
Article

Price discrimination in the online airline market: an
empirical study - Additional file 1

Version September 9, 2021 submitted to J. Theor. Appl. Electron. Commer. Res.

Tools and software architecture

In this document the external software tool Selenium that is used for the pricing data acquisition
is described. Additionally, more details about the software architecture and its development are
illustrated.

Selenium

When a website is accessed, the content shown can be generated either statically or dynamically.
On a static website, the elements that are being displayed do not depend on the user interaction. No
matter who visits the website, the content is always the same. On the contrary, a dynamic website
offers the possibility of user interaction. Hence, the displayed content depends on how the user
interacts with the website. This is achieved by executing scripts on the server-side using scripting
languages such as Javascript and PHP. Given that every user can have different requests, most airline
websites rely on dynamic content generation to display flight search results. Standard scraping
techniques offered by tools such as BeautifulSoup and Scrapy do not allow dynamic interaction with
the websites and are hence inadequate to collect this type of data. A better tool for the intended
goal is Selenium. Primarily, it is used for automating web applications for testing purposes, but it
can also be used to collect dynamically-generated data by simulating user-interaction on websites.
Selenium automates browser interaction by using a webdriver , which is an interface responsible for
the communication between Selenium and a browser (see figure 1). The interface provides a variety of
functions that allow the remote control and behaviour of the browser.
Furthermore, Selenium offers the possibility to set the identity of the user by providing a user agent

Figure 1. Selenium Webdriver

string. User agent strings include relevant details about the user that makes a request to a website,
such as i) the device (i.e. vendor, model and type), ii) the browser (i.e. name and version), and iii) the
operating system (i.e. name and version). Every time the Selenium webdriver sends out a request to a
website server, it includes the user agent string in the user agent request header. This is then read by

Submitted to J. Theor. Appl. Electron. Commer. Res., pages 1 – 8 www.mdpi.com/journal/jtaer

http://www.mdpi.com
http://www.mdpi.com/journal/jtaer


Version September 9, 2021 submitted to J. Theor. Appl. Electron. Commer. Res. 2 of 8

the website to extract all the user details.
For this research, the ChromeDriver has been used to scrape the airline websites. For each user profile,
the ChromeDriver has been provided with a specific user agent that reflects the characteristics of the
defined users shown in table 1.

USER PROFILE USER AGENT STRINGS

Windows-Chrome Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36

Android-Chrome Mozilla/5.0 (Linux; Android 10; M2007J3SG) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/87.0.4280.141 Mobile Safari/537.36

macOS-Safari Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15
(KHTML, like Gecko) Version/14.0.2 Safari/605.1.15

iOS-Safari Mozilla/5.0 (iPhone; CPU iPhone OS 14_3 like Mac OS X)
AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.2
Mobile/15E148 Safari/604.1

Table 1. User Agent Strings

Software design

The template method design pattern was chosen to design the scraper in order to permit scalability.
This is achieved by abstracting the steps of the search flight process in a template class and by deferring
their implementation to any derived class. Another advantage of using this design pattern is that any
air carrier-agnostic functionality is included in the template class, thus reducing code duplication. In
Python 3 the template method design pattern is implemented by relying on the Python Standard Library
package ABC, which stands for Abstract Base Class. When a class inherits from ABC, it can use the
method decorator @abstractmethod. This decorator forces any subclass to override the method upon
which it is applied. The system design is depicted in figure 2.

The modules of the software

The implemented software consists of four main categories of modules, the scraper, the individual
air carrier, the configuration, and the support modules, which are described in the following
subsections.

The Scraper Class

The scraper.py module contains the Scraper class, which is abstract and therefore cannot be
instantiated. Its constructor is invoked directly by its subclasses. The _load_configuration method
instantiates the Selenium webdriver, which for this research is the ChromeDriver. The _load_cookies
method is in charge of loading the cookies from previous sessions into the ChromeDriver. These
cookies are handled with the Python Standard Library package Pickle. This package allows serializing
and de-serializing Python object structures into byte-streams. At the end of each scraping session, the
save_cookies method is called. The cookies are then serialized and saved into the cookie_jars folder using
.pkl files. The cookie_jars folder contains all the cookies for each user profile and each airline that has
been scraped (see figure 3).
Once the setup is complete, the scrape method dictates the following steps. At first, the ChromeDriver

connects with the airline website. Here, the itinerary parameters are set by calling the get_availability
method. This method uses the @abstractmethod decorator because the exact interaction with the HTML



Version September 9, 2021 submitted to J. Theor. Appl. Electron. Commer. Res. 3 of 8

Figure 2. System Design

varies between websites. Therefore, this method is empty and its implementation is deferred to its
derived classes. All the same applies to the get_price method which is used to select the flight time and
offer.
To collect the control data, the get_control_price method is called. This method establishes a connection
with the Amadeus APIs and collects the required control data. The body of the API request is generated
in the populate_amadeus_request_body method.
As reported in the manuscript, the Amadeus APIs cannot be used to get the control data for Ryanair.
For this reason, the Ryanair scraper overrides the get_control_price method with its own implementation,
which will be discussed later on.
Once the airline data is scraped and the control data is collected, the scrape method calls the export_to_csv
method. This method is a supporting method contained in the tools folder. It relies on the 3rd-party
package Openpyxl to parse through the collected data and export it into the raw_data.xlsx contained in
the output folder.



Version September 9, 2021 submitted to J. Theor. Appl. Electron. Commer. Res. 4 of 8

Figure 3. Cookie Jars

The Individual Carrier Classes

The individual carrier classes can be found in the respective module located in the scrapers folder.
They all inherit from the Scraper class and have hence access to all the parent methods and attributes.
As already mentioned in section , their main purpose is to define how the ChromeDriver needs to
interact with the HTML elements to generate the correct flight offer. This is achieved by overriding the
get_availability and get_price methods. Furthermore, each airline scraper class can define more methods
required to adapt to the specifics of the carrier, such as locale or security checks. The three scrapers all
have a carrier_url class attribute, which is used to store the airline website address.
The AlitaliaScraper Class
The Alitalia website handles desktop and mobile searches in the same way for the most part. The only
difference relies on how the departure and return date are passed over: in a desktop request, the date
can be typed in, whereas in a mobile search the date must be selected within an interactive widget.
Therefore, both desktop and mobile search can be handled in the same get_availability method with a
simple switch case for the sole date selection. When the desktop flag is triggered, the scraper sends
the date in a string format. Instead, when the mobile flag is triggered, the scraper interacts with the
widget with the support of the format_alitalia_date, scroll_to_month and visible_month methods. Finally,
the AlitaliaScraper class introduces the get_ak_bmsc_valid_value method. This method is used to get a
valid ak_bmsc cookie, which is used by Alitalia to grant permission to its website.
The RyanairScraper Class
The Ryanair website handles desktop and mobile searches in two complete separate ways. For this
reason the get_availability method uses the desktop/mobile flag to make a call to either the desktop_search
or mobile_search methods. Same goes for the get_price method which uses the same flag to call either
get_desktop_price or get_mobile_price methods. Due to the Amadeus API limitations presented in the
manuscript, the RyanairScraper class overrides the get_control_data method. To collect control data, the
RyanairScraper creates a new instance of itself skipping over the cookie loading process. This renders



Version September 9, 2021 submitted to J. Theor. Appl. Electron. Commer. Res. 5 of 8

the control scraper a cookie-less scraper, hence replicating the search that a normal user would perform
while in incognito mode.
The LufthansaScraper Class
The Lufthansa website handles desktop and mobile searches in the exact same way. For this reason
the get_availability and get_price methods can easily handle either type of search. The departure and
return date must be selected in an interactive widget, therefore as for Alitalia, the scraper relies on
three methods, namely the format_lufthansa_date, scroll_to_month and get_visible_month methods.

The Configuration Modules

The configuration modules hold the necessary information for the scraper to execute the flight searches.
These are the modules that will need to be modified in the future to extend the research to more air
carriers, itineraries and user profiles.
itineraries.py
This module contains the details of the itineraries and air carriers. For each carrier, one or more
itineraries can be defined. For the scope of this research, for each air carrier only one itinerary was
used. This module condenses all the itinerary details in the variable ITINERARIES, which is imported
by the entry point module to configure the scrapers. See listing 1 for a compact overview.
user_profiles.py
This module, depicted in listing 2, contains the details of the user profiles. This is where the user agents
string, mentioned in section 1, are defined and assigned. Also, the user unique IP address is assigned.
This is achieved by associating the profile with a specific VPN server which has a unique IP address
registered in Italy. Finally, the path to the cookie jars, reported in section , is provided. This module
condenses all the user profile details in the variable USER_LIST, which is imported by the entry point
module to configure the scrapers.

1 ALITALIA_ITINERARIES = [{'carrier ': 'Alitalia ',
2 'fare_brand ': 'Economy Light',
3 'origin ': 'FCO',
4 'destination ': 'CTA',
5 'departure_date ': '16/07/2021 ',
6 'departure_time ': '17:00 ',
7 'return_date ': '18/07/2021 ',
8 'return_time ': '20:20 '}]
9 RYANAIR_ITINERARIES = [{'carrier ': 'Ryanair ',

10 'fare_brand ': 'Regular ',
11 'origin ': 'FCO',
12 'destination ': 'CTA',
13 'departure_date ': '16/07/2021 ',
14 'departure_time ': '17:50 ',
15 'return_date ': '18/07/2021 ',
16 'return_time ': '20:10 '}]
17 LUFTHANSA_ITINERARIES = [{'carrier ': 'Lufthansa ',
18 'fare_brand ': 'Economy Light',
19 'origin ': 'FCO',
20 'destination ': 'MUC',
21 'departure_date ': '23/07/2021 ',
22 'departure_time ': '19:15 ',
23 'return_date ': '25/07/2021 ',
24 'return_time ': '16:55 '}]
25 ITINERARIES = {'Alitalia ': ALITALIA_ITINERARIES ,
26 'Ryanair ': RYANAIR_ITINERARIES ,
27 'Lufthansa ': LUFTHANSA_ITINERARIES}

Listing 1: itineraries.py



Version September 9, 2021 submitted to J. Theor. Appl. Electron. Commer. Res. 6 of 8

1 WINDOWS_CHROME = {
2 'user': 'Windows -Chrome ',
3 'os': 'Windows 10', 'browser ': 'Chrome 87',
4 'user_agent ': WINDOWS_CHROME_UA ,
5 'vpn_server ': 'it170 ',
6 'ip_address ': '185.183.105.28 ',
7 'cookie_jar ': os.path.join('cookie_jars ', 'windows_chrome ') }
8 ANDROID_CHROME = {
9 'user': 'Android -Chrome ',

10 'os': 'Android 10', 'browser ': 'Chrome 87',
11 'user_agent ': ANDROID_CHROME_UA ,
12 'vpn_server ': 'it175 ',
13 'ip_address ': '82.102.21.68 ',
14 'cookie_jar ': os.path.join('cookie_jars ', 'android_chrome ') }
15 MACOS_SAFARI = {
16 'user': 'MacOS -Safari ',
17 'os': 'Mac OS 10.15 ', 'browser ': 'Safari 14.0',
18 'user_agent ': MACOS_SAFARI_UA ,
19 'vpn_server ': 'it180 ',
20 'ip_address ': '192.145.127.236 ',
21 'cookie_jar ': os.path.join('cookie_jars ', 'macos_safari ') }
22 IOS_SAFARI = {
23 'user': 'iOS -Safari ',
24 'os': 'iOS 14.3', 'browser ': 'Safari 14.0',
25 'user_agent ': IOS_SAFARI_UA ,
26 'vpn_server ': 'it190 ',
27 'ip_address ': '37.120.201.244 ',
28 'cookie_jar ': os.path.join('cookie_jars ', 'ios_safari ') }
29 USER_LIST = [WINDOWS_CHROME , ANDROID_CHROME , MACOS_SAFARI , IOS_SAFARI]

Listing 2: user_profiles.py

The Support Modules

logger_tool.py
The logger_tool.py module instantiates the logger. The logger output is saved in the logbook.log in the
output folder. The contents of this file have been used to identify the errors occurred while scraping.
How these errors have been handled will be presented later on.

spreadsheet_tool.py
The spreadsheet_tool.py module allows to export the collected data into a spreadsheet. It relies on the
Openpyxl package and it was designed to allow quick adaptation to display the desired data. This
is achieved by providing a scraper instance to the generate_data function. The data contained in the
scraper is mapped to the cell headers, which are represented as keys of an ordered dictionary. This
type of implementation gives a simple way to add, remove or modify the spreadsheet headers by
modifying the keys and mapping them with the corresponding value. The Lufthansa surcharges



Version September 9, 2021 submitted to J. Theor. Appl. Electron. Commer. Res. 7 of 8

present in Amadeus are here subtracted from the control price retrieved (see line 20 below).

1 {
2 'os': scraper.user['os'],
3 'browser ': scraper.user['browser '],
4 'ip_address ': os.popen('curl -s ifconfig.me').read(),
5 'search_date ': str(datetime.now().strftime("%m-%d-%Y")),
6 'search_time ': str(datetime.now().strftime("%H:%M:%S")),
7 'carrier ': scraper.carrier ,
8 'origin ': scraper.itinerary['origin '],
9 'destination ': scraper.itinerary['destination '],

10 'fare_brand ': scraper.itinerary['fare_brand '],
11 'departure_date ': to_date(scraper.itinerary['departure_date ']),
12 'departure_time ': to_time(scraper.itinerary['departure_time ']),
13 'departure_flight ': scraper.itinerary['departure_flight '],
14 'departure_price ': to_float(scraper.itinerary['departure_price ']),
15 'return_date ': to_date(scraper.itinerary['return_date ']),
16 'return_time ': to_time(scraper.itinerary['return_time ']),
17 'return_flight ': scraper.itinerary['return_flight '],
18 'return_price ': to_float(scraper.itinerary['return_price ']),
19 'total_price ': to_float(scraper.itinerary['total_price ']),
20 'control_price ': to_float(scraper.itinerary['control_price ']) - scraper.carrier_dcc ,
21 'dep_fare_basis ': scraper.itinerary['dep_fare_basis '],
22 'dep_control_fare_basis ': scraper.itinerary['dep_control_fare_basis '],
23 'ret_fare_basis ': scraper.itinerary['ret_fare_basis '],
24 'ret_control_fare_basis ': scraper.itinerary['ret_control_fare_basis '],
25 'seats_left ': scraper.itinerary['seats_left ']
26 }

Listing 3: spreadsheet_tool.py

The Entry Point Module

The run_scrapers.py module functions as the entry point for the scraper. At first, the air carrier scraping
classes, user profile list and itineraries are imported. Then the module uses a nested iteration to call
every combination of carrier and user profile. If any error occurs during one of the iterations, it is
recorded in the logbook file. The code fragment shown below is a simplified version of the actual
scraping algorithm.

1 CARRIER_SCRAPERS = {'Alitalia ': AlitaliaScraper ,
2 'Ryanair ': RyanairScraper ,
3 'Lufthansa ': LufthansaScraper}
4

5 ITINERARIES = {'Alitalia ': ALITALIA_ITINERARIES ,
6 'Ryanair ': RYANAIR_ITINERARIES ,
7 'Lufthansa ': LUFTHANSA_ITINERARIES}
8

9 USER_LIST = [WINDOWS_CHROME , ANDROID_CHROME , MACOS_SAFARI , IOS_SAFARI]
10

11 for carrier , scraper_class in CARRIER_SCRAPERS.items ():
12 for user in USER_LIST:
13 try:
14 run(['vpn', 'connect ', f'{user[" vpn_server "]}'])
15 scraper = scraper_class(user=user ,
16 selenium_browser='Chrome ',
17 itinerary=ITINERARIES[carrier ])
18 except Exception as e:
19 logger.error(f'Error: {e}')

Listing 4: run_scrapers.py



Version September 9, 2021 submitted to J. Theor. Appl. Electron. Commer. Res. 8 of 8

© 2021 by the authors. Submitted to J. Theor. Appl. Electron. Commer. Res. for possible open
access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/.

