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Abstract: Carbon emission constraints and trading policies in e-commerce environments have
brought huge challenges to the operation of supply chain enterprises. In order to ensure the good
operation of the e-commerce supply chain in a low-carbon environment, a supply chain scheduling
optimization method based on integration of production and transportation with carbon emission
constraints is proposed; we use it to analyze the impact of centralized decision-making mode
and decentralized decision-making mode on supply chain scheduling and establish a scheduling
optimization model that aims at optimal carbon emissions and costs. A multilevel genetic algorithm
was designed according to the characteristics of the model, and numerical examples are used to verify
the effectiveness of the model and algorithm. The results show that the centralized decision-making
mode plays the role of the carbon emission constraints to the greatest extent; the carbon emissions and
the cost are smallest in the centralized decision-making mode. The decentralized decision-making
mode leads to the overall cost preference of the supply chain due to separate decisions made by
enterprises, and the carbon emissions in the supply chain are greater. Transportation experts, business
managers and government departments are interesting for integrated production and transportation
scheduling in e-commerce supply chain with carbon emission constraints. Further research should
address integrated production and transportation scheduling in dual-channel low supply chains.

Keywords: low carbon; e-commerce supply chain scheduling; carbon emission constraints; multilevel
genetic algorithm

1. Introduction

In the e-commerce environment, in order to maximize customer demand and effec-
tively reduce costs, the integration of production and transportation is widely adopted in
supply chain enterprises. Chinese companies are gradually optimizing the structure of the
supply chain, and transition to supply chain model under the e-commerce environment.
Enterprises need to execute terminal delivery or need a third-party logistics company to
complete terminal delivery, and the supply chain structure has changed from a traditional
mode to an integrated production–transportation mode. Therefore, more materials and
energy may be consumed, which ultimately affects costs and carbon emissions. Hensse [1]
found that compared with the traditional supply chain, the supply chain in the e-commerce
environment has relatively fewer links, but the entire supply chain will produce longer
transportation distances, more frequent transportation times, which has an impact on the
cost, efficiency and carbon emissions of the supply chain. However, when moving towards
the goal of carbon emission peak and carbon neutrality, more and more companies must
face the practical constraints of energy saving and carbon reduction. Adapting to the
development of e-commerce, production and transportation in supply chain scheduling
should keep pace with the goal of carbon emission peak and carbon neutrality. Generally,
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corporate decision-making in traditional supply chains is performed to maximize the
corporations’ own interests. Corporate decision-making affects not only their own interests,
but also the interests of competitors and other companies in the supply chain. Traditional
scheduling methods can no longer meet the actual needs of the supply chain, so integrated
supply chain scheduling has become the focus of scholars. However, the low operating
efficiency of the supply chain has caused it to generate a large number of additional carbon
emissions. The carbon emissions that accompany the products exist in the supply chain’s
procurement, production, transportation, storage and distribution.

Developed countries have put the low-carbon economy in an important position for
national development, promulgated relevant legal provisions and formulated relating
measures. In order to control carbon emissions and undertake the obligation to reduce
greenhouse gas emissions, developing a low-carbon economy has become a major strategy
for China’s economy. As an important carrier of the economy, the reduction of carbon
emissions of enterprises is the key to achieving low-carbon goals. Therefore, to analyze
the production–distribution integration scheduling problem of the supply chain under
the constraints of carbon emission, to improve the carbon emissions of enterprises in the
supply chain according to its dynamics and uncertainties, and to build an environmentally
friendly supply chain production–distribution integration scheduling mode are the goals
of this paper.

The existing research literature on the optimization of supply chain operation from a
low-carbon perspective is mainly reflected in two aspects. First, control carbon emissions
from production and transportation, such as updating equipment to improve energy
efficiency, and adopting new energy or green product design concepts to reduce carbon
emissions. Second, improve the decision-making of the company from an optimization
perspective, such as the rational design of storage locations, transportation routes and
integrated management of carbon emissions in the supply chain. In order to reduce carbon
emissions, the proper design of carbon emission trading mechanisms has become the focus
of scholars at home and abroad. The purpose is to create a benign carbon trading market
mechanism and ultimately achieve the goal of reducing carbon emissions. As the carbon
emission trading mechanism and carbon finance business have just started, the carbon
emission trading venues that have been built have not carried out carbon transfer business.
Therefore, before the state-led mandatory carbon emission policy was formed, the functions
of carbon trading venues did not perform well, and the carbon allocation mechanism in
the supply chain could not be effectively adjusted. To achieve the goal of reducing carbon
emissions, it is necessary to establish a carbon emission allocation mechanism in the supply
chain and study the production–distribution integrated scheduling problem of the supply
chain from an overall perspective.

Section 1 describes the research problems, variables and assumptions involved in this
paper. Section 2 establishes scheduling optimization models for different decision modes.
Section 3 designs a multilevel genetic algorithm to solve the problem model. Section 4
verifies the effectiveness of the model and algorithm through examples. In Section 5, the
relevant conclusions of this paper are proposed.

2. Literature Review

From the perspective of production–distribution integrated scheduling in the supply
chain, some scholars have analyzed the problem of carbon emission optimization in the
supply chain under the e-commerce environment. Shen et al. [2] compared and analyzed
the difference between the traditional mode and the e-commerce mode in the logistics
and transportation of the supply chain operation. Mallidis et al. [3] analyzed the impact
of the low-carbon e-commerce model on the supply chain. Agnetis and Pacciarelli [4]
built a mathematical model for how to coordinate decisions made by decision-makers
at different stages. It is assumed that the supplier and each manufacturer have an ideal
scheduling solution, which is determined by their own cost and constraints. By comparing
the results of a single decision made by the supplier and the manufacturer with the results
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of a common decision, it is found that the results of the two centralized decisions can reduce
the total cost and achieve a win-win situation. Hall [5] studied the supply chain scheduling
problem in a parallel machine production environment and solved it by using dynamic
programming methods. Experiments proved that combining production scheduling and
batch distribution decision-making can improve customer service. Pundoor [6] studied
the make-to-order production distribution system, which includes a supplier and one or
more customers. Considering the case where the order has a delivery deadline and allows
batch shipment in a single machine production environment, a polynomial algorithm is
used to solve the supply chain with a single customer, but when the number of customers
exceeds a certain number, the complexity of the problem will vary with the increase of the
number of customers. At this time, if you want to solve the problem, you need the help
of a heuristic algorithm. Armentano et al. [7] studied the integrated scheduling problem
of multi-cycle production and distribution, with the goal of minimizing production and
inventory costs in factories, and applying prohibited search algorithms to solve them.

The research on integrated scheduling of supply chain from the perspective of low
carbon mainly focuses on the impact of carbon emission trading mechanism on the supply
chain and the scheduling mechanism of supply chain from the perspective of low carbon.
In the low-carbon context, companies in the supply chain have considered the optimization
of operating strategies under carbon emission policies in order to compete for development
opportunities in the competition. Carbon emissions in the supply chain run through the
entire life cycle of the product. Therefore, scientific measurement of carbon emissions is
the basis for improving the operation of the supply chain. Chen [8] studied the scientific
measurement of “carbon emissions” and the optimization of low-carbon supply chains.
Nathan et al. et al. [9] studied the carbon footprint of the production and sales supply chain
in the Midwestern United States. Andrew [10] analyzed the carbon emission structure of
the European Union’s international supply chain. Erik and Anna [11] analyzed the carbon
footprint management of transnational supply chains and studied the value chain optimiza-
tion of transnational supply chains to reduce carbon emissions. Scientific measurement of
carbon emissions is the basis for building a low-carbon supply chain. However, Accenture
research reports show that only 10% of companies try to manage the carbon footprint in
the supply chain. Therefore, it is necessary to start from the characteristics of the supply
chain and put the enterprises at the supply chain as a research object to design simple and
easy-to-use carbon footprint measurement methods.

The carbon emissions trading mechanisms have been conducted by domestic and
foreign scholars. Gao et al. [12] analyzed the current status of the carbon trading market
under free allocation and auction mechanisms. Meng et al. [13] found that auction-style
allocation of carbon emission rights is better than free allocation mechanisms. Sathaye
et al. [14] compared and analyzed the threshold method, long-term performance of free
trade and initial free mechanisms. Yao et al. [15] analyzed the dual-channel transaction
methods under both physical and online transactions, and built a two-channel two-stage
supply chain network optimization model under carbon emission constraints. China’s
carbon trading mechanism is not complete and can be allocated free of charge in the short
term. However, in order to create a good low-carbon economic order, a paid trading
mechanism should be adopted as soon as possible from the perspective of long-term
development. In the paid trading mechanism, carbon emission quotas, a special commodity,
can bring benefits to enterprises just like other resources. Different carbon emission trading
mechanisms will inevitably affect the decision-making behavior of enterprises in the supply
chain, so it is difficult to establish traditional mathematical models for their decision-
making problems. Therefore, taking the production and distribution links of the supply
chain as the research object, we see that analyzing the impact of carbon emission quotas
on the scheduling scheme is conducive to the formation of a low-carbon and efficient
scheduling system. Shi and Zhao [16] studied the cooperation alliance of resource emission
reduction for high energy consumption and high emission enterprise. Xu [17] designed
the carbon emission reduction responsibility division and cost allocation mechanism to
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build a framework of low carbon supply chain. Tsan [18] analyzed the impact of carbon tax
on the supply chain and considered that the proper setting of carbon tax is closely related
to the manufacturing and transportation costs of products and affects the profit margin
of manufacturers. Bo et al. [19] used input–output models to study the impact of supply
chain carbon emissions on the region, and they believed that carbon emissions depended
on factors such as regional production technology, energy efficiency and participation in
global supply chains. Behnam et al. [20] studied the closed-loop supply chain problem
under carbon trading, converted carbon emissions into costs and analyzed its impact
on the closed-loop supply chain. Chia et al. [21] used decision-making and evaluation
experiments to study carbon emissions and management issues in the green supply chain,
striving to improve the management of carbon emissions by companies in the supply
chain. The research on the supply chain in a low-carbon environment mostly focuses on
reducing the carbon emissions of the distribution link under the consideration of cost
constraints [22]. For example, the supply chain optimization scheduling problem, using
multimodal transportation, can effectively lower the freight cost of and reduce the total
carbon emissions [23]. Integrated production and transportation low-carbon supply chain
scheduling problem under the constraint of total logistics cost was proposed [24]. The
EU and other countries are, through legislation and design mechanisms, limiting carbon
emissions. Many links in the supply chain, such as distribution and production, generate
a large amount of carbon emissions. The improvement path is to actively develop new
energy and use low-energy equipment on the one hand, and to optimize production and
logistics decisions on the other hand. Integrated dispatching is an effective and low-cost
way to reduce carbon emissions in the supply chain [25,26]. Under the constraints of carbon
emission, changes in the supply chain’s distribution batch and mode, production start-up
time and production efficiency will also cause changes in its construction period and costs.
Analyzing the impact of carbon emissions, schedules and costs on integrated supply chain
scheduling; integrating all activities in the production–distribution chain of the supply
chain; studying the impact of cost, schedule and carbon emissions issues on supply chain
operations and systematical optimization are the research content of this paper.

The integrated production and transportation scheduling problem in the supply chain
with carbon emission constraints is based on the traditional production and transportation
scheduling problem, which consider carbon emissions constraint, so it is a typical NP
hard problem [27]. There are precise algorithms and heuristic algorithms for solving this
problem. Kim et al. [28] analyzed the influence of carbon emission constraint on chain
supply on the choice of transportation modes; the VRP model was established with the
minimum carbon emission as the objective function, and a path construction algorithm
was designed to solve the problem. Shu et al. [29] aimed at a special type of integrated
production and distribution scheduling problem, requiring batch production and batch
distribution of orders and vehicles with limited capacity. Aiming at this kind of restrictive
problem, heuristic algorithm was used to reduce the difficulty of solving the problem.
The results of numerical experiments prove the feasibility and accuracy of the algorithm.
Peng and Wen [30] selected a supply chain with multiple manufacturers and multiple
customers as the research object, integrated the production scheduling problem and the
transportation scheduling problem, and established a model solution. The objective was
to minimize the sum of production and distribution costs, and a dynamic programming
algorithm was designed to solve and analyze the complexity of the algorithm. Battarra al
et. [31] established a multi-objective VRP nonlinear programming model with the shortest
vehicle mileage and the smallest carbon emissions as the goals, and an improved ant-colony
system algorithm was proposed to solve the model. The algorithm introduced a chaotic
disturbance mechanism when updating the ant pheromone on the path, so as to reduce the
probability of falling into a local optimal solution and effectively improve the adaptability
of the algorithm. In summary, current scholars mostly adopted heuristic algorithms, such
as the genetic algorithm and ant colony algorithm, to solve the integrated scheduling
problem of production and transportation in the supply chain [32,33]. However, there are
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many variables, such as the distribution batch and mode of the supply chain, the start-up
time of production and the production efficiency, which increase the complexity of the
model and require higher requirements for algorithm efficiency. Based on the superiority of
multilevel genetic algorithm in solving multi-objective optimization problems, a multilevel
genetic algorithm is designed; the rationality of the model and the performance of the
algorithm are tested and analyzed through a calculation example.

3. Problem Description
3.1. Overview of Supply Chain Production–Distribution Integrated Scheduling

Manufacturing companies in the supply chain have multiple factories and several
customer groups. After receiving the customer’s order, the manufacturing company issues
a task to the factory according to the order delivery time and required quantity, and then
delivers the product to the customer in a timely manner. On condition that it can meet the
needs of customers and delivery time, in order to achieve the goals of optimal distribution
costs and minimize carbon emissions in the supply chain, it is necessary to scientifically
formulate the production batches, start time and customer-service sequence of each factory
on the distribution line. The research questions in this paper are divided into two stages:
the factory production stage and the distribution stage. There are a total of k production
plants with a total capacity load of n products. After the processing is completed, the
product is delivered to the customer, as shown in Figure 1. Products are processed in
batches and distributed. Use G = (N, A) to denote the network structure of supply chain
production–distribution scheduling, where N = U ∪ {0}, 0 represents the production plant
and U = {1, 2, · · · , n} represents the customer point set. A = {i, j}, i ∈ N, j ∈ N represents
the set of road segments; K represents the product type produced in the supply chain; and
m(m ∈ M) represents the number of the production batch, which is consistent with the
distribution batch.
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3.2. Analysis of Supply Chain Decision Modes Constrained by Carbon Emission Limits

In the e-commerce environment, the decision-making modes of enterprises in the
supply chain have an important impact on carbon emissions and affect the integrated
scheduling strategy of the supply chain under the constraints of carbon emission. Accord-
ing to its decision mode, it can be divided into two types: centralized supply chain decision
mode and decentralized supply chain decision mode. The centralized decision-making
mode of the supply chain is to allow manufacturers and suppliers as a whole to share
carbon emission constraints, and its scheduling goal is to maximize the overall benefits. In
the decentralized decision-making mode of the supply chain, manufacturers and suppliers
make plans based on their own scheduling strategies, so manufacturers and suppliers each
have carbon emission constraints, namely EM and ES. Based on the above analysis, this
paper makes the following assumptions:
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Hypothesis 1 (H1). If there is no-load condition in the distribution activities, it will have a fixed
carbon emission.

Hypothesis 2 (H2). There is a linear relationship between the carbon emissions of production and
distribution activities and the number of products.

Hypothesis 3 (H3). Carbon emissions from activities are not related to the number of repeated
activities.

Hypothesis 4 (H4). The customer orders products of the same distribution route are regarded as a
production batch, and the same batch is preferentially produced with a longer life cycle, regardless of
the production conversion time and cost between products.

Hypothesis 5 (H5). The same vehicle can deliver multiple customer orders on the route, and each
customer’s demand can only be delivered by one vehicle.

4. The Optimization Model

Aiming at the problem that the two attributes of carbon emissions and costs are not
comparable, we propose a multi-attribute utility function method to establish the problem
model for this study. The multi-attribute utility function uses the principles of experimental
psychology to map the supply chain production–distribution integrated scheduling strategy
to different utility values and then finds a scheduling scheme that maximizes utility.
Because the production–distribution integrated scheduling decision-making modes of the
supply chain are different, a supply-chain production–distribution scheduling optimization
mode based on the decentralized decision mode, and the centralized decision mode under
the constraints of carbon emission is established.

4.1. The Centralized Decision-Making Mode

In reality, the factors affecting the urban–rural income gap are complex and diverse.
The models used in this paper are applied at the provincial level. The regional hetero-
geneity of the provinces is a problem that cannot be ignored. Therefore, this paper selects
representative variables as far as possible to describe regional heterogeneity and avoids
excluding key explanatory and control variables. In this way the paper minimizes errors in
the estimation of the model. The specific variables are defined as follows.

Based on the above analysis, the supply chain scheduling optimization model of the
centralized production–distribution decision-making mode under the constraints of carbon
emission is as follows:

MaxG = ωCFC + ωEFE (1)

Equation (1) is the objective function, which means that the total utility of the supply
chain scheduling of the centralized production–distribution decision-making mode under
the constraint of carbon emission is maximized; FC represents the univariate function of
cost; FE represents the univariate function of carbon emissions; ωC represents the weight
coefficient of the cost univariate function; and ωE represents the weight coefficient of the
carbon emissions univariate function.

s.t. C = ∑
i∈N

∑
j∈N

∑
m∈M

cijxijm + Cg ∑
j∈N

∑
m∈M

x0jm (2)

Equation (2) represents the total cost of supply chain scheduling, C represents the
total cost and cij represents the cost of the link from customer point i to customer point j.
The xijm = 1 batch represents the m batch delivery from customer i to customer j, xijm = 0
represents the other and Cg represents the fixed cost of vehicle start-up.
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E = E f
M + ∑

i∈N
∑
k∈K

qikEm
M + Egs

S +

∑
i∈N

∑
k∈K

qik

B
Etr

S (3)

Equation (3) represents total carbon emissions, E f
M represents the manufacturer’s

fixed carbon emissions per unit time, E represents the total carbon emissions, qik represents
the quantity of product k ordered by customer i, B represents the vehicle capacity, Em

M
represents the carbon emissions of the unit produced by the manufacturer, Egs

S represents
the carbon emissions of the initiation of the distribution process and Etr

S represents the
carbon emissions of each delivery vehicle.

te
mk = ts

mk + Tk ∑
i∈N

yimqik (4)

Equation (4) represents the time required for the continuous production of any product
in the same production batch, yim = 1 represents the order product of customer i is
produced in the m batch and yim = 0 represents the other. Tk represents the production
time per unit product k(k ∈ N), ts

mk represents the production start time of product k in the
m production batch and te

mk represents the production completion time of product k in the
m production batch.

ts
mk = te

m(k−1); m ∈ M, ∀k ∈ K\{1} (5)

Equation (5) represents no production waiting time for products in the same produc-
tion batch.

ts
11 ≥ 0 (6)

Equation (6) indicates the production start time of the initial batch.

te
mk ≤ T0 (7)

Equation (7) indicates that the production completion time of the last batch of products
must not exceed the production time window constraint; [0, T0] represents the production
time window of the factory.

te
mk ≤ td

m, m ∈ M (8)

Equation (8) indicates that all orders of the batch cannot be distributed until production
is completed; td

m represents the moment when the m delivery batch leaves the factory.

∑
j∈N

∑
m∈M

xijm = 1, ∀i ∈ U (9)

Equation (9) means that all customer needs are met.

∑
i∈N

xijm − ∑
j∈N

xijm = 0, ∀i ∈ U, m ∈ M (10)

Equation (10) indicates that the vehicle must leave after completing the distribution
task; j ∈ N represents road segment. Vehicles are reusable resources. After the vehicle is
used up, it re-enters the resource pool and can be used again.

∑
i∈N

qiyim ≤ B, m ∈ M (11)

Equation (11) indicates that the number of vehicle distribution products cannot exceed
its maximum capacity, qi represents the number of products ordered by customer i and B
represents the vehicle capacity.

∑
m∈M

td
myim ≤ ti ≤ Ti, ∀i ∈ U (12)
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Equation (12) indicates that the customer’s service start time is no later than the latest
product delivery deadline and no earlier than the production completion time of this batch
of products; Ti represents the latest delivery deadline of the order, and ti represents the
delivery time of order i.

E ≤ Emax (13)

Equation (13) indicates that the carbon emissions in the production and distribution
links cannot exceed the maximum carbon emissions in the supply chain. Emax represents
the total carbon emission limit of the supply chain.

4.2. The Decentralized Decision Mode

The supply chain scheduling optimization model of the production–distribution
decentralized decision mode under the constraint of carbon emission is as follows:

MaxG = ωCFC + ωEFE (14)

Equation (14) is the objective function that maximizes the total utility of the supply
chain scheduling in the production–distribution decentralized decision mode under the
constraint of carbon emission.

C = ∑
i∈N

∑
j∈N

∑
m∈M

cijxijm + Cg ∑
j∈N

∑
m∈M

x0jm (15)

Equation (15) represents the total cost of supply chain scheduling.

E f
M + ∑

i∈N
∑

k∈N
qikEm

M ≤ EM (16)

Equation (16) represents how the manufacturers’ carbon emissions cannot exceed their
carbon emission constraints, EM represents the manufacturer’s carbon emissions and E f

M
represents the manufacturer’s fixed carbon emissions per unit time.

Egs
S +

∑
i∈N

∑
k∈N

qik

B
Etr

S ≤ES (17)

Equation (17) indicates that the carbon emissions in the distribution link cannot exceed its
carbon emission constraints, and ES represents the carbon emissions of the distribution link.

EM + ES ≤ Emax (18)

Equation (18) indicates that the sum of carbon emissions in production and distribu-
tion cannot exceed the maximum carbon emissions in the supply chain. Equations (14)
and (17) and Equations (4)–(12) together form the supply chain scheduling optimization
model of the production–distribution decentralized decision mode under the constraint of
carbon emission.

5. Multilevel Genetic Algorithm Design

Multilevel genetic algorithm has probability and uncertainty, and the search direction
is random, in order to obtain a better solution effect. The superiority of the multilevel
genetic algorithm has been verified in fields such as production shop scheduling [34,35].
The most prominent feature of encoding activities into chromosomes through coding
conversion is that they can simultaneously explore multi-objective optimization prob-
lems. Therefore, the multilevel genetic algorithm is suitable for solving the supply chain
scheduling problem of production–distribution integration.

Figure 2 is Multilevel genetic algorithm framework and Figure 3 shows the coding
procedure of a multilevel genetic algorithm. The repair operator repairs it before it enters
the next generation. The repair operator redetects the logic between tasks and checks
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whether it has been completed before the original scheduling plan. If it has already been
performed, swap the new task with the original task’s location.
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5.1. Coding Structure of Multilevel Chromosomes

A good chromosome coding scheme must be designed with reasonable genetic op-
erators in order to better present the problem information. For the problems in the real
world, the application of genetic algorithms is mainly divided into the following two
ways: direct use of chromosome representation and indirect use of chromosome repre-
sentation. According to the Topcuoglu theory [27,32], multilevel chromosomes contain
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different information and have different data types. The individuals in each population are
composed of three levels of serial coding: the first level, a random sequence representing
the customer’s random sequence, and also a direct representation of progress information;
the second level represents the path number sequence, which represents the path to which
the customers of the same gene locus belong to the first level; and the third level uses actual
numbers to indicate the corresponding service time of different orders. Multilevel genetic
algorithm operators are independently applied in the above three levels. Figures 4 and 5
show the schematic diagrams of one-level coding and multilevel coding of a multilevel
genetic algorithm.
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5.2. Crossover Operator

Because the chromosome has three levels and is encoded with different types of data,
the crossover operations at different levels must be performed independently. First, the
first and second tiers remain the same, with two crossings during the third tier service
hours. Secondly, the path sequence of the second level changes correspondingly but its
value remains unchanged, the customer’s service order is updated and two offspring
are generated. Finally, two new crossover operators need to be extracted and generated
again. In the process of generating the crossover operator, the customer service order, route
sequence and service time will change accordingly. The cross process of the multilevel
genetic algorithm is shown in Figure 6.
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5.3. Mutation Operator

The mutation process is similar to the iterative crossover process. The first and second
levels remain unchanged, starting from the third level and requiring only one parent.
As for mutation, because the supply chain integration scheduling problem is subject to
multiple constraints such as time and resource availability, in order to meet the constraints,
the location of the mutation operation must be limited to a specific range. As shown in
Figure 7, take Parent 1 as an example; the mutation operation needs to change a position
randomly, and at the same time, it needs to detect whether the new chromosome is within
the time window constraint. If it is within the bounds of the time window, it is retained;
otherwise, the gene of the chromosome is mutated. Generate customer sequence and
customer random coding layer mutations in turn, and copy the data generated by the
repair process.
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5.4. Repairing Operator

The production–distribution integrated supply chain scheduling solution must meet
two prerequisites, they are, the constraints and service logic cannot be violated. In the
process of crossover and mutation, the path number sequence generation process in the
chromosome is located before the client sequence. The repairing operator will detect the
logic of the scheduling and swap the positions of the corresponding customer sequences,
while detecting whether the time constraints are met.

5.5. Calculation of Fitness

The goal of the multilevel genetic algorithm is to formulate a supply chain scheduling
optimization plan for production–distribution integration under the constraints of carbon
emission, and to reduce cost and carbon emissions while meeting the constraints of the
time window. Therefore, the fitness f it(t) is the same as the objective function; that is,
f it(t) = G(t).

5.6. Algorithm Termination Principle

The superiority of the multilevel genetic algorithm is that even if the scale of the
problem continues to increase, the solution obtained is a nearly optimal solution under
the premise that the population size and the population algebra do not increase corre-
spondingly. Based on the complexity of the scale of the production–distribution integrated
supply chain scheduling problem under the constraint of carbon emission, the calculation
is stopped here when the population algebra is 100, and the number of each algebra is
determined by experimental statistics.

6. Experimental Analysis
6.1. Simulation Tests

In order to verify the effectiveness of the model and algorithm, this paper selects
test data from the automotive battery production and sales supply chain. There are three
production plants and 25 customer points in e-commerce supply chain, and there are
10 homogeneous vehicles with a capacity of 300 units. The driving cost is 1 RMB/km, the
daily average driving speed of the vehicle is 27 km/h and the fixed cost of using a car is
RMB 120. The service time of each customer is 0.15 h. The factory produces three types of
automotive batteries, and the production time per unit product is 0.006, 0.008 and 0.009 h.
The specific data of customer demand for each type of product and customer demand time
window are shown in Table 1. Multilevel genetic algorithm programming is implemented
by MATLAB. Let population size be set as Popsize = 100; Popsize represents population
size. In order to meet the requirements of population diversity, the value of evolutionary
algebra is Maxgen = 100; Maxgen represents the maximum number of iterations. The
expert scoring method is adopted to set the weight coefficients of each parameter, or
setting the weight coefficients of each parameter according to the actual implementation
of the company. The weight coefficients of each parameter are ωE = 0.54 and ωC = 0.46
respectively. Because there are few related researches on the carbon emissions of the
automotive battery production and marketing supply chain, the project-oriented supply
chain problem under the constraint of the carbon emission studied in this paper is the
average value of its industry carbon as a constraint value; that is, Emax ≤ 700 (kg). The
relevant information is shown in Table 1.
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Table 1. Relevant information of customers.

No. Coordinate Demand (A,B,C) Time Window

1 [66,78] (14,15,12) [8:00,10:00]
2 [56,27] (10,13,9) [13:00,16:00]
3 [88,72] (13,9,11) [10:00,14:00]
4 [88,32] (15,10,15) [8:00,12:00]
5 [24,48] (13,11,14) [8:30,10:00]
6 [40,48] (14,15,16) [15:30,17:00]
7 [32,80] (23,8,10) [8:30,10:00]
8 [16,69] (18,9,20) [9:00,11:00]
9 [88,96] (22,15,18) [9:00,11:00]
10 [48,96] (19,17,20) [8:00,14:30]
11 [32,104] (17,23,18) [9:30,11:00]
12 [80,56] (14,15,22) [10:00,11:30]
13 [48,40] (20,16,19) [8:30,11:00]
14 [24,16] (8,9,13) [8:00,12:00]
15 [48,8] (9,13,10) [8:00,11:30]
16 [16,32] (5,7,9) [10:00,12:00]
17 [8,48] (12,16,8) [14:00,17:00]
18 [32,64] (11,13,13) [9:30,15:00]
19 [24,96] (14,13,13) [13:00,15:00]
20 [72,104] (11,7,15) [9:00,10:00]
21 [72,32] (19,20,16) [8:00,17:00]
22 [72,16] (16,9,16) [9:00,13:00]
23 [88,8] (12,11,15) [10:30,15:00]
24 [104,56] (11,12,12) [13:00,15:00]
25 [104,32] (16,16,11) [10:00,15:00]

After analyzing the data of the example, it is found that the setting of the carbon
emission constraints has an important effect on the scheduling scheme in e-commerce
supply chain. The liberalized carbon emission constraints reduce its sensitivity to carbon
emissions, generate a large amount of carbon emissions, and reduce the operating cost of
the supply chain’s integrated production and distribution scheduling. According to the
results of the examples, we can set a scientific and reasonable carbon emission constraints
and make a supply chain scheduling decision within the time and cost range acceptable to
the supply chain dispatcher, so that the production–distribution scheduling of the supply
chain meets most enterprises in the supply chain and promotes the establishment of stable
cooperative relationships and operational order in the supply chain.

Based on the analysis of the above example, as well as the data results in Tables 2 and 3 and
Figures 8 and 9, we can find the impact of two different supply chain decision modes on
the integrated scheduling of production–distribution in the supply chain. The centralized
decision-making mode can play the role of the carbon emission constraints to the greatest
extent. Although the carbon emission is large, it can well control the cost and achieve the
purpose of minimizing the cost. In the decentralized decision-making mode, companies
determine their carbon emissions individually, and the adjustment effect of integrated
scheduling is more limited. It can be seen from Table 2 that 10 homogeneous vehicles
are the total number of vehicles. In this experiment, only four vehicles were used, and
others are non-use vehicles; reducing the use of vehicles is also conducive to reducing
carbon emissions.
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Table 2. Path sequences.

Vehicle
The Path Sequences of

Centralized Decision-Making
Supply Chain

The Path Sequences of
Decentralized Decision-Making

Supply Chain

1 [0 1 20 10 11 19 7 0] [0 18 7 19 11 10 20 0]
2 [0 15 14 16 17 8 18 5 6 0] [0 9 3 24 25 23 22 15 0]
3 [0 9 3 24 25 4 23 22 0] [0 6 5 8 17 16 14 13 0]
4 [0 13 2 21 12 0] [0 2 21 4 12 1 0]

Table 3. Test results.

Cost ($) Carbon Emissions (kg)

Centralized decision-making supply chain 2559.91 415
Decentralized decision-making supply chain 2621.12 512
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6.2. Comparative Analysis of Algorithms

In this paper, the standard genetic algorithm, Tabu search algorithm and multilevel
genetic algorithm are used to analyze the above examples in order to test the performance
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of the multilevel genetic algorithm. The convergence of the calculation results, using the
above algorithms, is shown in Figure 10.
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It can be seen from Figure 10 that the Tabu search algorithm has the fastest convergence
rate, but it is easy to generate a local optimal solution. While the convergence rate of
the genetic simulated annealing algorithm is slower than the Tabu search algorithm, its
decreased speed of convergence is the fastest. Therefore, its global convergence ability is
the strongest among the three. Moreover, in order to verify the validity of the algorithm,
the above example is calculated 100 times to calculate the optimal value, the worst value
and the average value, and the calculation results are shown in Table 4.

Table 4. Comparative analysis of simulation results.

Algorithm Simulation Experiment Results

The Optimal
Value

Worst
Value

Average
Value

Calculating
Time

Search Success
Rate

Average Search
Iterations

Standard genetic
algorithm 0.803 0.092 0.657 5.3 35% 56.31

Tabu search algorithm 0.791 0.113 0.706 4.7 31% 27.32
Multilevel genetic

algorithm 0.813 0.146 0.756 6.9 49% 35.37

It can be seen from Table 4 that the average results obtained by the multilevel genetic
algorithm proposed in this paper can basically reach the optimal solution. It can be clearly
seen from other data that the results of the multilevel genetic algorithm are better than that
of the Tabu search algorithm and standard genetic algorithm. The abovementioned studies
prove that the multilevel genetic algorithm has the strongest global search ability.

The algorithms test shows that the multilevel genetic algorithm designed in this paper
is superior to other intelligent algorithms in global search and fast convergence. It can
meet the requirements for solving algorithms of integrated production and transportation
scheduling problem in e-commerce supply chain with carbon emission constraints.

7. Conclusions

To research the e-commerce supply chain scheduling problem of production–distribution
integration under the constraints of carbon emission, analyze the impact of centralized
and decentralized decision modes on carbon emissions and costs, and build centralized
decision-making and decentralized decision-making, we used a scheduling optimization
model. The main research conclusions of this paper are as follows:

(1) The centralized decision-making mode makes the role of carbon emission con-
straints to the greatest extent. The carbon emissions and the cost are smallest in the
centralized decision-making mode. The decentralized decision-making mode has a more
limited regulatory effect due to the individual determination of carbon emissions. Neither
carbon emissions nor cost control are ideal. The research objectives of this article focus on
the two key variables of operating costs and carbon emissions. However, the variables,
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such as profit, carbon emissions trading and government preferential policies, also need to
be considered on business operations and thus the complex network relationship will affect
the ultimate interests of the enterprise, which will be analyzed in the follow-up research.

(2) We designed a multilevel genetic algorithm to solve the e-commerce supply chain
scheduling problem of production–distribution integration under the constraints of carbon
emission. The multilevel genetic algorithm has probability and uncertainty. It encodes
activities into chromosomes through coding conversion. It is a multi-objective optimization
problem that can be explored simultaneously, and the optimal solution can be found in a
series of feasible scheme groups. Therefore, the multilevel genetic algorithm is suitable for
the e-commerce supply chain scheduling problem of production–distribution integration.
In the simulation tests, the multilevel genetic algorithm was adopted to solve the problem;
the multilevel genetic algorithm can be improved to increase the calculation efficiency, so
as to find the optimal solution more quickly in following research.

(3) The model can also be further expanded; we established the multi-attribute utility
model in this article, and a chance constrained programming model may be established
in the follow-up research. In the e-commerce environment, the supply chain is quite
uncertain; it is difficult to achieve deterministic state in both production and transportation
links. Therefore, the integrated scheduling of production and transportation in uncertain
environments is a follow-up research topic.

Author Contributions: Conceptualization, W.W.; methodology, S.W.; software, J.S.; formal analysis,
W.W.; resources, W.W.; writing—original draft preparation, W.W.; writing—review and editing, J.S.
All authors have read and agreed to the published version of the manuscript.

Funding: Chongqing Education Committee Science and Technology Research Project, grant number
KJZD-K202000901, and Sichuan International Studies University Scientific Research Project, grant
number sisu2019044.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hesse, M. Shipping news: The implications of electronic commerce for logistics and freight transport. Resour. Conserv. Recycl.

2002, 3, 211–240. [CrossRef]
2. Shen, L.; Wang, X.; Liu, Q.; Wang, Y.; Lv, L.; Tang, R. Carbon Trading Mechanism, Low-Carbon E-Commerce Supply Chain and

Sustainable Development. Mathematics 2021, 9, 1717. [CrossRef]
3. Mallidis, I.; Dekker, R.; Vlachos, D. The impact og greening on supply chain design and cost: A case for a developing region. J.

Transp. Geogr. 2012, 22, 118–128. [CrossRef]
4. Agnetis, A.; Hall, N.G.; Pacciarelli, D. Supply chain scheduling: Sequence coordination. Discret. Appl. Math. 2006, 154, 2044–2063.

[CrossRef]
5. Hall, P. The coordination of scheduling and batch deliveries. Ann. Oper. Res. 2005, 135, 41–64. [CrossRef]
6. Pundoor, G.; Chen, Z.-L. Scheduling a production–distribution system to optimize the tradeoff between delivery tardiness and

distribution cost. Nav. Res. Logist. 2005, 52, 571–589. [CrossRef]
7. Armentano, V.A.; Shiguemoto, A.L.; Lokketangen, A. Tabu search with path relinking for an integrated production-distribution

problem. Comput. Oper. Res. 2011, 38, 1199–1209. [CrossRef]
8. Chen, J. Study on Supply Chain Management in a Low-Carbon Era. J. Syst. Manag. 2012, 21, 721–728.
9. Nathan, P.; Maro, I.; Hong, W.X. A carbon footprint analysis of egg production and processing supply chains in the Midwestern

United States. J. Clean. Prod. 2013, 54, 108–114.
10. Andrew, S. EU corporate action as a driver for global emissions abatement: A structural analysis of EU international supply chain

carbon dioxide emissions. Glob. Environ. Chang. 2013, 23, 1795–1806.
11. Erik, S.; Anna, K.S.A. Carbon footprint of a Cavendish banana supply chain. Int. J. Life Cycle Assess 2013, 18, 1450–1464.
12. Gao, S.; Qi, L.; Lei, L. Integrated batch production and distribution scheduling with limited vehicle capacity. Int. J. Prod. Econ.

2014, 9, 1–13. [CrossRef]
13. Bai, M.; Chen, F.; Tang, G. Integrated Production and Distribution Scheduling in Supply Chain Management. Ind. Eng. Manag.

2007, 5, 47–50. [CrossRef]

http://doi.org/10.1016/S0921-3449(02)00083-6
http://doi.org/10.3390/math9151717
http://doi.org/10.1016/j.jtrangeo.2011.12.007
http://doi.org/10.1016/j.dam.2005.04.019
http://doi.org/10.1007/s10479-005-6234-8
http://doi.org/10.1002/nav.20100
http://doi.org/10.1016/j.cor.2010.10.026
http://doi.org/10.1016/j.ijpe.2014.08.017
http://doi.org/10.4028/www.scientific.net/AMM.58-60.399


J. Theor. Appl. Electron. Commer. Res. 2021, 16 2570

14. Sathaye, N.; Horvath, A.; Madanat, S. Unintended impacts of increased truck loads on pavement supply chain emissions. Transp.
Res. Part A Policy Pract. 2010, 44, 1–15. [CrossRef]

15. Man, Y.; Wang, C.X.; Xu, C. A Network Optimization Model for Dual-Channel Two-Echelon Supply Chain with Carbon Emission
Constraints. Ind. Eng. J. 2013, 16, 7–13.

16. Shi, Z.; Zhao, D. Integrated Study on Supply Chain Carbon Reduction in the Voluntary Reduction Market. J. Northwest. Polytech.
Univ. 2013, 33, 41–47.

17. Xu, L. Duty Allocation and Cost Distribution of Carbon Emission Reduction during the Construction of Low Carbon Supply
Chain. Soft Sci. 2013, 27, 104–108.

18. Tsan, M.C. Carbon footprint tax on fashion supply chain systems. Int. J. Adv. Manuf. Technol. 2013, 68, 835–847.
19. Bo, M.; Jin, J.X.; Kui, S.F.; Dabo, G.; Xue, F. China’s inter-regional spillover of carbon emissions and domestic supply chains.

Energy Policy 2013, 61, 1305–1321.
20. Behnam, F.; Joseph, S.; Farzad, D.; Nahid, B.; Shams, R. The impact of carbon pricing on a closed-loop supply chain: An Australian

case study. J. Clean. Prod. 2013, 59, 210–225.
21. Chia, W.H.; Tsai, C.K.; Sheng, H.C.; Allen, H.H. Using DEMATEL to develop a carbon management model of supplier selection

in green supply chain management. J. Clean. Prod. 2013, 56, 164–172.
22. Su, J.; Li, C.; Zeng, Q.; Yang, J.; Zhang, J. A green closed-loop supply chain coordination mechanism based on third-party

recycling. Sustainability 2019, 11, 5335. [CrossRef]
23. Rebitzer, G.; Ekvall, T.; Frishknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.-P.; Suh, S.; Weidema, B.P.; Pennington,

D.W. Life cycle assessment, part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004,
30, 701–720. [CrossRef] [PubMed]

24. Long, L.D.; Ohsato, A. A genetic algorithm-based for scheduling repetitive construction projects. Autom. Constr. 2009, 18, 499–511.
[CrossRef]

25. Harris, I.; Nan, T.; Palmerc, A.; Potter, A.; Mumford, C. Assessing the Impact of cost Optimization Based on Infrastructure
Modeling on CO2 Emissions. Int. J. Prod. Econ. 2011, 131, 313–321. [CrossRef]

26. Su, J.; Li, C.; Tsai, S.B.; Lu, H.; Liu, A.; Chen, Q. A sustainable closed-loop supply chain decision mechanism in the electronic
sector. Sustainability 2018, 10, 1295. [CrossRef]

27. Wang, W.X.; Ge, X.L.; Li, L.; Su, J. Proactive and Reactive Multi-project Scheduling in Uncertain Environment. IEEE Access 2019, 7,
88986–88997. [CrossRef]

28. Kim, N.; Janic, M.; Wee, B. Trade-off between Carbon dioxide emissions and Logistics Costs Based on Multiobjective Optimization.
Transp. Res. Rec. 2009, 2139, 107–116. [CrossRef]

29. Yang, S.; Huang, G.; Liang, L. Auction Based Distribution Supply Chain Project Scheduling. J. Ind. Eng. Manag. 2008, 22, 41–45.
30. Gao, P.; Wen, W. Carbon Tax and Carbon Distribution. J. Tsinghua Univ. Sci. Technol. 2002, 42, 1335–1338.
31. Battarra, M.; Erdogan, G.; Vigo, D. Exact algorithms for the clustered vehicle routing problem. Oper. Res. 2014, 41, 58–71.

[CrossRef]
32. Najera, A.; Bullinaria, J. An Improved Multi-objective Evolutionary algorithm for the Vehicle Routing problem with Time

Windows. Comput. Oper. Res. 2011, 38, 287–300. [CrossRef]
33. Jian, J.; Li, B.; Zhang, N.; Su, J. Decision-making and coordination of green closed-loop supply chain with fairness concern. J.

Clean. Prod. 2021, 298, 126779. [CrossRef]
34. Jian, J.; Guo, Y.; Jiang, L.; An, Y.; Su, J. A multi-objective optimization model for green supply chain considering environmental

benefits. Sustainability 2019, 11, 5911. [CrossRef]
35. Su, J.; Wei, M.; Liu, A. A Robust Predictive–Reactive Allocating Approach, Considering Random Design Change in Complex

Product Design Processes. Int. J. Comput. Intell. Syst. 2018, 11, 1210–1228. [CrossRef]

http://doi.org/10.1016/j.tra.2009.09.002
http://doi.org/10.3390/su11195335
http://doi.org/10.1016/j.envint.2003.11.005
http://www.ncbi.nlm.nih.gov/pubmed/15051246
http://doi.org/10.1016/j.autcon.2008.11.005
http://doi.org/10.1016/j.ijpe.2010.03.005
http://doi.org/10.3390/su10041295
http://doi.org/10.1109/ACCESS.2019.2926337
http://doi.org/10.3141/2139-13
http://doi.org/10.1287/opre.2013.1227
http://doi.org/10.1016/j.cor.2010.05.004
http://doi.org/10.1016/j.jclepro.2021.126779
http://doi.org/10.3390/su11215911
http://doi.org/10.2991/ijcis.11.1.91

	Introduction 
	Literature Review 
	Problem Description 
	Overview of Supply Chain Production–Distribution Integrated Scheduling 
	Analysis of Supply Chain Decision Modes Constrained by Carbon Emission Limits 

	The Optimization Model 
	The Centralized Decision-Making Mode 
	The Decentralized Decision Mode 

	Multilevel Genetic Algorithm Design 
	Coding Structure of Multilevel Chromosomes 
	Crossover Operator 
	Mutation Operator 
	Repairing Operator 
	Calculation of Fitness 
	Algorithm Termination Principle 

	Experimental Analysis 
	Simulation Tests 
	Comparative Analysis of Algorithms 

	Conclusions 
	References

