (6) support. “App” was a dominant theme and was closely
related to many factors such as positive experiences, usefulness, and main functions such as
running and tracking. It is because users of the running application judge that the primary
function of the perceived application is a track function, especially in sleep and exercise
tracking. For example, one of the reviewers mentioned:
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“I use this to track my running daily. It is accurate and reliable. I enjoy the interface, it
is intuitive and easy to use. I also enjoy the challenges that it affords occasionally. I have
never paid for the premium service though. I would definitely recommend that someone
who is interested in running”

The user knowledge level influences the usage of running applications for exercise
purposes [54]. According to Rapp and Cena [55], general users prefer a large amount of
information, accuracy, and serendipity to ease of use or wearability. This is due to the
lack of knowledge to use applications to achieve sports objectives. This tracking-function
experience often leads to positive user experiences such as usefulness which was evident
from another key concept revealed by the Leximancer analysis.

“this app is really useful for my daily tracking! I’m using a mi band 4 and I’m using
this app to track my every exercise and it did pretty well! it also lets me customize my
wallpaper for the mi band and it gave me a very wide variety of choices! Overall it’s an
amazing app!”

This may be related to the desired level of application users to obtain information
and the function of running the application. Many studies have reported that consumers
use communication technology to obtain and search for information [56,57]. When the
diet/fitness application provides information on the time, intensity, degree, and frequency
of exercise, the function of the mobile application is perceived to be useful [32]. As re-
ported in several studies, information quality is critical when potential customers eval-
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uate the value and usefulness of review data and recommendation comments provided
online [58,59]. As a result, many companies manage their product or service evaluations
online. Still, in a rich information resource environment, consumers can easily obtain the
necessary information about the products and services they want [60]. In this environment,
consumers’ excessive exposure to unreliable, controversial, or inaccurate information can
disrupt the acceptance of the information itself. Accordingly, one reviewer mentioned
the following:

“This app really became my drive force since I come to know it, it shows all of my running
informations, advises what am suppose to do right, what am doing wrong, there are a
group of people out there who have the same objective as mine hence no boredom.”

In addition to the main functional aspects of the application, the functions provided
free-of-charge in the running application appear to affect consumers’ acceptance of the
application as “free” emerged as a critical theme in this study. Apple App Store and Google
Play Store accommodate billing applications such as free, paid, and freemium applications.
Freemium applications can be considered free applications with in-app purchases because
it is provided as free-of-charge applications but require money for additional features. Most
fitness applications currently available in the App Store are freemium applications, except
those released by sports brands. Therefore, many factors must be considered in mounting
payment elements in fitness applications. Rizaldi and Saraswati [61] argued that application
users make payment decisions when they perceive eight factors: performance value, value
for money, emotional value, social value, confirmation, app rating, free alternatives to paid
applications, and habit. In particular, many sports brands provide free applications in the
fitness-application area, so it is challenging to induce in-app payments.

Moreover, when consumers are highly satisfied with the functions of running applica-
tions, cannibalization occurs for the paid version. Therefore, the payment model of fitness
applications should precisely adjust the balance between consumers’ needs and willingness
to pay. For free, reviewers mentioned as follows:

“Have been using for 6 years without a problem. Includes a lot of features for free that
other apps charhe for. Tried other trackers but I keep coming back to this one.”

“What is the benefits of premium members if everything gets free later was a premium
member no benefit at all. All new additions become free later. Just wait a while. And you
will get it free”

In order to maximize profitability, applications provide not only various functions
for a fee but also offer in-app advertisements. Even though numerous advertisements
are provided through applications, the application users tend to overlook in-app ads and
perceive tiredness from frequent advertising exposure [62,63]. Therefore, the frequent
appearance of ads in running applications still emerged as one of the superior experiences
for users. For example, reviewers mentioned that:

“GPS is just OK. Was trying free version to decide if I wanted to purchase but too many
ads and requests to sign in etc has put me off”

“Works alright for what it’s supposed to, thankfully they updated it so the ads that use
to take up half the screen aren’t showing anymore (I uninstalled after that! And only
redownload after I saw they removed them) there does need to be a option to control music
playback like Spotify”

“good app that I’ve used for years, but the number of ads has slowly been creeping up
full screen ads. Timeline ads. Stupid notifications! Definitely force close when your
job finished”

The result found that application users demand localized and immediate support
and fast support. Many applications are trying to increase usage for users around the
world. The globalization of software is divided into internalization and localization stages.
Internalization can be defined as developing and designing systems to support other
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languages and regions. Localization is defined as the process of converting internationally
sized software to suit a particular country, region, or culture by adding region-specific
functions [64]. Most localized software only applies translation or time, date, currency,
weights, and measurements. Additionally, integrity, interface layout, content, and language
accuracy must also satisfy the needs of local users [65]. This study showed that application
providers should respond quickly to consumers with localized technical support.

“No Fahrenheit support. Sleep data collection and analysis not as good as Fitbit. Very
good battery management. Some nice features in the app are removed in the latest
app version.”

“I reported a bug almost 2 month ago. Since then nobody answered, I updated the app to
the latest version, but the bug still remains. I am disappointed in the app support.”

3.2. Sentiment Analysis Results

The sentiment analysis results indicate that running-application users were over-
whelmingly positive about many aspects of their experience (Table 2). It is noteworthy that
the analysis based on the reviews of running-application users showed that accurate, easy,
helpful, and friendly as positive keywords except for emotional adjectives.

Table 2. Sentiment analysis results.

Positive Terms Score Negative Terms Score

great 11.93 problem 8.29
good 11.79 annoying 7.82

accurate 10.61 bad 7.7
easy 10.55 wrong 7.54
best 10.24 disappointed 7.47
nice 9.66 frustrating 7.11

awesome 9.21 slow 7.01
helpful 9.11 poor 6.83
friendly 8.81 worst 6.67
excellent 8.61 difficult 6.55

happy 8.55 failed 6.45
reliable 8.41 worse 6.36

accuracy 8.39 terrible 6.34
fantastic 8.29 fault 6.29

performance 8.09 complicated 6.27
fast 7.67 shame 5.93

wonderful 7.53 trouble 5.93
satisfied 7.53 negative 5.85

convenient 7.03 sad 5.66
impressed 7 lack 5.61

quick 6.94 horrible 5.61
user 6.88 unreliable 5.61

effective 6.76 rubbish 5.55
stable 6.69 crap 5.49

On the other hand, negative words derived from the sentimental analysis included
problem, annoying, bad, and wrong. For example, a reviewer made the following positive
and negative comments.

“I am very fond of this app and is regularly using the same. Accurate measurement, good
statistics and easy to use. However, ads are a bit irritating and in the starting it always
gives a msg that GPS signal is lost.”

“It’s an excellent product though but there is a problem with the connectivity and
accuracy level. I was told it doesn’t record while in a moving vehicle but that’s not true.
Pls work on it.”
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4. Discussion

Limited studies have explored users’ experiences of running applications by using a
text-mining approach. Therefore, this study examined running-application users’ reviews
on the Google Play Store by using the CAQDA software Leximancer. This research points
to the applicability of visual and textual analytic methods, which can be tied to decision
making in the context of online customer reviews. As the quantity of textual data in online
reviews is increasing, online review analysis and its outcomes can provide insights to find
new ways of managing and analyzing experience-based text data in running-application
research. Quantitative and qualitative aspects of online reviews of running applications
also contribute to helping running-application companies understand users’ preferences,
strengths/weaknesses, newly required functions, and dimensions of fitness applications to
increase users’ satisfaction. This study provides evidence on what factors users who use
fitness applications for running activities are actually demanding.

The Leximancer analysis found that their experiences were built on three significant
themes, “app”, “use”, “track”, “free”, “ads”, and “support”, which are mainly relevant to
the core and peripheral elements of running applications [66–69]. Particularly, the themes
“app” and “use” were linked with users’ perceptions of usefulness and easiness, consistent
with previous studies [70–74], suggesting that usefulness and easiness are commonly
used evaluation criteria for a fitness application reviewed by users. Moreover, intuitive
navigation and a smart set of features will need to be provided to enhance the application
user’s ease of use. For example, a user may be able to satisfy various user needs by
customizing their interface. Support for application users also allows users to recognize
usefulness, as suggested in Leximancer’s concept map. For example, if the offline mode
also allows users to access application features, users will be able to perceive usefulness.
In addition, accurate tracking was identified as a critical feature of running applications,
which is in accordance with previous studies [75,76].

Moreover, in addition to the utilitarian factors of running applications (i.e., “app”,
“use”, and “track”), the monetary aspect (i.e., “free”) was found to be essential. It indicates
that users are sensitive to the monetary aspect of running applications. Previous studies
emphasized that users’ perceptions of price value are critical antecedents of their experi-
ence and behaviors when using fitness and health applications [77–79]. Furthermore, users
perceive the profitability of running applications (i.e., “ads”) when using running apps. In
general, there are four types of advertisements embedded in an app: intermediate adver-
tisements before and after application activities, click-to-expand ads, out-of-app ads, and
on-screen ads displayed along with the screen’s contents [80]. Lamond [81] reported that
50% of application users deleted their application after their mobile-advertising experience,
which led to a large decrease in users. Inappropriate ad integration could also increase the
difficulty of ensuring app reliability [82–85]. Therefore, when providing ads to users in
running applications, determining the type of ads, location of ads, and frequency of ads is
a crucial factor in determining the user’s intention to continue using them. In addition, per-
ceived support from running applications is critical for users. It indicates the importance of
“after-installation” support for users. When users face difficulties in running applications,
the availability of different types of support is important for users’ experiences.

Finally, the sentiment analysis uncovered positive and negative experiences of running
applications. It was found that users’ positive and negative experiences were mainly from
the functions of running applications. For example, many factors relevant to application
quality, including accuracy, ease of use, and helpfulness, are critical to contributing to
users’ positive and negative experiences [85,86]. In addition, advertisements in the running
applications were found to be related to users’ negative experience, indicating that users
are annoyed by frequent advertisements when using running applications.

4.1. Theoretical Implications

The findings of the current study provide theoretical contributions to the extant lit-
erature by using a data-driven approach to exploring the voice of running-application
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users. In previous studies on sports or running applications, research primarily used
quantitative questionnaires to explore consumers’ experience of using running applica-
tions [33,67]. This study provides an alternative approach to understanding users’ experi-
ences of running applications.

Moreover, this study identifies different aspects of users’ experiences. In addition
to users’ utilitarian perceptions (e.g., perceived ease of use and perceived usefulness)
which were mainly identified by previous studies, this study discovers monetary-element
(i.e., free functions) perceptions that are not relevant to functions (i.e., advertisement
and support). It suggests the importance of these elements to users’ experience of using
running applications. The findings of this study offer a more comprehensive view of users’
experiences and perceptions of running applications.

4.2. Practical Implications

The findings of this study also provide various practical implications. For marketers
and developers, the theme and text characteristics revealed in this study will help running-
application developers understand users’ experiences, making it more convenient and
useful for users to use the application. This will help developers add the functions users
require to running applications in the future or install paid functions and advertisements to
improve profitability. Various consumer community channels have recently emerged, rais-
ing consumer voices in different application stores (e.g., the Apple App Store and Google
Play Store). Therefore, developers should pay attention to positive/negative evaluations of
consumers’ running applications. The efforts to understand users’ experiences can help
developers and marketers efficiently develop useful features and promotion strategies. In
addition, this study identified some non-utilitarian elements (e.g., support). Therefore,
developers and marketers should pay more attention to various means of support even
after the installation of running applications.

4.3. Limitations and Future Research Direction

Before generalizing this study, the following points should be noted. In this study,
the accuracy and reliability of the review cannot be accurately measured because the
fitness-app users were not asked about their user experience. Corporate marketing reviews
can manipulate positive online reviews, or competitors can fabricate negative reviews.
Therefore, in future research, an analysis of consumer requirements reflecting the reliability
of users should be conducted. It is important to point out that this study examined reviews
in only one application environment. In this study, since data were collected only in
the Google App Store, the results of this study cannot be extended and applied in other
application execution environments. Future research will derive more diverse variables if
application-user reviews are collected in Android and IOS environments. It will also be
possible to collect data from various datasets, such as blogs, application users’ communities,
and websites.

Moreover, it should be noted that demographic information is not available in the raw
data. Therefore, the demographic differences (e.g., gender and age) in reviews were not
explored in this study. Future studies may take demographic information into consideration
when collecting UGC data and explore potential differences between demographic variables.
Furthermore, the primary purpose of this study was to identify key concepts and thematic
patterns in UGC about running applications. As such, this study did not investigate the
differences in user experiences among running applications.

Finally, there is a limitation in this study in that only the user’s review data were
used as analysis data. This can collect user experiences, but there is a gap between the
actual development environment and technology. Accordingly, other qualitative research
methods, such as Delphi, focus group interviews, and open questionnaires, could fill the
gap with users, application developers, and marketing managers.
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5. Conclusions

To explore the users’ authentic voice of using running applications, this study collected
online reviews created by users (i.e., UGC) and further analyzed the data using the CAQDA
software Leximancer. This study identifies various themes which are important for users’
experiences. In particular, utilitarian factors (i.e., functions, ease of use, and usefulness)
are shown to be critical in contributing to users’ overall positive and negative experiences.
Moreover, some non-utilitarian factors are found to be significant to users’ experience.
In particular, monetary aspects and support are essential elements for users’ positive
experiences, while frequent advertisements in running applications lead to negative emo-
tions and undermine users’ experiences. This study provides an alternative approach to
exploring users’ experience of running applications and offers practical implications for
application designers.
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